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5 Compact Subsets of Euclidean Spaces

5.1 The Multidimensional Bolzano-Weierstrass Theo-
rem

A sequence x1,x2,x3, . . . of points in Rn is said to be bounded if there exists
some constant K such that |xj| ≤ K for all j.

Example Let

(xj, yj, zj) =

(
sin(π

√
j), (−1)j, cos

(
2π log j

log 2

))
for j = 1, 2, 3, . . .. This sequence of points in R3 is bounded, because the
components of its members all take values between −1 and 1. Moreover
xj = 0 whenever j is the square of a positive integer, yj = 1 whenever j is
even and zj = 1 whenever j is a power of two.

The infinite sequence x1, x2, x3, . . . has a convergent subsequence

x1, x4, x9, x16, x25, . . .

which includes those xj for which j is the square of a positive integer. The
corresponding subsequence y1, y4, y9, . . . of y1, y2, y3, . . . is not convergent, be-
cause its values alternate between 1 and −1. However this subsequence is
bounded, and we can extract from this sequence a convergent subsequence

y4, y16, y36, y64, y100, . . .

which includes those xj for which j is the square of an even positive integer.
The subsequence

x4, x16, x36, y64, y100, . . .

is also convergent, because it is a subsequence of a convergent subsequence.
However the corresponding subsequence

z4, z16, z36, z64, z100, . . .

does not converge. (Indeed zj = 1 when j is an even power of 2, but
zj = cos(2π log(9)/ log(2)) when j = 9 × 22p for some positive integer p.)
However this subsequence is bounded, and we can extract from it a conver-
gent subsequence

z4, z16, z64, z256, z1024, . . .
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which includes those xj for which j is equal to two raised to the power of
an even positive integer. Then the first, second and third components of the
following subsequence

(x4, y4, z4), (x16, y16, z16), (x64, y64, z64), (x256, y256, z256), . . .

of the original sequence of points in R3 converge, and it therefore follows
from Lemma 4.3 that this sequence is a convergent subsequence of the given
sequence of points in R3.

Example Let

xj =


1 if j = 4k for some integer k
0 if j = 4k + 1 for some integer k
−1 if j = 4k + 2 for some integer k
0 if j = 4k + 3 for some integer k

and

yj =


0 if j = 4k for some integer k,
1 if j = 4k + 1 for some integer k,
0 if j = 4k + 2 for some integer k,
−1 if j = 4k + 3 for some integer k,

,

and let uj = (xj, yj) for j = 1, 2, 3, 4, . . .. Then the first components xj for
which the index j is odd constitute a convergent sequence x1, x3, x5, x7, . . .
of real numbers, and the second components yj for which the index j is even
also constitute a convergent sequence y2, y4, y6, y8, . . . of real numbers.

However one would not obtain a convergent subsequence of u1,u2,u3, . . .
simply by selecting those indices j for which xj is in the convergent subse-
quence x1, x3, x5, . . . and yj is in the convergent subsequence y2, y4, y6, . . .,
because there no values of the index j for which xj and yj both belong to the
respective subsequences. However the one-dimensional Bolzano-Weierstrass
Theorem (Theorem 1.3) guarantees that there is a convergent subsequence
of y1, y3, y5, y7, . . ., and indeed y1, y5, y9, y13, . . . is such a convergent subse-
quence. This yields a convergent subsequence u1,u5,u9,u13, . . . of the given
bounded sequence of points in R2.

Theorem 5.1 (The Multidimensional Bolzano-Weierstrass Theo-
rem)
Every bounded sequence of points in Rn has a convergent subsequence.

Proof We prove the result by induction on the dimension n of the Euclidean
space Rn that contains the infinite sequence in question. It follows from the
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one-dimensional Bolzano-Weierstrass Theorem (Theorem 1.3) that the the-
orem is true when n = 1. Suppose that n > 1, and that every bounded se-
quence in Rn−1 has a convergent subsequence. Let x1,x2,x3, . . . be a bounded
infinite sequence of elements of Rn, and let xj,i denote the ith component of xj

for i = 1, 2, . . . , n and for all positive integers j. The induction hypothesis re-
quires that all bounded sequences in Rn−1 contain convergent subsequences.
It follows that there exist real numbers p1, p2, . . . , pn−1 and an increasing
sequence m1,m2,m3, . . . of positive integers such that lim

k→+∞
xmk,i = pi for

i = 1, 2, . . . , n− 1. The nth components

xm1,n, xm2,n, xm3,n, . . .

of the members of the subsequence

xm1 ,xm2 ,xm3 , . . .

then constitute a bounded sequence of real numbers. It follows from the one-
dimensional Bolzano-Weierstrass Theorem (Theorem 1.3) that there exists an
increasing sequence k1, k2, k3, . . . of positive integers for which the sequence

xmk1
,n, xmk2

,n, xmk3
,n, . . .

converges.
Let sj = mkj for all positive integers j, and let

pn = lim
j→+∞

xmkj
,n = lim

j→+∞
xsj ,n.

Then the sequence xs1,i, xs2,i, xs3,i, . . . converges for values of i between 1 and
n− 1, because it is a subsequence of the convergent sequence

xm1,i, xm2,i, xm3,i, . . . .

Moreover
xs1,n, xs2,n, xs3,n, . . .

also converges. Thus the ith components of the infinite sequence

xm1 ,xm2 ,xm3 , . . .

converge for i = 1, 2, . . . , n. It then follows from Lemma 4.3 that

lim
j→+∞

xsk = p,

where p = (p1, p2, . . . , pn). The result follows.
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5.2 Cauchy Sequences in Euclidean Spaces

Definition A sequence x1,x2,x3, . . . of points of n-dimensional Euclidean
space Rn is said to be a Cauchy sequence if the following condition is satisfied:

given any strictly positive real number ε, there exists some pos-
itive integer N such that |xj − xk| < ε for all positive integers j
and k satisfying j ≥ N and k ≥ N .

Lemma 5.2 Every Cauchy sequence of points of n-dimensional Euclidean
space Rn is bounded.

Proof Let x1,x2,x3, . . . be a Cauchy sequence of points in Rn. Then there
exists some positive integer N such that |xj − xk| < 1 whenever j ≥ N
and k ≥ N . In particular, |xj| ≤ |xN | + 1 whenever j ≥ N . Therefore
|xj| ≤ R for all positive integers j, where R is the maximum of the real
numbers |x1|, |x2|, . . . , |xN−1| and |xN | + 1. Thus the sequence is bounded,
as required.

Theorem 5.3 (Cauchy’s Criterion for Convergence) An infinite sequence of
points of n-dimensional Euclidean space Rn is convergent if and only if it is
a Cauchy sequence.

Proof First we show that convergent sequences in Rn are Cauchy sequences.
Let x1,x2,x3, . . . be a convergent sequence of points in Rn, and let p =
lim

j→+∞
xj. Let some strictly positive real number ε be given. Then there

exists some positive integer N such that |xj − p| < 1
2
ε for all j ≥ N . Thus

if j ≥ N and k ≥ N then |xj − p| < 1
2
ε and |xk − p| < 1

2
ε, and hence

|xj − xk| = |(xj − p)− (xk − p)| ≤ |xj − p|+ |xk − p| < ε.

Thus the sequence x1,x2,x3, . . . is a Cauchy sequence.
Conversely we must show that any Cauchy sequence x1,x2,x3, . . . in Rn

is convergent. Now Cauchy sequences are bounded, by Lemma 5.2. The se-
quence x1,x2,x3, . . . therefore has a convergent subsequence xk1 ,xk2 ,xk3 , . . .,
by the multidimensional Bolzano-Weierstrass Theorem (Theorem 5.1). Let
p = limj→+∞ xkj . We claim that the sequence x1,x2,x3, . . . itself converges
to p.

Let some strictly positive real number ε be given. Then there exists some
positive integer N such that |xj − xk| < 1

2
ε whenever j ≥ N and k ≥ N

(since the sequence is a Cauchy sequence). Let m be chosen large enough to
ensure that km ≥ N and |xkm − p| < 1

2
ε. Then

|xj − p| ≤ |xj − xkm |+ |xkm − p| < 1
2
ε+ 1

2
ε = ε

whenever j ≥ N . It follows that xj → p as j → +∞, as required.
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5.3 The Multidimensional Extreme Value Theorem

Proposition 5.4 Let X be a closed bounded set in m-dimensional Euclidean
space, and let f :X → Rn be a continuous function mapping X into n-
dimensional Euclidean space Rn. Then there exists a point w of X such
that |f(x)| ≤ |f(w)| for all x ∈ X.

Proof Let g:X → R be defined such that

g(x) =
1

1 + |f(x)|

for all x ∈ X. Now the function mapping each x ∈ X to |f(x)| is continuous
(see Lemma 4.9) and quotients of continuous functions are continuous where
they are defined (see Lemma 4.8). It follows that the function g:X → R is
continuous.

Let
m = inf{g(x) : x ∈ X}.

Then there exists an infinite sequence x1,x2,x3, . . . in X such that

g(xj) < m+
1

j

for all positive integers j. It follows from the multidimensional Bolzano-
Weierstrass Theorem (Theorem 5.1) that this sequence has a subsequence
xk1 ,xk2 ,xk3 , . . . which converges to some point w of Rn.

Now the point w belongs to X because X is closed (see Lemma 4.16).
Also

m ≤ g(xkj) < m+
1

kj

for all positive integers j. It follows that g(xkj) → m as j → +∞. It then
follows from Lemma 4.5 that

g(w) = g

(
lim

j→+∞
xkj

)
= lim

j→+∞
g(xkj) = m.

Then g(x) ≥ g(w) for all x ∈ X, and therefore |f(x)| ≤ |f(w)| for all x ∈ X,
as required.

Theorem 5.5 (The Multidimensional Extreme Value Theorem)
Let X be a closed bounded set in m-dimensional Euclidean space, and let
f :X → R be a continuous real-valued function defined on X. Then there
exist points u and v of X such that f(u) ≤ f(x) ≤ f(v) for all x ∈ X.
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Proof It follows from Proposition 5.4 that the function f is bounded on
X. It follows that there exists a real number C large enough to ensure that
f(x) + C > 0 for all x ∈ X. It then follows from Proposition 5.4 that there
exists some point v of X such that

f(x) + C ≤ f(v) + C.

for all x ∈ X. But then f(x) ≤ f(v) for all x ∈ X. Applying this result
with f replaced by −f , we deduce that there exists some u ∈ X such that
−f(x) ≤ −f(u) for all x ∈ X. The result follows.

5.4 Uniform Continuity for Functions of Several Real
Variables

Definition Let X be a subset of Rm. A function f :X → Rn from X to
Rn is said to be uniformly continuous if, given any ε > 0, there exists some
δ > 0 (which does not depend on either x′ or x) such that |f(x′)− f(x)| < ε
for all points x′ and x of X satisfying |x′ − x| < δ.

Theorem 5.6 Let X be a subset of Rm that is both closed and bounded.
Then any continuous function f :X → Rn is uniformly continuous.

Proof Let ε > 0 be given. Suppose that there did not exist any δ > 0 such
that |f(x′)− f(x)| < ε for all points x′,x ∈ X satisfying |x′− x| < δ. Then,
for each positive integer j, there would exist points uj and vj in X such
that |uj −vj| < 1/j and |f(uj)− f(vj)| ≥ ε. But the sequence u1,u2,u3, . . .
would be bounded, since X is bounded, and thus would possess a subsequence
uj1 ,uj2 ,uj3 , . . . converging to some point p (Theorem 5.1). Moreover p ∈ X,
since X is closed. The sequence vj1 ,vj2 ,vj3 , . . . would also converge to p,
since lim

k→+∞
|vjk − ujk | = 0.

But then the sequences

f(uj1), f(uj2), f(uj3), . . . and f(vj1), f(vj2), f(vj3), . . .

would both converge to f(p), since f is continuous (Lemma 4.5), and thus

lim
k→+∞

|f(ujk)− f(vjk)| = 0.

But this is impossible, since uj and vj have been chosen so that

|f(uj)− f(vj)| ≥ ε

for all j. We conclude therefore that there must exist some positive real
number δ such that |f(x′) − f(x)| < ε for all points x′,x ∈ X satisfying
|x′ − x| < δ, as required.
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5.5 Lebesgue Numbers

Definition Let X be a subset of n-dimensional Euclidean space Rn. A
collection of subsets of Rn is said to cover X if and only if every point of X
belongs to at least one of these subsets.

Definition Let X be a subset of n-dimensional Euclidean space Rn. An
open cover of X is a collection of subsets of X that are open in X and cover
the set X.

Proposition 5.7 Let X be a closed bounded set in n-dimensional Euclidean
space, and let V be an open cover of X. Then there exists a positive real
number δL with the property that, given any point u of X, there exists a
member V of the open cover V for which

{x ∈ X : |x− u| < δL} ⊂ V.

Proof Let
BX(u, δ) = {x ∈ X : |x− u| < δ}

for all u ∈ X and for all positive real numbers δ. Suppose that there did
not exist any positive real number δL with the stated property. Then, given
any positive number δ, there would exist a point u of X for which the ball
BX(u, δ) would not be wholly contained within any open set V belonging to
the open cover V . Then

BX(u, δ) ∩ (X \ V ) 6= ∅

for all members V of the open cover V . There would therefore exist an infinite
sequence

u1,u2,u3, . . .

of points of X with the property that, for all positive integers j, the open
ball

BX(uj, 1/j) ∩ (X \ V ) 6= ∅

for all members V of the open cover V . The sequence

u1,u2,u3, . . .

would be bounded, because the set X is bounded. It would then follow from
the multidimensional Bolzano-Weierstrass Theorem (Theorem 5.1) that there
would exist a convergent subsequence

uj1 ,uj2 ,uj3 , . . .
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of
u1,u2,u3, . . . .

Let p be the limit of this convergent subsequence. Then the point p would
then belong to X, because X is closed (see Lemma 4.16). But then the
point p would belong to an open set V belonging to the open cover V . It
would then follow from the definition of open sets that there would exist a
positive real number δ for which BX(p, 2δ) ⊂ V . Let j = jk for a positive
integer k large enough to ensure that both 1/j < δ and uj ∈ BX(p, δ).
The Triangle Inequality would then ensure that every point of X within a
distance 1/j of the point uj would lie within a distance 2δ of the point p,
and therefore

BX(uj, 1/j) ⊂ BX(p, 2δ) ⊂ V.

But B(uj, 1/j) ∩ (X \ V ) 6= ∅ for all members V of the open cover V , and
therefore it would not be possible for this open set to be contained in the
open set V . Thus the assumption that there is no positive number δL with
the required property has led to a contradiction. Therefore there must exist
some positive number δL with the property that, for all u ∈ X the open ball
BX(u, δL) in X is contained wholly within at least one open set belonging to
the open cover V , as required.

Definition Let X be a subset of n-dimensional Euclidean space, and let V
be an open cover of X. A positive real number δL is said to be a Lebesgue
number for the open cover V if, given any point p of X, there exists some
member V of the open cover V for which

{x ∈ X : |x− p| < δL} ⊂ V.

Proposition 5.7 ensures that, given any open cover of a closed bounded
subset of n-dimensional Euclidean space, there exists a positive real number
that is a Lebesgue number for that open cover.

Definition The diameter diam(A) of a bounded subset A of n-dimensional
Euclidean space is defined so that

diam(A) = sup{|x− y| : x,y ∈ A}.

It follows from this definition that diam(A) is the smallest real number K
with the property that |x− y| ≤ K for all x,y ∈ A.
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A hypercube in n-dimensional Euclidean space Rn is a subset of Rn of the
form

{(x1, x2, . . . , xn) ∈ Rn : ui ≤ xi ≤ ui + l},
where l is a positive constant that is the length of the edges of the hypercube
and (u1, u2, . . . , un) is the point in Rn at which the Cartesian coordinates
of points in the hypercube attain their minimum values. The diameter of a
hypercube with edges of length l is l

√
n.

Lemma 5.8 Let X be a bounded subset of n-dimensional Euclidean space,
and let δ be a positive real number. Then there exists a finite collection
A1, A2, . . . , As of subsets of X such that the diam(Ai) < δ for i = 1, 2, . . . , s
and

X = A1 ∪ A2 ∪ · · · ∪ Ak.

Proof The set X is bounded, and therefore there exists some positive real
number M such that that if (x1, x2, . . . , xn) ∈ X then −M ≤ xj ≤ M for
j = 1, 2, . . . , n. Choose k large enough to ensure that 2M/k < δL/

√
n. Then

the large hypercube

{(x1, x2, . . . , xn) ∈ Rn : −M ≤ xj ≤M for j = 1, 2, . . . , n}

can be subdivided into kn hypercubes with edges of length l, where l = 2M/k.
Each of the smaller hypercubes is a set of the form

{(x1, x2, . . . , xn) ∈ Rn : uj ≤ xj ≤ uj + l for j = 1, 2, . . . , n},

where (u1, u2, . . . , un) is the corner of the hypercube at which the Cartesian
coordinates have their minimum values. If p is a point belonging to such a
small hypercube, then all points of the hypercube lie within a distance l

√
n

of the point p. It follows that the small hypercube is wholly contained within
the open ball BRn(p, δL) of radius δ about the point p.

Now the number of small hypercubes resulting from the subdivision is
finite. Let H1, H2, . . . , Hs be a listing of the small hypercubes that intersect
the set X, and let Ai = Hi ∩X. Then diam(Hi) ≤

√
nl < δL and

X = A1 ∪ A2 ∪ · · · ∪ Ak,

as required.

Definition Let V and W be open covers of some subset X of a Euclidean
space. Then W is said to be a subcover of V if and only if every open set
belonging to W also belongs to V .

78



Definition A subset X of a Euclidean space is said to be compact if and
only if every open cover of X possesses a finite subcover.

Theorem 5.9 (The Multidimensional Heine-Borel Theorem) A subset of n-
dimensional Euclidean space Rn is compact if and only if it is both closed and
bounded.

Proof Let X be a compact subset of Rn and let

Vj = {x ∈ X : |x| < j}

for all positive integers j. Then the sets V1, V2, V3, . . . constitute an open
cover of X. This open cover has a finite subcover, and therefore there exist
positive integers j1, j2, . . . , jk such that

X ⊂ Vj1 ∪ Vj2 ∪ · · · ∪ Vjk .

Let M be the largest of the positive integers j1, j2, . . . , jk. Then |x| ≤M for
all x ∈ X. Thus the set X is bounded.

Let q be a point of Rn that does not belong to X, and let

Wj =

{
x ∈ X : |x− q| > 1

j

}
for all positive integers j. Then the sets W1,W2,W3, . . . constitute an open
cover of X. This open cover has a finite subcover, and therefore there exist
positive integers j1, j2, . . . , jk such that

X ⊂ Wj1 ∪Wj2 ∪ · · · ∪Wjk .

Let δ = 1/M , where M is the largest of the positive integers j1, j2, . . . , jk.
Then |x − q| ≥ δ for all x ∈ X and thus the open ball of radius δ about
the point q does not intersect the set X. We conclude that the set X is
closed. We have now shown that every compact subset of Rn is both closed
and bounded.

We now prove the converse. Let X be a closed bounded subset of Rn, and
let V be an open cover of X. It follows from Proposition 5.7 that there exists
a Lebesgue number δL for the open cover V . It then follows from Lemma 5.8
that there exist subsets A1, A2, . . . , As of X such that diam(Ai) < δL for
i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ As.

We may suppose that Ai is non-empty for i = 1, 2, . . . , s (because if Ai = ∅
then Ai could be deleted from the list). Choose pi ∈ Ai for i = 1, 2, . . . , s.
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Then Ai ⊂ BX(pi, δL) for i = 1, 2, . . . , s. The definition of the Lebesgue
number δL then ensures that there exist members V1, V2, . . . , Vs of the open
cover V such that BX(pi, δL) ⊂ Vi for i = 1, 2, . . . , s. Then Ai ⊂ Vi for
i = 1, 2, . . . , s, and therefore

X ⊂ V1 ∪ V2 ∪ · · · ∪ Vs.

Thus V1, V2, . . . , Vs constitute a finite subcover of the open cover U . We
have therefore proved that every closed bounded subset of n-dimensional
Euclidean space is compact, as required.
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