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6 The Multidimensional Riemann Integral

6.1 Rectangles and Partitions

Let Xi be a subset of R for i = 1, 2, . . . , n, where n is some positive integer.
The Cartesian product

X1 ×X2 × · · · ×Xn

of the sets X1, X2, . . . , Xn is the subset of Rn defined such that

X1 ×X2 × · · · ×Xn

= {(x1, x2, . . . , xn) ∈ Rn : xi ∈ Xi for i = 1, 2, . . . , n}.

We use the notation
n∏
i=1

Xi

to denote the Cartesian product X1 ×X2 × · · · ×Xn of sets X1, X2, . . . , Xn.

Definition We define a closed n-dimensional rectangle in n-dimensional Eu-
clidean space Rn to be Cartesian product of closed intervals in the real line.

A closed n-dimensional rectangle can thus be represented as a set of the
form

{(x1, x2, . . . , xn) ∈ Rn : ai ≤ xi ≤ bi for i = 1, 2, . . . , n},

where a1, a2, . . . , an and b1, b2, . . . , bn are real numbers such that ai ≤ bi for
i = 1, 2, . . . , n.

An n-dimensional rectangle may be referred to as an n-rectangle.
The interior of the closed n-rectangle

{(x1, x2, . . . , xn) ∈ Rn : ai ≤ xi ≤ bi for i = 1, 2, . . . , n}

is the open set

{(x1, x2, . . . , xn) ∈ Rn : ai < xi < bi for i = 1, 2, . . . , n},

for all real numbers a1, a2, . . . , an and b1, b2, . . . , bn satisfying ai ≤ bi for
i = 1, 2, . . . , n.

In other words, the interior of the closed n-rectangle
n∏
i=1

[ai, bi] is the open

set
n∏
i=1

(ai, bi).
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Definition Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers, where ai ≤
bi for i = 1, 2, . . . , n, and let K be the n-rectangle defined so that

S = {(x1, x2, x3, . . . , xn) ∈ Rn : ai ≤ xi ≤ bi for i = 1, 2, . . . , n}.

The volume (or content) v(K) of K is defined so that

v(S) =
n∏
i=1

(bi − ai) = (a1 − b1)(a1 − b2) · · · (an − bn).

Let a and b be real numbers, where a ≤ b. A partition of the closed
interval [a, b] is represented as a finite set P which includes the endpoints a
and b of the interval and whose elements belong to the interval. The elements
of such a partition P can be listed as x0, x1, x2, . . . , xm, where

a = x0 < x1 < x2 < · · · < xm = b.

Let ai and bi be real numbers satisfying ai ≤ bi for i = 1, 2, . . . , n, and let
Pi be a partition of the closed interval [ai, bi] for each i. We can then write

Pi = {xi,0, xi,1, xi,2, . . . , xi,m(i)},

where
ai = xi,0 < xi,1 < xi,2 < · · · < xi,m(i) = bi

for i = 1, 2, . . . , n and j = 0, 1, . . . ,m(i). Let K be the closed n-rectangle

defined so that K =
n∏
i=1

[ai, bi]. Then the partitions P1, P2, . . . , Pn of the

closed intervals
[a1, b1], [a2, b2], . . . [an, bn]

determine a partition P1 × P2 × · · · × Pn of the n-rectangle K as a union of
smaller closed n-rectangles Kj1,j2,...,jn , where ji is an integer between 1 and
m(i) for i = 1, 2, . . . , n, and where, for given integers j1, j2, . . . , jn satisfying
1 ≤ ji ≤ m(i) for i = 1, 2, . . . , n, the closed n-rectangle Kj1,j2,...,jn is defined
so that

Kj1,j2,...,jn =
n∏
i=1

[xi,ji−1, xi,ji ].

Definition Let ai and bi be real numbers satisfying ai ≤ bi for i = 1, 2, . . . , n,

and let K be the closed n-rectangle in Rn defined such that K =
n∏
i=1

[ai, bi].

82



A partition of K is the decomposition of K as a union of closed n-rectangles
Kj1,j2,...,jn that is determined by partitions P1, P2, . . . , Pn of

[a1, b1], [a2, b2], . . . [an, bn]

respectively, where, for each integer i between 1 and n, the partition Pi is
representable in the form

Pi = {xi,0, xi,1, xi,2, . . . , xi,m(i)}

for real numbers xi,0, xi,1, xi2 , . . . , xi,m(i) that satisfy

ai = xi,0 < xi,1 < xi,2 < · · · < xi,m(i) = bi,

and where Kj1,j2,...,jn =
n∏
i=1

[xi,ji−1, xi,ji ] for all integers j1, j2, . . . , jn that sat-

isfy 1 ≤ ji ≤ m(i) for i = 1, 2, . . . , n.

Proposition 6.1 Let ai and bi be real numbers satisfying ai ≤ bi for i =

1, 2, . . . , n, and let K =
n∏
i=1

[ai, bi]. Let the partition Pi of [ai, bi] be represented

in the form Pi = {xi,0, xi,1, . . . , xi,m(i)} for i = 1, 2, . . . , n, where

ai = xi,0 < xi,1 < xi,2 < · · · < xi,m(i) = bi.

Then the volume v(K) of the n-rectangle K satisfies

v(K) =

m(1)∑
j1=1

m(2)∑
j2=2

· · ·
m(n)∑
jn=1

v(Kj1,j2,...,jn),

where Kj1,j2,...,jn =
n∏
i=1

[xi,ji−1, xi,ji ] for all n-tuples (j1, j2, . . . , jn) of integers

satisfying 1 ≤ ji ≤ m(i) for i = 1, 2, . . . , n.

Proof We must prove that

n∏
i=1

(bi − ai) =

m(1)∑
j1=1

· · ·
m(n)∑
jn=1

(x1,j1 − x1,j1−1) · · · (xn,jn − xn,jn−1).

First we note that

bn − an =

m(n)∑
in=1

(xn,jn − xn,jn−1).
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It follows directly that the result holds in the case when n = 1.
Suppose that n > 1 and that the result is known to hold for all partitions

of (n−1)-dimensional rectangles in Rn−1. Applying the result to the rectangle
n−1∏
i=1

[ai, bi] in Rn−1, we find that

n−1∏
i=1

(bi − ai)

=

m(1)∑
j1=1

· · ·
m(n−1)∑
jn−1=1

(x1,j1 − x1,j1−1) · · · (xn−1,jn−1 − xn−1,jn−1−1).

It follows that

n∏
i=1

(bi − ai) =

m(1)∑
j1=1

· · ·
m(n)∑
jn=1

(x1,j1 − x1,j1−1) · · · (xn,jn − xn,jn−1).

Thus if the result holds all partitions of (n − 1)-dimensional rectangles in
Rn−1 then it also holds for all partitions of n-dimensional rectangles in Rn.
The result follows.

We now introduce “multi-index” notation in order to reduce the com-
plexity of the notation involved in analysing the properties of n-dimensional
rectangles, partitions of such rectangles, and of real-valued functions defined
on such rectangles.

Let K be an closed n-dimensional closed rectangle in Rn, let

[a1, b1], [a2, b2], . . . , [an, bn]

be closed intervals such that K =
n∏
i=1

[ai, bi], where ai ≤ bi for i = 1, 2, . . . , n,

and let P be a partition of K. Then there exists a partition Pi of [ai, bi] for
i = 1, 2, . . . , n such that

P = P1 × P2 × · · · × Pk.

We let Pi = {xi,0, xi,1, xi,2, . . . , xi,m(i)} for i = 1, 2, . . . , n, where xi,0, xi,1, xi2 , . . . , xi,m(i)

are real numbers that satisfy

ai = xi,0 < xi,1 < xi,2 < · · · < xi,m(i) = bi.
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Now the n-rectangle K is the union of smaller n-rectangles Kj1,j2,...,jn deter-
mined by the partition P , where

Kj1,j2,...,jn =
n∏
i=1

[xi,ji−1, xi,ji ]

for i = 1, 2, . . . , n and ji = 1, 2, . . . ,m(i). We refer to these n-rectangles
Kj1,j2,...,jn as the cells determined by the partition P of the rectangle K.
Each cell Kj1,j2,...,jn is identified by a “multi-index” (j1, j2, . . . , jn). Such
“multi-indices” are typically denoted by Greek letters α, β, γ, . . ..

Accordingly we let

Ω(P ) = {(j1, j2, . . . , jn) : i = 1, 2, . . . , n and ji = 1, 2, . . . ,m(i)}.

Then Ω(P ) is the set consisting of the multi-indices that identify cells of the
partition P . Given a multi-index α, where α = (j1, j2, . . . , jn) for some
(j1, j2, . . . , jn) ∈ Ω(P ), we can denote by KP,α the cell Kj1,j2,...,jn of the
partition corresponding to the multi-index α. The result Proposition 6.1
can then be expressed by the identity

v(K) =
∑

α∈Ω(P )

v(KP,α)

where v(K) denotes the volume of the rectangle K and v(KP,α) denotes the
volume of the cell KP,α for all α ∈ Ω(P ).

Definition Let K be an n-dimensional rectangle in Rn and let P and R be
partitions of K. We say that the partition R is a refinement of P if every
cell of the partition R is contained within a cell of the partition P .

Lemma 6.2 Let K be an n-dimensional rectangle in Rn and let P and R
be partitions of K. Let the partition P represent K as a union of cells
KP,α, where the index α ranges over an indexing set Ω(P ), and where the
interiors of the cells are disjoint. Similarly let the partition R represent K as
a union of cells KR,β, where the index β ranges over an indexing set Ω(R),
and where the interiors of the cells are disjoint. Suppose that the partition R
is a refinement of the partition P . Then there is a well-defined function
λ: Ω(R) → Ω(P ) characterized by the requirement that, for every β ∈ Ω(R),
the cell KP,λ(β) of the partition P is the unique cell of that partition for which
KR,β ⊂ KP,λ(β).

Proof The definition of the cells of the partitions P and R ensures that
the interiors of these cells are non-empty. Moreover if a cell KR,β of the
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refinement R is contained in a cell KP,α of the partition P then the interior
of KR,β is contained in the interior of KP,α. But the interiors of the cells
of the partition P are disjoint, and therefore the interior of KR,β cannot
intersect the interiors of two or more cells of the partition P . Therefore KR,β

can be contained in at most one cell of the partition P . But the definition
of refinements ensures that KR,β is contained in the interior of at least one
cell of the partition P . The result follows.

Lemma 6.3 Let K be an n-dimensional rectangle in Rn, and let P and Q
be partitions of K. Then there exists a partition R of K that is a common
refinement of the partitions P and Q.

Proof Let K =
∏n

i=1[ai, bi], where ai and bi are real numbers satisfying
ai ≤ bi for i = 1, 2, . . . , n. It follows from the definition of partitions that
there exist partitions Pi and Qi of the closed bounded interval [ai, bi] for
i = 1, 2, . . . , n such that

P = P1 × P2 × · · · × Pn

and
Q = Q1 ×Q2 × · · · ×Qn.

For each i, Pi and Qi are finite sets containing the endpoints ai and bi of the
interval whose other elements all belong to the interval. Let Ri = Pi ∪Qi for
i = 1, 2, . . . , n, and let

R = R1 ×R2 × · · · ×Rn.

Then R is a partition of K that is a common refinement of the partitions P
and Q of K. The result follows.

6.2 Multidimensional Darboux Sums

Let f :K → R be a bounded real-valued function defined on an n-dimensional
rectangle K in Rn. A partition P of the n-rectangle K represents K as the
union of a collection

{KP,α : α ∈ Ω(P )}
of n-rectangles contained in K. The interior of each of these n-rectangles
is a non-empty open set in Rn, and distinct n-rectangles in this collection
intersect, if at all, only along their boundaries. Thus each point of K belongs
to the interior of at most one rectangle in the collection

{KP,α : α ∈ Ω(P )}.
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Also the volume v(K) of the n-dimensional rectangle K is the sum of the
volumes of the cells of the partition, and thus

v(K) =
∑

α∈Ω(P )

KP,α.

Let K be an n-dimensional rectangle in Rn and let P and R be partitions of
K. Then the partition R is a refinement of P if every cell of the partition R is
contained within a cell of the partition P . We have shown that if the partition
R of K is a refinement of a partition P of K, and if the cells of the partitions
P and R of K are indexed by indexing sets Ω(P ) and Ω(R) respectively,
then there is a well-defined function λ: Ω(R) → Ω(P ) characterized by the
property that, for each β ∈ Ω(P ), the cell KP,λ(β) is the unique cell of the
partition P for which KR,β ⊂ KP,λ(β) (see Lemma 6.2). We have also shown
that, given any two partitions P and Q of K, there exists a partition R of
K that is a common refinement of P and Q. (see Lemma 6.3.)

Remark The previous discussion contains more details regarding how the
partition of K is implemented, and how the cells of the partition are con-
structed, and how they can be indexed. The results just described will be
essential in the following discussion. But the details of how the cells of the
partition are indexed is immaterial to the following discussion, and we could
at this point choose an ordering of the cells of a given partition, and use this
ordering to represent the indexing set Ω(P ) associated with a partition P of
an n-dimensional rectangle K as a set of consecutive integers indexing the
cells of the partition P in accordance with the chosen ordering of those cells.
The cells determined by the partition P of K could then be denoted as

KP,1, KP,2, · · ·KP,r,

where r is the number of cells resulting from the partition P of K.

Definition Let f :K → R be a bounded real-valued function defined on an
n-dimensional rectangle K in Rn, let P be a partition of K, and let the cells
of this partition be indexed by the set Ω(P ). For each element α of the
indexing set Ω(P ), let KP,α denotes the cell of the partition indexed by α,
let v(KP , α) denote the volume of KP,α, and let

mP,α = inf{f(x) : x ∈ KP,α}

and
MP,α = sup{f(x) : x ∈ KP,α}.
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Then the Darboux lower sum L(P, f) and the Darboux upper sum U(P, f)
are defined by the formulae

L(P, f) =
∑

α∈Ω(P )

mP,α v(KP,α)

and
U(P, f) =

∑
α∈Ω(P )

MP,α v(KP,α),

Let f :K → R be a bounded real-valued function defined on an n-dimensional
rectangle K in Rn. Then the definition of the Darboux lower and upper sums
ensures that L(P, f) ≤ U(P, f) for all partitions P of the n-rectangle K.

Lemma 6.4 Let f :K → R be a bounded real-valued function defined on
an n-dimensional rectangle K in Rn, and let P and R be partitions of K.
Suppose that R is a refinement of P . Then

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f).

Proof Let the cells of the partitions P and R be indexed by indexing sets
Ω(P ) and ω(R) respectively. Also, for each α ∈ Ω(P ), let KP,α be the cell
of the partition P determined by α, and, for each β ∈ Ω(R), let KR,β be the
cell of the partition R determined by β. Then there is a well-defined function
λ: Ω(R)→ Ω(P ) characterized by the requirement that, for every β ∈ Ω(R),
the cell KP,λ(β) of the partition P is the unique cell of that partition for which
KR,β ⊂ KP,λ(β) (see Lemma 6.2). Now

L(P, f) =
∑

α∈Ω(P )

mP,α v(KP,α),

U(P, f) =
∑

α∈Ω(P )

MP,α v(KP,α),

where
mP,α = inf{f(x) : x ∈ KP,α}

and
MP,α = sup{f(x) : x ∈ KP,α}

for all α ∈ Ω(P ). Similarly

L(R, f) =
∑

β∈Ω(R)

mR,β v(KR,β),

U(R, f) =
∑

β∈Ω(R)

MR,β v(KR,β),

88



where
mR,β = inf{f(x) : x ∈ KR,β}

and
MR,β = sup{f(x) : x ∈ KR,β}

for all β ∈ Ω(R).
Now

mR,β ≥ mP,λ(β)

for all β ∈ Ω(R), because KR,β ⊂ KP,λ(β). Also the partition R of K deter-
mines a partition of each cell KP,α of that partition P , decomposing the cell
KP,α as a union of the sets KR,β for which λ(β) = α. It follows that

KP,α =
∑

β∈Ω(R;α)

v(KR,β)

where
Ω(R;α) = {β ∈ Ω(R) : λ(β) = α}

for all α ∈ Ω(P ) (see Proposition 6.1). Therefore

L(R, f) =
∑

β∈Ω(R)

mR,β v(KR,β)

=
∑

α∈Ω(P )

∑
β∈Ω(R;α)

mR,β v(KR,β)

≥
∑

α∈Ω(P )

mP,α

∑
β∈Ω(R;α)

v(KR,β)

≥
∑

α∈Ω(P )

mP,α v(KP,α)

= L(P, f).

An analogous argument applies to upper sums. Now

MR,β ≥MP,λ(β)

for all β ∈ Ω(R), where

MP,α = sup{f(x) : x ∈ KP,α}

for all α ∈ Ω(P ) and

MR,β = sup{f(x) : x ∈ KR,β}
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for all β ∈ Ω(R), because KR,β ⊂ KP,λ(β). Also

KP,α =
∑

β∈Ω(R;α)

v(KR,β)

where
Ω(R;α) = {β ∈ Ω(R) : λ(β) = α}

for all α ∈ Ω(P ), as before. Therefore

U(R, f) =
∑

β∈Ω(R)

MR,β v(KR,β)

=
∑

α∈Ω(P )

∑
β∈Ω(R;α)

MR,β v(KR,β)

≤
∑

α∈Ω(P )

MP,α

∑
β∈Ω(R;α)

v(KR,β)

≥
∑

α∈Ω(P )

MP,α v(KP,α)

= U(P, f).

This completes the proof.

Lemma 6.5 Let f :K → R be a bounded real-valued function defined on an
n-dimensional rectangle K in Rn, and let P and Q be partitions of K. Then
then the Darboux sums of the function f for the partitions P and Q satisfy
L(P, f) ≤ U(Q, f).

Proof There exists a partition R of K that is a common refinement of the
partitions P and Q of K. (Lemma 6.3.) Moreover L(R, f) ≥ L(P, f) and
U(R, f) ≤ U(Q, f) (Lemma 6.4). It follows that

L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(Q, f),

as required.

6.3 The Multidimensional Riemann-Darboux Integral

Definition Let K be an n-dimensional rectangle in Rn, and let f :K → R
be a bounded real-valued function on K. The lower Riemann integral and
the upper Riemann integral, denoted by

L
∫
K

f(x) dx1 dx2 · · · dxn and U
∫
K

f(x) dx1 dx2 · · · dxn
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respectively, are defined such that

L
∫
K

f(x) dx1 dx2 · · · dxn

= sup{L(P, f) : P is a partition of K},

U
∫
K

f(x) dx1 dx2 · · · dxn

= inf{U(P, f) : P is a partition of K}.

Lemma 6.6 Let f be a bounded real-valued function on an n-dimensional
rectangle K in Rn. Then

L
∫
K

f(x) dx ≤ U
∫
K

f(x) dx.

L
∫
K

f(x) dx1 dx2 · · · dxn ≤ U
∫
K

f(x) dx1 dx2 · · · dxn.

Proof It follows from Lemma 6.5 that L(P, f) ≤ L(Q, f) for all partitions P
and Q of K. It follows that, for a fixed partition Q, the upper sum U(Q, f)
is an upper bound on all the lower sums L(P, f), and therefore

L
∫
K

f(x) dx ≤ U(Q, f).

The lower Riemann integral is then a lower bound on all the upper sums,
and therefore

L
∫
K

f(x) dx1 dx2 · · · dxn ≤ U
∫
K

f(x) dx1 dx2 · · · dxn.

as required.

Definition A bounded function f :K → R on a closed n-dimensional rect-
angle K in Rn is said to be Riemann-integrable (or Darboux-integrable) on
K if

U
∫
K

f(x) dx1 dx2 · · · dxn = L
∫
K

f(x) dx1 dx2 · · · dxn,

in which case the Riemann integral
∫
K
f(x) dx1 dx2 · · · dxn (or Darboux inte-

gral) of f onX is defined to be the common value of U
∫
K
f(x) dx1 dx2 · · · dxn

and L
∫
K
f(x) dx1 dx2 · · · dxn.
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Lemma 6.7 Let f :K → R be a bounded function on a closed n-dimensional
rectangle K in Rn. Then the lower and upper Riemann integrals of f and
−f are related by the identities

U
∫
K

(−f(x)) dx1 dx2 · · · dxn = −L
∫
K

f(x) dx1 dx2 · · · dxn,

L
∫
K

(−f(x)) dx1 dx2 · · · dxn = −U
∫
K

f(x) dx1 dx2 · · · dxn.

Proof Let P be a partition of K, let Ω(P ) be the indexing set for the cells
of the partition P , and let the cell of the partition indexed by α ∈ Ω(P ) be
denoted by KP,α. Then the lower and upper sums of f for the partition P
satisfy the equations

L(P, f) =
∑

α∈Ω(P )

mP,α v(KP,α), U(P, f) =
∑

α∈Ω(P )

MP,α v(KP,α),

where

mP,α = inf{f(x) : x ∈ KP,α},
MP,α = sup{f(x) : x ∈ KP,α}.

Now

sup{−f(x) : x ∈ KP,α}
= − inf{f(x) : x ∈ KP,α} = −mP,α,

inf{−f(x) : x ∈ KP,α}
= − sup{f(x) : x ∈ KP,α} = −MP,α

It follows that

U(P,−f) =
∑

α∈Ω(P )

(−mP,α)v(KP,α) = −L(P, f),

L(P,−f) =
∑

α∈Ω(P )

(−MP,α)v(KP,α) = −U(P, f).

We have now shown that

U(P,−f) = −L(P, f) and L(P,−f) = −U(P, f)

for all partitions P of the interval K. Applying the definition of the upper
and lower integrals, we see that

U
∫
K

(−f(x)) dx1 dx2 · · · dxn
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= inf {U(P,−f) : P is a partition of K}
= inf {−L(P, f) : P is a partition of K}
= − sup {L(P, f) : P is a partition of K}

= −L
∫
K

f(x) dx1 dx2 · · · dxn

Similarly

L
∫
K

(−f(x)) dx1 dx2 · · · dxn

= sup {L(P,−f) : P is a partition of K}
= sup {−U(P, f) : P is a partition of K}
= − inf {U(P, f) : P is a partition of K}

= −U
∫
K

f(x) dx1 dx2 · · · dxn.

This completes the proof.

Lemma 6.8 Let f :K → R and g:K → R be bounded functions on a closed
n-dimensional rectangle K in Rn. Then the lower sums of the functions f ,
g and f + g satisfy

L(P, f + g) ≥ L(P, f) + L(P, g),

and the upper sums of these functions satisfy

U(P, f + g) ≤ U(P, f) + U(P, g).

Proof Let P be a partition of K, let Ω(P ) be the indexing set for the cells
of the partition P , and let the cell of the partition indexed by α ∈ Ω(P ) be
denoted by KP,α. Then

L(P, f) =
∑

α∈Ω(P )

mP,α(f)v(KP,α),

L(P, g) =
∑

α∈Ω(P )

mP,α(g)v(KP,α),

L(P, f + g) =
∑

α∈Ω(P )

mP,α(f + g)v(KP,α),

where

mP,α(f) = inf{f(x) : x ∈ KP,α},
mP,α(g) = inf{g(x) : x ∈ KP,α},

mP,α(f + g) = inf{f(x) + g(x) : x ∈ KP,α}
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for α ∈ Ω(P ).
Now

f(x) ≥ mP,α(f) and g(x) ≥ mP,α(g).

for all x ∈ KP,α. Adding, we see that

f(x) + g(x) ≥ mP,α(f) +mP,α(g)

for all x ∈ KP,α, and therefore mP,α(f) + mP,α(g) is a lower bound for the
set

{f(x) + g(x) : x ∈ KP,α}.
The greatest lower bound for this set is mP,α(f + g). Therefore

mP,α(f + g) ≥ mP,α(f) +mP,α(g).

It follows that

L(P, f + g)

=
∑

α∈Ω(P )

mP,α(f + g)v(KP,α)

≥
∑

α∈Ω(P )

(mP,α(f) +mP,α(g))v(KP,α)

=
∑

α∈Ω(P )

mP,α(f)v(KP,α) +
∑

α∈Ω(P )

mP,α(g)v(KP,α)

= L(P, f) + L(P, g).

An analogous argument applies to upper sums. Now

U(P, f) =
∑

α∈Ω(P )

MP,α(f)v(KP,α),

U(P, g) =
∑

α∈Ω(P )

MP,α(g)v(KP,α),

U(P, f + g) =
∑

α∈Ω(P )

MP,α(f + g)v(KP,α),

where

MP,α(f) = sup{f(x) : x ∈ KP,α},
MP,α(g) = sup{g(x) : x ∈ KP,α},

MP,α(f + g) = sup{f(x) + g(x) : x ∈ KP,α}
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for α ∈ Ω(P ).
Now

f(x) ≤MP,α(f) and g(x) ≤MP,α(g).

for all x ∈ KP,α. Adding, we see that

f(x) + g(x) ≤MP,α(f) +MP,α(g)

for all x ∈ KP,α, and therefore MP,α(f) +MP,α(g) is an upper bound for the
set

{f(x) + g(x) : x ∈ KP,α}.

The least upper bound for this set is MP,α(f + g). Therefore

MP,α(f + g) ≤MP,α(f) +MP,α(g).

It follows that

U(P, f + g)

=
∑

α∈Ω(P )

MP,α(f + g)v(KP,α)

≤
∑

α∈Ω(P )

(MP,α(f) +MP,α(g))v(KP,α)

=
∑

α∈Ω(P )

MP,α(f)v(KP,α) +
∑

α∈Ω(P )

MP,α(g)v(KP,α)

= U(P, f) + U(P, g).

This completes the proof that

L(P, f + g) ≥ L(P, f) + L(P, g)

and
U(P, f + g) ≤ U(P, f) + U(P, g).

Proposition 6.9 Let f :K → R and g:K → R be bounded Riemann-integrable
functions on a closed n-rectangle K. Then the functions f + g and f − g are
Riemann-integrable on K, and moreover∫

K

(f(x) + g(x)) dx1 dx2 · · · dxn

=

∫
K

f(x) dx1 dx2 · · · dxn +

∫
K

g(x) dx1 dx2 · · · dxn,
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and ∫
K

(f(x)− g(x)) dx1 dx2 · · · dxn

=

∫
K

f(x) dx1 dx2 · · · dxn −
∫
K

g(x) dx1 dx2 · · · dxn.

Proof Let some strictly positive real number ε be given. The definition
of Riemann-integrability and the Riemann integral ensures that there exist
partitions P and Q of K for which

L(P, f) >

∫
K

f(x) dx1 dx2 · · · dxn − 1
2
ε

and

L(Q, g) >

∫
K

g(x) dx1 dx2 · · · dxn − 1
2
ε.

Let the partition R be a common refinement of the partitions P and Q. Then

L(R, f) ≥ L(P, f) and L(R, g) ≥ L(P, g).

Applying Lemma 6.8, and the definition of the lower Riemann integral, we
see that

L
∫
K

(f(x) + g(x)) dx1 dx2 · · · dxn

≥ L(R, f + g) ≥ L(R, f) + L(R, g)

≥ L(P, f) + L(Q, g)

>

(∫
K

f(x) dx1 dx2 · · · dxn − 1
2
ε

)
+

(∫
K

g(x) dx1 dx2 · · · dxn − 1
2
ε

)
>

∫
K

f(x) dx1 dx2 · · · dxn +

∫
K

g(x) dx1 dx2 · · · dxn − ε

We have now shown that

L
∫
K

(f(x) + g(x)) dx1 dx2 · · · dxn

>

∫
K

f(x) dx1 dx2 · · · dxn +

∫
K

g(x) dx1 dx2 · · · dxn − ε

for all strictly positive real numbers ε. However the quantities of

L
∫
K

(f(x) + g(x)) dx1 dx2 · · · dxn,
∫
K

f(x) dx1 dx2 · · · dxn

96



and ∫
K

g(x) dx1 dx2 · · · dxn

have values that have no dependence whatsoever on the value of ε.
It follows that

L
∫
K

(f(x) + g(x)) dx1 dx2 · · · dxn

≥
∫
K

f(x) dx1 dx2 · · · dxn +

∫
K

g(x) dx1 dx2 · · · dxn.

We can deduce a corresponding inequality involving the upper integral of
f +g by replacing f and g by −f and −g respectively (Lemma 6.7). We find
that

L
∫
K

(−f(x)− g(x)) dx1 dx2 · · · dxn

≥
∫
K

(−f(x)) dx1 dx2 · · · dxn +

∫
K

(−g(x)) dx1 dx2 · · · dxn

= −
∫
K

f(x) dx1 dx2 · · · dxn −
∫
K

g(x) dx1 dx2 · · · dxn

and therefore

U
∫
K

(f(x) + g(x)) dx1 dx2 · · · dxn

= −L
∫
K

(−f(x)− g(x)) dx1 dx2 · · · dxn

≤
∫
K

f(x) dx1 dx2 · · · dxn +

∫
K

g(x) dx1 dx2 · · · dxn.

Combining the inequalities obtained above, we find that∫
K

f(x) dx1 dx2 · · · dxn +

∫
K

g(x) dx1 dx2 · · · dxn

≤ L
∫
K

(f(x) + g(x)) dx1 dx2 · · · dxn

≤ U
∫
K

(f(x) + g(x)) dx1 dx2 · · · dxn

≤
∫
K

f(x) dx1 dx2 · · · dxn +

∫
K

g(x) dx1 dx2 · · · dxn.
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The quantities at the left and right hand ends of this chain of inequalities
are equal to each other. It follows that

L
∫
K

(f(x) + g(x)) dx1 dx2 · · · dxn

= U
∫
K

(f(x) + g(x)) dx1 dx2 · · · dxn

=

∫
K

f(x) dx1 dx2 · · · dxn +

∫
K

g(x) dx1 dx2 · · · dxn.

Thus the function f + g is Riemann-integrable on K, and∫
K

(f(x) + g(x)) dx1 dx2 · · · dxn

=

∫
K

f(x) dx1 dx2 · · · dxn +

∫
K

g(x) dx1 dx2 · · · dxn.

Then, replacing g by −g, we find that∫
K

(f(x)− g(x)) dx1 dx2 · · · dxn

=

∫
K

f(x) dx1 dx2 · · · dxn −
∫
K

g(x) dx1 dx2 · · · dxn.

as required.

Proposition 6.10 Let f :K → R be a bounded function on a closed n-
dimensional rectangle K in Rn. Then the function f is Riemann-integrable
on K if and only if, given any positive real number ε, there exists a parti-
tion P of K with the property that

U(P, f)− L(P, f) < ε.

Proof First suppose that f :K → R is Riemann-integrable on K. Let some
positive real number ε be given. Then∫

K

f(x) dx1 dx2 · · · dxn

is equal to the common value of the lower and upper integrals of the func-
tion f on K, and therefore there exist partitions Q and R of K for which

L(Q, f) >

∫
K

f(x) dx1 dx2 · · · dxn − 1
2
ε
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and

U(R, f) <

∫
K

f(x) dx1 dx2 · · · dxn + 1
2
ε.

Let P be a common refinement of the partitions Q and R. Now

L(Q, f) ≤ L(P, f) ≤ U(P, f) ≤ U(R, f).

(see Lemma 6.4). It follows that

U(P, f)− L(P, f) ≤ U(R, f)− L(Q, f) < ε.

Now suppose that f :K → R is a bounded function on K with the prop-
erty that, given any positive real number ε, there exists a partition P of K
for which U(P, f) − L(P, f) < ε. Let ε > 0 be given. Then there exists a
partition P of K for which U(P, f) − L(P, f) < ε. Now it follows from the
definitions of the upper and lower integrals that

L(P, f) ≤ L
∫
K

f(x) dx1 dx2 · · · dxn

≤ U
∫
K

f(x) dx1 dx2 · · · dxn ≤ U(P, f),

and therefore

U
∫
K

f(x) dx1 dx2 · · · dxn − L
∫
K

f(x) dx1 dx2 · · · dxn

< U(P, f)− L(P, f) < ε.

Thus the difference between the values of the upper and lower integrals of f
on K must be less than every strictly positive real number ε, and therefore

U
∫
K

f(x) dx1 dx2 · · · dxn = L
∫
K

f(x) dx1 dx2 · · · dxn.

This completes the proof.

Lemma 6.11 Let f :K → R be a bounded Riemann-integrable function on
a closed n-dimensional rectangle K in Rn, let |f |:K → R be the function
defined such that |f |(x) = |f(x)| for all x ∈ K, and let P be a partition of the
n-rectangle K. Then the Darboux sums U(P, f) and L(P, f) of the function f
on K and the Darboux sums U(P, |f |) and L(P, |f |) of the function |f | on K
satisfy the inequality

U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f).
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Proof Let P be a partition of K, let Ω(P ) be a set that indexes the cells of
the partition P of K, and let

MP,α(f) = sup{f(x) : x ∈ KP,α},
MP,α(|f |) = sup{|f(x)| : x ∈ KP,α},
mP,α(f) = inf{f(x) : x ∈ KP,α},
mP,α(|f |) = inf{|f(x)| : x ∈ KP,α}

for α ∈ Ω(P ). It follows from Lemma 3.8 that

MP,α(|f |)−mP,α(|f |) ≤MP,α(f)−mP,α(f)

for α ∈ Ω(P ). Now the Darboux sums of the functions f and |f | for the
partition P are defined by the identities

L(P, f) =
∑

α∈Ω(P )

mP,α(f)v(KP,α),

L(P, |f |) =
∑

α∈Ω(P )

mP,α(|f |)v(KP,α),

U(P, f) =
∑

α∈Ω(P )

MP,α(f)v(KP,α),

U(P, |f |) =
∑

α∈Ω(P )

MP,α(|f |)v(KP,α).

It follows that

U(P, |f |)− L(P, |f |) =
∑

α∈Ω(P )

(MP,α(|f |)−mP,α(|f |))v(KP,α)

≤
∑

α∈Ω(P )

(MP,α(f)−mP,α(f))v(KP,α)

= U(P, f)− L(P, f),

as required.

Proposition 6.12 Let f :K → R be a bounded Riemann-integrable function
on a closed n-dimensional rectangle K in Rn, and let |f |:K → R be the
function defined such that |f |(x) = |f(x)| for all x ∈ K. Then the function
|f | is Riemann-integrable on K, and∣∣∣∣∫ b

a

f(x) dx1 dx2 · · · dxn
∣∣∣∣ ≤ ∫ b

a

|f(x)| dx1 dx2 · · · dxn.
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Proof Let some positive real number ε be given. It follows from Proposi-
tion 6.10 that there exists a partition P of K such that

U(P, f)− L(P, f) < ε.

It then follows from Lemma 6.11 that

U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f) < ε.

Proposition 6.10 then ensures that the function |f | is Riemann-integrable on
K.

Now −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ K. It follows that

−
∫ b

a

|f(x)| dx1 dx2 · · · dxn ≤
∫ b

a

f(x) dx1 dx2 · · · dxn

≤
∫ b

a

|f(x)| dx1 dx2 · · · dxn.

It follows that∣∣∣∣∫ b

a

f(x) dx1 dx2 · · · dxn
∣∣∣∣ ≤ ∫ b

a

|f(x)| dx1 dx2 · · · dxn,

as required.

Lemma 6.13 Let f :K → R and g:K → R be bounded Riemann-integrable
functions on a closed n-dimensional rectangle K in Rn, let B be a positive real
number with the property that |f(x)| ≤ B and |g(x)| ≤ B for all x ∈ K, and
let P be a partition of the n-rectangle K. Then the Darboux sums U(P, f),
U(P, g), U(P, f ·g), L(P, f), L(P, g) and L(P, f ·g) of the functions f , g and
f · g on K satisfy the inequality

U(P, f · g)− L(P, f · g)

≤ B
(
U(P, f)− L(P, f) + U(P, g)− L(P, g)

)
.

Proof Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b.

Then

U(P, f) =
∑

α∈Ω(P )

MP,α(f)v(KP,α),

U(P, g) =
∑

α∈Ω(P )

MP,α(g)v(KP,α),

U(P, f · g) =
∑

α∈Ω(P )

MP,α(f · g)v(KP,α),
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L(P, f) =
∑

α∈Ω(P )

mP,α(f)v(KP,α),

L(P, g) =
∑

α∈Ω(P )

mP,α(g)v(KP,α),

L(P, f · g) =
∑

α∈Ω(P )

mP,α(f · g)v(KP,α),

where

MP,α(f) = sup{f(x) : x ∈ KP,α},
MP,α(g) = sup{g(x) : x ∈ KP,α},

MP,α(f · g) = sup{f(x)g(x) : x ∈ KP,α}
mP,α(f) = inf{f(x) : x ∈ KP,α},
mP,α(g) = inf{g(x) : x ∈ KP,α},

mP,α(f · g) = inf{f(x)g(x) : x ∈ KP,α}.

for α ∈ Ω(P ).
Now it follows from Lemma 3.11 that

MP,α(f · g)−mP,α(f · g) ≤ B
(
MP,α(f)−mP,α(f) +MP,α(g)−mP,α(g)

)
.

for α ∈ Ω(P ). The required inequality therefore holds on multiplying both
sides of the inequality above by v(KP,α) and summing over all integers be-
tween 1 and n.

Proposition 6.14 Let f :K → R and g:K → R be bounded Riemann-
integrable functions on a closed bounded n-dimensional rectangle K in Rn.
Then the function f · g is Riemann-integrable on K, where (f · g)(x) =
f(x)g(x) for all x ∈ K.

Proof The functions f and g are bounded on K, and therefore there exists
some positive real number B with the property that |f(x)| ≤ B and |g(x)| ≤
B for all x ∈ K.

Let some positive real number ε be given. It follows from Proposition 6.10
that there exist partitions Q and R of the closed n-rectangle K for which

U(Q, f)− L(Q, f) <
ε

2B

and
U(R, g)− L(R, g) <

ε

2B
.
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Let P be a common refinement of the partitions Q and R. It follows from
Lemma 6.4 that

U(P, f)− L(P, f) ≤ U(Q, f)− L(Q, f) <
ε

2B

and
U(P, g)− L(P, g) ≤ U(R, g)− L(R, g) <

ε

2B
.

It then follows from Proposition 6.13 that

U(P, f · g)− L(P, f · g)

≤ B
(
U(P, f)− L(P, f) + U(P, g)− L(P, g)

)
< ε

We have thus shown that, given any positive real number ε, there exists a
partition P of the closed n-dimensional rectangle K with the property that

U(P, f · g)− L(P, f · g) < ε.

It follows from Proposition 6.10 that the product function f · g is Riemann-
integrable, as required.

6.4 Integrability of Continuous functions

Theorem 6.15 Let K be a closed n-dimensional rectangle in Rn. Then any
continuous real-valued function on K is Riemann-integrable.

Proof Let f :K → R be a continuous real-valued function on K. Then f
is bounded above and below on K, and moreover f :K → R is uniformly
continuous on K. (These results follow from Theorem 5.5 and Theorem 5.6.)
Therefore there exists some strictly positive real number δ such that |f(u)−
f(w)| < ε whenever u,w ∈ K satisfy |u−w| < δ.

Choose a partition P of the n-rectangle K such that each cell in the par-
tition has diameter less than δ. Let Ω(P ) be an index set which indexes the
cells of the partition P and, for each α ∈ Ω(P ) let KP,α be the corresponding
cell of the partition P of K. Also let pα be a point of KP,α for all α ∈ Ω(P ).
Then |x− pα| < δ for all x ∈ KP,α. Thus if

mP,α = inf{f(x) : x ∈ KP,α}

and
MP,α = sup{f(x) : x ∈ KP,α}
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then
f(pα)− ε ≤ mP,α ≤MP,α ≤ f(pα) + ε

for all α ∈ Ω(P ). It follows that

n∑
i=1

f(pα)v(KP,α)− εv(K)

≤ L(P, f) ≤ U(P, f)

≤
n∑
i=1

f(pα)v(KP,α) + εv(K),

where L(P, f) and U(P, f) denote the lower and upper sums of the function f
for the partition P .

We have now shown that

0 ≤ U
∫
K

f(x) dx1 dx2 · · · dxn − L
∫
K

f(x) dx1 dx2 · · · dxn

≤ U(P, f)− L(P, f) ≤ 2εv(K).

But this inequality must be satisfied for any strictly positive real number ε.
Therefore

U
∫
K

f(x) dx1 dx2 · · · dxn = L
∫
K

f(x) dx1 dx2 · · · dxn,

and thus the function f is Riemann-integrable on K.

6.5 Repeated Integration

Let K be an n-rectangle in Rn, given by

K =
n∏
i=1

[ai, bi]

= {x ∈ Rn : ai ≤ xi ≤ bi for i = 1, 2, . . . , n},

where a1, a2, . . . , an and b1, b2, . . . , bn are real numbers which satisfy ai ≤ bi
for each i. Given any continuous real-valued function f on K, let us denote
by IK(f) the repeated integral of f over the n-rectangle K whose value is∫ bn

xn=an

(
· · ·
∫ b2

x2=a2

(∫ b1

x1=a1

f(x1, x2, . . . , xn) dx1

)
dx2 . . .

)
dxn.

(Thus IK(f) is obtained by integrating the function f first over the coordi-
nate x1, then over the coordinate x2, and so on).
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Note that if m ≤ f(x) ≤M on K for some constants m and M then

mv(K) ≤ IK(f) ≤M v(K).

We shall use this fact to show that if f is a continuous function on some
n-rectangle K in Rn then

IK(f) =

∫
K

f(x) dx1 dx2 · · · dxn

(i.e., IK(f) is equal to the Riemann integral of f over K).

Theorem 6.16 Let f be a continuous real-valued function defined on some
n-rectangle K in Rn, where

K = {x ∈ Rn : ai ≤ xi ≤ bi}.

Then the Riemann integral∫
K

f(x) dx1 dx2 · · · dxn

of f over K is equal to the repeated integral∫ bn

xn=an

(
· · ·
∫ b2

x2=a2

(∫ b1

x1=a1

f(x1, x2, . . . , xn) dx1

)
dx2 . . .

)
dxn.

Proof Given a partition P of the n-rectangle K, we denote by L(P, f) and
U(P, f) the quantities so that

L(P, f) =
∑

α∈Ω(P )

mP,α(f) v(KP,α)

and
U(P, f) =

∑
α∈Ω(P )

MP,α(f) v(KP,α)

where Ω(P ) is an indexing set that indexes the cells of the partition P ,
and where, for all α ∈ Ω(P ), v(KP,α) is the volume of the cell KP,α of the
partition P indexed by α,

mP,α(f) = inf{f(x) : x ∈ KP,α},

and
MP,α(f) = sup{f(x) : x ∈ KP,α}.
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Now
mP,α(f) ≤ f(x) ≤MP,α(f)

for all α ∈ Ω(P ) and x ∈ KP,α, and therefore

mP,α(f) v(KP,α) ≤ IK,α(f) ≤MP,α(f) v(KP,α)

for all α ∈ Ω(P ). Summing these inequalities as α ranges over the indexing
set Ω(P ), we find that

L(P, f) =
∑

α∈Ω(P )

mP,α(f) v(KP,α)

≤
∑

α∈Ω(P )

IK,α(f)

≤
∑

α∈Ω(P )

MP,α(f) v(KP,α)

= U(P, f).

But ∑
α∈Ω(P )

IK,α(f) = IK(f).

It follows that
L(P, f) ≤ IK(f) ≤ U(P, f).

The Riemann integral of f is equal to the supremum of the quantities L(P, f)
as P ranges over all partitions of the n-rectangle K, hence∫

K

f(x) dx1 dx2 · · · dxn ≤ IK(f).

Similarly the Riemann integral of f is equal to the infimum of the quanti-
ties U(P, f) as P ranges over all partitions of the n-rectangle K, hence

IK(f) ≤
∫
K

f(x) dx1 dx2 · · · dxn.

Hence

IK(f) =

∫
K

f(x) dx1 dx2 · · · dxn,

as required.

Note that the order in which the integrations are performed in the re-
peated integral plays no role in the above proof. We may therefore deduce
the following important corollary.
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Corollary 6.17 Let f be a continuous real-valued function defined over some
closed rectangle K in R2, where

K = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}.

Then ∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy.

Proof It follows directly from Theorem 6.16 that the repeated integrals∫ b

a

(∫ d

c

f(x, y) dy

)
dx and

∫ d

c

(∫ b

a

f(x, y) dx

)
dy

are both equal to the Riemann integral of the function f over the rectangle K.
Therefore these repeated integrals must be equal.
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