Module MA2321: Analysis in Several Real Variables Michaelmas Term 2016 Section 5: Compact Subsets of Euclidean Spaces

D. R. Wilkins

Copyright © David R. Wilkins 2015–2016

Contents

5	Con	npact Subsets of Euclidean Spaces	70
	5.1	The Multidimensional Bolzano-Weierstrass Theorem	70
	5.2	Cauchy Sequences in Euclidean Spaces	73
	5.3	The Multidimensional Extreme Value Theorem	74
	5.4	Uniform Continuity for Functions of Several Real Variables	75
	5.5	Lebesgue Numbers	76

5 Compact Subsets of Euclidean Spaces

5.1 The Multidimensional Bolzano-Weierstrass Theorem

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n is said to be *bounded* if there exists some constant K such that $|\mathbf{x}_j| \leq K$ for all j.

Example Let

$$(x_j, y_j, z_j) = \left(\sin(\pi\sqrt{j}), \, (-1)^j, \cos\left(\frac{2\pi\log j}{\log 2}\right)\right)$$

for j = 1, 2, 3, ... This sequence of points in \mathbb{R}^3 is bounded, because the components of its members all take values between -1 and 1. Moreover $x_j = 0$ whenever j is the square of a positive integer, $y_j = 1$ whenever j is even and $z_j = 1$ whenever j is a power of two.

The infinite sequence x_1, x_2, x_3, \ldots has a convergent subsequence

$$x_1, x_4, x_9, x_{16}, x_{25}, \ldots$$

which includes those x_j for which j is the square of a positive integer. The corresponding subsequence y_1, y_4, y_9, \ldots of y_1, y_2, y_3, \ldots is not convergent, because its values alternate between 1 and -1. However this subsequence is bounded, and we can extract from this sequence a convergent subsequence

$$y_4, y_{16}, y_{36}, y_{64}, y_{100}, \ldots$$

which includes those x_j for which j is the square of an even positive integer.

The subsequence

$$x_4, x_{16}, x_{36}, y_{64}, y_{100}, \dots$$

is also convergent, because it is a subsequence of a convergent subsequence. However the corresponding subsequence

$$z_4, z_{16}, z_{36}, z_{64}, z_{100}, \ldots$$

does not converge. (Indeed $z_j = 1$ when j is an even power of 2, but $z_j = \cos(2\pi \log(9)/\log(2))$ when $j = 9 \times 2^{2p}$ for some positive integer p.) However this subsequence is bounded, and we can extract from it a convergent subsequence

```
z_4, z_{16}, z_{64}, z_{256}, z_{1024}, \ldots
```

which includes those x_j for which j is equal to two raised to the power of an even positive integer. Then the first, second and third components of the following subsequence

 $(x_4, y_4, z_4), (x_{16}, y_{16}, z_{16}), (x_{64}, y_{64}, z_{64}), (x_{256}, y_{256}, z_{256}), \dots$

of the original sequence of points in \mathbb{R}^3 converge, and it therefore follows from Lemma 4.3 that this sequence is a convergent subsequence of the given sequence of points in \mathbb{R}^3 .

Example Let

$$x_j = \begin{cases} 1 & \text{if } j = 4k \text{ for some integer } k \\ 0 & \text{if } j = 4k + 1 \text{ for some integer } k \\ -1 & \text{if } j = 4k + 2 \text{ for some integer } k \\ 0 & \text{if } j = 4k + 3 \text{ for some integer } k \end{cases}$$

and

$$y_j = \begin{cases} 0 & \text{if } j = 4k \text{ for some integer } k, \\ 1 & \text{if } j = 4k + 1 \text{ for some integer } k, \\ 0 & \text{if } j = 4k + 2 \text{ for some integer } k, \\ -1 & \text{if } j = 4k + 3 \text{ for some integer } k, \end{cases}$$

and let $\mathbf{u}_j = (x_j, y_j)$ for $j = 1, 2, 3, 4, \ldots$ Then the first components x_j for which the index j is odd constitute a convergent sequence $x_1, x_3, x_5, x_7, \ldots$ of real numbers, and the second components y_j for which the index j is even also constitute a convergent sequence $y_2, y_4, y_6, y_8, \ldots$ of real numbers.

However one would not obtain a convergent subsequence of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots$ simply by selecting those indices j for which x_j is in the convergent subsequence x_1, x_3, x_5, \ldots and y_j is in the convergent subsequence y_2, y_4, y_6, \ldots , because there no values of the index j for which x_j and y_j both belong to the respective subsequences. However the one-dimensional Bolzano-Weierstrass Theorem (Theorem 1.3) guarantees that there is a convergent subsequence of $y_1, y_3, y_5, y_7, \ldots$, and indeed $y_1, y_5, y_9, y_{13}, \ldots$ is such a convergent subsequence. This yields a convergent subsequence $\mathbf{u}_1, \mathbf{u}_5, \mathbf{u}_9, \mathbf{u}_{13}, \ldots$ of the given bounded sequence of points in \mathbb{R}^2 .

Theorem 5.1 (The Multidimensional Bolzano-Weierstrass Theorem)

Every bounded sequence of points in \mathbb{R}^n has a convergent subsequence.

Proof We prove the result by induction on the dimension n of the Euclidean space \mathbb{R}^n that contains the infinite sequence in question. It follows from the

one-dimensional Bolzano-Weierstrass Theorem (Theorem 1.3) that the theorem is true when n = 1. Suppose that n > 1, and that every bounded sequence in \mathbb{R}^{n-1} has a convergent subsequence. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a bounded infinite sequence of elements of \mathbb{R}^n , and let $x_{j,i}$ denote the *i*th component of \mathbf{x}_j for $i = 1, 2, \ldots, n$ and for all positive integers *j*. The induction hypothesis requires that all bounded sequences in \mathbb{R}^{n-1} contain convergent subsequences. It follows that there exist real numbers $p_1, p_2, \ldots, p_{n-1}$ and an increasing sequence m_1, m_2, m_3, \ldots of positive integers such that $\lim_{k \to +\infty} x_{m_k,i} = p_i$ for $i = 1, 2, \ldots, n - 1$. The *n*th components

 $x_{m_1,n}, x_{m_2,n}, x_{m_3,n}, \ldots$

of the members of the subsequence

 $\mathbf{x}_{m_1}, \mathbf{x}_{m_2}, \mathbf{x}_{m_3}, \ldots$

then constitute a bounded sequence of real numbers. It follows from the onedimensional Bolzano-Weierstrass Theorem (Theorem 1.3) that there exists an increasing sequence k_1, k_2, k_3, \ldots of positive integers for which the sequence

 $x_{m_{k_1},n}, x_{m_{k_2},n}, x_{m_{k_3},n}, \ldots$

converges.

Let $s_j = m_{k_j}$ for all positive integers j, and let

$$p_n = \lim_{j \to +\infty} x_{m_{k_j},n} = \lim_{j \to +\infty} x_{s_j,n}.$$

Then the sequence $x_{s_1,i}, x_{s_2,i}, x_{s_3,i}, \ldots$ converges for values of *i* between 1 and n-1, because it is a subsequence of the convergent sequence

$$x_{m_1,i}, x_{m_2,i}, x_{m_3,i}, \ldots$$

Moreover

$$x_{s_1,n}, x_{s_2,n}, x_{s_3,n}, \dots$$

also converges. Thus the *i*th components of the infinite sequence

$$\mathbf{x}_{m_1}, \mathbf{x}_{m_2}, \mathbf{x}_{m_3}, \ldots$$

converge for i = 1, 2, ..., n. It then follows from Lemma 4.3 that

$$\lim_{j\to+\infty}\mathbf{x}_{s_k}=\mathbf{p}$$

where $\mathbf{p} = (p_1, p_2, \dots, p_n)$. The result follows.

5.2 Cauchy Sequences in Euclidean Spaces

Definition A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points of *n*-dimensional Euclidean space \mathbb{R}^n is said to be a *Cauchy sequence* if the following condition is satisfied:

given any strictly positive real number ε , there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{x}_k| < \varepsilon$ for all positive integers j and k satisfying $j \ge N$ and $k \ge N$.

Lemma 5.2 Every Cauchy sequence of points of n-dimensional Euclidean space \mathbb{R}^n is bounded.

Proof Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a Cauchy sequence of points in \mathbb{R}^n . Then there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{x}_k| < 1$ whenever $j \geq N$ and $k \geq N$. In particular, $|\mathbf{x}_j| \leq |\mathbf{x}_N| + 1$ whenever $j \geq N$. Therefore $|\mathbf{x}_j| \leq R$ for all positive integers j, where R is the maximum of the real numbers $|\mathbf{x}_1|, |\mathbf{x}_2|, \ldots, |\mathbf{x}_{N-1}|$ and $|\mathbf{x}_N| + 1$. Thus the sequence is bounded, as required.

Theorem 5.3 (Cauchy's Criterion for Convergence) An infinite sequence of points of n-dimensional Euclidean space \mathbb{R}^n is convergent if and only if it is a Cauchy sequence.

Proof First we show that convergent sequences in \mathbb{R}^n are Cauchy sequences. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a convergent sequence of points in \mathbb{R}^n , and let $\mathbf{p} = \lim_{j \to +\infty} \mathbf{x}_j$. Let some strictly positive real number ε be given. Then there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{p}| < \frac{1}{2}\varepsilon$ for all $j \ge N$. Thus if $j \ge N$ and $k \ge N$ then $|\mathbf{x}_j - \mathbf{p}| < \frac{1}{2}\varepsilon$ and $|\mathbf{x}_k - \mathbf{p}| < \frac{1}{2}\varepsilon$, and hence

 $|\mathbf{x}_j - \mathbf{x}_k| = |(\mathbf{x}_j - \mathbf{p}) - (\mathbf{x}_k - \mathbf{p})| \le |\mathbf{x}_j - \mathbf{p}| + |\mathbf{x}_k - \mathbf{p}| < \varepsilon.$

Thus the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ is a Cauchy sequence.

Conversely we must show that any Cauchy sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ in \mathbb{R}^n is convergent. Now Cauchy sequences are bounded, by Lemma 5.2. The sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ therefore has a convergent subsequence $\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_3}, \ldots$, by the multidimensional Bolzano-Weierstrass Theorem (Theorem 5.1). Let $\mathbf{p} = \lim_{j \to +\infty} \mathbf{x}_{k_j}$. We claim that the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ itself converges to \mathbf{p} .

Let some strictly positive real number ε be given. Then there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{x}_k| < \frac{1}{2}\varepsilon$ whenever $j \ge N$ and $k \ge N$ (since the sequence is a Cauchy sequence). Let m be chosen large enough to ensure that $k_m \ge N$ and $|\mathbf{x}_{k_m} - \mathbf{p}| < \frac{1}{2}\varepsilon$. Then

$$|\mathbf{x}_j - \mathbf{p}| \le |\mathbf{x}_j - \mathbf{x}_{k_m}| + |\mathbf{x}_{k_m} - \mathbf{p}| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$

whenever $j \geq N$. It follows that $\mathbf{x}_j \to \mathbf{p}$ as $j \to +\infty$, as required.

5.3 The Multidimensional Extreme Value Theorem

Proposition 5.4 Let X be a closed bounded set in m-dimensional Euclidean space, and let $f: X \to \mathbb{R}^n$ be a continuous function mapping X into ndimensional Euclidean space \mathbb{R}^n . Then there exists a point \mathbf{w} of X such that $|f(\mathbf{x})| \leq |f(\mathbf{w})|$ for all $\mathbf{x} \in X$.

Proof Let $g: X \to \mathbb{R}$ be defined such that

$$g(\mathbf{x}) = \frac{1}{1 + |f(\mathbf{x})|}$$

for all $\mathbf{x} \in X$. Now the function mapping each $\mathbf{x} \in X$ to $|f(\mathbf{x})|$ is continuous (see Lemma 4.9) and quotients of continuous functions are continuous where they are defined (see Lemma 4.8). It follows that the function $g: X \to \mathbb{R}$ is continuous.

Let

$$m = \inf\{g(\mathbf{x}) : \mathbf{x} \in X\}.$$

Then there exists an infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ in X such that

$$g(\mathbf{x}_j) < m + \frac{1}{j}$$

for all positive integers j. It follows from the multidimensional Bolzano-Weierstrass Theorem (Theorem 5.1) that this sequence has a subsequence $\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_3}, \ldots$ which converges to some point \mathbf{w} of \mathbb{R}^n .

Now the point **w** belongs to X because X is closed (see Lemma 4.16). Also

$$m \le g(\mathbf{x}_{k_j}) < m + \frac{1}{k_j}$$

for all positive integers j. It follows that $g(\mathbf{x}_{k_j}) \to m$ as $j \to +\infty$. It then follows from Lemma 4.5 that

$$g(\mathbf{w}) = g\left(\lim_{j \to +\infty} \mathbf{x}_{k_j}\right) = \lim_{j \to +\infty} g(\mathbf{x}_{k_j}) = m.$$

Then $g(\mathbf{x}) \ge g(\mathbf{w})$ for all $\mathbf{x} \in X$, and therefore $|f(\mathbf{x})| \le |f(\mathbf{w})|$ for all $\mathbf{x} \in X$, as required.

Theorem 5.5 (The Multidimensional Extreme Value Theorem)

Let X be a closed bounded set in m-dimensional Euclidean space, and let $f: X \to \mathbb{R}$ be a continuous real-valued function defined on X. Then there exist points **u** and **v** of X such that $f(\mathbf{u}) \leq f(\mathbf{x}) \leq f(\mathbf{v})$ for all $\mathbf{x} \in X$.

Proof It follows from Proposition 5.4 that the function f is bounded on X. It follows that there exists a real number C large enough to ensure that $f(\mathbf{x}) + C > 0$ for all $\mathbf{x} \in X$. It then follows from Proposition 5.4 that there exists some point \mathbf{v} of X such that

$$f(\mathbf{x}) + C \le f(\mathbf{v}) + C.$$

for all $\mathbf{x} \in X$. But then $f(\mathbf{x}) \leq f(\mathbf{v})$ for all $\mathbf{x} \in X$. Applying this result with f replaced by -f, we deduce that there exists some $\mathbf{u} \in X$ such that $-f(\mathbf{x}) \leq -f(\mathbf{u})$ for all $\mathbf{x} \in X$. The result follows.

5.4 Uniform Continuity for Functions of Several Real Variables

Definition Let X be a subset of \mathbb{R}^m . A function $f: X \to \mathbb{R}^n$ from X to \mathbb{R}^n is said to be *uniformly continuous* if, given any $\varepsilon > 0$, there exists some $\delta > 0$ (which does not depend on either \mathbf{x}' or \mathbf{x}) such that $|f(\mathbf{x}') - f(\mathbf{x})| < \varepsilon$ for all points \mathbf{x}' and \mathbf{x} of X satisfying $|\mathbf{x}' - \mathbf{x}| < \delta$.

Theorem 5.6 Let X be a subset of \mathbb{R}^m that is both closed and bounded. Then any continuous function $f: X \to \mathbb{R}^n$ is uniformly continuous.

Proof Let $\varepsilon > 0$ be given. Suppose that there did not exist any $\delta > 0$ such that $|f(\mathbf{x}') - f(\mathbf{x})| < \varepsilon$ for all points $\mathbf{x}', \mathbf{x} \in X$ satisfying $|\mathbf{x}' - \mathbf{x}| < \delta$. Then, for each positive integer j, there would exist points \mathbf{u}_j and \mathbf{v}_j in X such that $|\mathbf{u}_j - \mathbf{v}_j| < 1/j$ and $|f(\mathbf{u}_j) - f(\mathbf{v}_j)| \ge \varepsilon$. But the sequence $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots$ would be bounded, since X is bounded, and thus would possess a subsequence $\mathbf{u}_{j_1}, \mathbf{u}_{j_2}, \mathbf{u}_{j_3}, \ldots$ converging to some point \mathbf{p} (Theorem 5.1). Moreover $\mathbf{p} \in X$, since X is closed. The sequence $\mathbf{v}_{j_1}, \mathbf{v}_{j_2}, \mathbf{v}_{j_3}, \ldots$ would also converge to \mathbf{p} , since $\lim_{k \to +\infty} |\mathbf{v}_{j_k} - \mathbf{u}_{j_k}| = 0$.

But then the sequences

$$f(\mathbf{u}_{j_1}), f(\mathbf{u}_{j_2}), f(\mathbf{u}_{j_3}), \dots$$
 and $f(\mathbf{v}_{j_1}), f(\mathbf{v}_{j_2}), f(\mathbf{v}_{j_3}), \dots$

would both converge to $f(\mathbf{p})$, since f is continuous (Lemma 4.5), and thus

$$\lim_{k \to +\infty} |f(\mathbf{u}_{j_k}) - f(\mathbf{v}_{j_k})| = 0$$

But this is impossible, since \mathbf{u}_j and \mathbf{v}_j have been chosen so that

$$|f(\mathbf{u}_j) - f(\mathbf{v}_j)| \ge \varepsilon$$

for all j. We conclude therefore that there must exist some positive real number δ such that $|f(\mathbf{x}') - f(\mathbf{x})| < \varepsilon$ for all points $\mathbf{x}', \mathbf{x} \in X$ satisfying $|\mathbf{x}' - \mathbf{x}| < \delta$, as required.

5.5 Lebesgue Numbers

Definition Let X be a subset of n-dimensional Euclidean space \mathbb{R}^n . A collection of subsets of \mathbb{R}^n is said to *cover* X if and only if every point of X belongs to at least one of these subsets.

Definition Let X be a subset of *n*-dimensional Euclidean space \mathbb{R}^n . An *open cover* of X is a collection of subsets of X that are open in X and cover the set X.

Proposition 5.7 Let X be a closed bounded set in n-dimensional Euclidean space, and let \mathcal{V} be an open cover of X. Then there exists a positive real number δ_L with the property that, given any point \mathbf{u} of X, there exists a member V of the open cover \mathcal{V} for which

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{u}| < \delta_L\} \subset V.$$

Proof Let

$$B_X(\mathbf{u},\delta) = \{\mathbf{x} \in X : |\mathbf{x} - \mathbf{u}| < \delta\}$$

for all $\mathbf{u} \in X$ and for all positive real numbers δ . Suppose that there did not exist any positive real number δ_L with the stated property. Then, given any positive number δ , there would exist a point \mathbf{u} of X for which the ball $B_X(\mathbf{u}, \delta)$ would not be wholly contained within any open set V belonging to the open cover \mathcal{V} . Then

$$B_X(\mathbf{u},\delta) \cap (X \setminus V) \neq \emptyset$$

for all members V of the open cover \mathcal{V} . There would therefore exist an infinite sequence

$$\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots$$

of points of X with the property that, for all positive integers j, the open ball

$$B_X(\mathbf{u}_j, 1/j) \cap (X \setminus V) \neq \emptyset$$

for all members V of the open cover \mathcal{V} . The sequence

$$\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots$$

would be bounded, because the set X is bounded. It would then follow from the multidimensional Bolzano-Weierstrass Theorem (Theorem 5.1) that there would exist a convergent subsequence

$$\mathbf{u}_{j_1},\mathbf{u}_{j_2},\mathbf{u}_{j_3},\ldots$$

$\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\ldots.$

Let \mathbf{p} be the limit of this convergent subsequence. Then the point \mathbf{p} would then belong to X, because X is closed (see Lemma 4.16). But then the point \mathbf{p} would belong to an open set V belonging to the open cover \mathcal{V} . It would then follow from the definition of open sets that there would exist a positive real number δ for which $B_X(\mathbf{p}, 2\delta) \subset V$. Let $j = j_k$ for a positive integer k large enough to ensure that both $1/j < \delta$ and $\mathbf{u}_j \in B_X(\mathbf{p}, \delta)$. The Triangle Inequality would then ensure that every point of X within a distance 1/j of the point \mathbf{u}_j would lie within a distance 2δ of the point \mathbf{p} , and therefore

$$B_X(\mathbf{u}_j, 1/j) \subset B_X(\mathbf{p}, 2\delta) \subset V.$$

But $B(\mathbf{u}_j, 1/j) \cap (X \setminus V) \neq \emptyset$ for all members V of the open cover \mathcal{V} , and therefore it would not be possible for this open set to be contained in the open set V. Thus the assumption that there is no positive number δ_L with the required property has led to a contradiction. Therefore there must exist some positive number δ_L with the property that, for all $\mathbf{u} \in X$ the open ball $B_X(\mathbf{u}, \delta_L)$ in X is contained wholly within at least one open set belonging to the open cover \mathcal{V} , as required.

Definition Let X be a subset of n-dimensional Euclidean space, and let \mathcal{V} be an open cover of X. A positive real number δ_L is said to be a *Lebesgue* number for the open cover \mathcal{V} if, given any point \mathbf{p} of X, there exists some member V of the open cover \mathcal{V} for which

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < \delta_L\} \subset V.$$

Proposition 5.7 ensures that, given any open cover of a closed bounded subset of n-dimensional Euclidean space, there exists a positive real number that is a Lebesgue number for that open cover.

Definition The diameter $\operatorname{diam}(A)$ of a bounded subset A of n-dimensional Euclidean space is defined so that

$$\operatorname{diam}(A) = \sup\{|\mathbf{x} - \mathbf{y}| : \mathbf{x}, \mathbf{y} \in A\}.$$

It follows from this definition that diam(A) is the smallest real number K with the property that $|\mathbf{x} - \mathbf{y}| \leq K$ for all $\mathbf{x}, \mathbf{y} \in A$.

77

of

A hypercube in n-dimensional Euclidean space \mathbb{R}^n is a subset of \mathbb{R}^n of the form

$$\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : u_i \le x_i \le u_i + l\},\$$

where l is a positive constant that is the length of the edges of the hypercube and (u_1, u_2, \ldots, u_n) is the point in \mathbb{R}^n at which the Cartesian coordinates of points in the hypercube attain their minimum values. The diameter of a hypercube with edges of length l is $l\sqrt{n}$.

Lemma 5.8 Let X be a bounded subset of n-dimensional Euclidean space, and let δ be a positive real number. Then there exists a finite collection A_1, A_2, \ldots, A_s of subsets of X such that the diam $(A_i) < \delta$ for $i = 1, 2, \ldots, s$ and

$$X = A_1 \cup A_2 \cup \dots \cup A_k.$$

Proof The set X is bounded, and therefore there exists some positive real number M such that that if $(x_1, x_2, \ldots, x_n) \in X$ then $-M \leq x_j \leq M$ for $j = 1, 2, \ldots, n$. Choose k large enough to ensure that $2M/k < \delta_L/\sqrt{n}$. Then the large hypercube

$$\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : -M \le x_j \le M \text{ for } j = 1, 2, \dots, n\}$$

can be subdivided into k^n hypercubes with edges of length l, where l = 2M/k. Each of the smaller hypercubes is a set of the form

$$\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : u_j \le x_j \le u_j + l \text{ for } j = 1, 2, \dots, n\},\$$

where (u_1, u_2, \ldots, u_n) is the corner of the hypercube at which the Cartesian coordinates have their minimum values. If **p** is a point belonging to such a small hypercube, then all points of the hypercube lie within a distance $l\sqrt{n}$ of the point **p**. It follows that the small hypercube is wholly contained within the open ball $B_{\mathbb{R}^n}(\mathbf{p}, \delta_L)$ of radius δ about the point **p**.

Now the number of small hypercubes resulting from the subdivision is finite. Let H_1, H_2, \ldots, H_s be a listing of the small hypercubes that intersect the set X, and let $A_i = H_i \cap X$. Then diam $(H_i) \leq \sqrt{nl} < \delta_L$ and

$$X = A_1 \cup A_2 \cup \dots \cup A_k,$$

as required.

Definition Let \mathcal{V} and \mathcal{W} be open covers of some subset X of a Euclidean space. Then \mathcal{W} is said to be a *subcover* of \mathcal{V} if and only if every open set belonging to \mathcal{W} also belongs to \mathcal{V} .

Definition A subset X of a Euclidean space is said to be *compact* if and only if every open cover of X possesses a finite subcover.

Theorem 5.9 (The Multidimensional Heine-Borel Theorem) A subset of *n*-dimensional Euclidean space \mathbb{R}^n is compact if and only if it is both closed and bounded.

Proof Let X be a compact subset of \mathbb{R}^n and let

$$V_j = \{ \mathbf{x} \in X : |\mathbf{x}| < j \}$$

for all positive integers j. Then the sets V_1, V_2, V_3, \ldots constitute an open cover of X. This open cover has a finite subcover, and therefore there exist positive integers j_1, j_2, \ldots, j_k such that

$$X \subset V_{j_1} \cup V_{j_2} \cup \cdots \cup V_{j_k}.$$

Let M be the largest of the positive integers j_1, j_2, \ldots, j_k . Then $|\mathbf{x}| \leq M$ for all $\mathbf{x} \in X$. Thus the set X is bounded.

Let **q** be a point of \mathbb{R}^n that does not belong to X, and let

$$W_j = \left\{ \mathbf{x} \in X : |\mathbf{x} - \mathbf{q}| > \frac{1}{j} \right\}$$

for all positive integers j. Then the sets W_1, W_2, W_3, \ldots constitute an open cover of X. This open cover has a finite subcover, and therefore there exist positive integers j_1, j_2, \ldots, j_k such that

$$X \subset W_{i_1} \cup W_{i_2} \cup \cdots \cup W_{i_k}.$$

Let $\delta = 1/M$, where M is the largest of the positive integers j_1, j_2, \ldots, j_k . Then $|\mathbf{x} - \mathbf{q}| \geq \delta$ for all $\mathbf{x} \in X$ and thus the open ball of radius δ about the point \mathbf{q} does not intersect the set X. We conclude that the set X is closed. We have now shown that every compact subset of \mathbb{R}^n is both closed and bounded.

We now prove the converse. Let X be a closed bounded subset of \mathbb{R}^n , and let \mathcal{V} be an open cover of X. It follows from Proposition 5.7 that there exists a Lebesgue number δ_L for the open cover \mathcal{V} . It then follows from Lemma 5.8 that there exist subsets A_1, A_2, \ldots, A_s of X such that diam $(A_i) < \delta_L$ for $i = 1, 2, \ldots, s$ and

$$X = A_1 \cup A_2 \cup \cdots \cup A_s.$$

We may suppose that A_i is non-empty for i = 1, 2, ..., s (because if $A_i = \emptyset$ then A_i could be deleted from the list). Choose $\mathbf{p}_i \in A_i$ for i = 1, 2, ..., s.

Then $A_i \subset B_X(\mathbf{p}_i, \delta_L)$ for i = 1, 2, ..., s. The definition of the Lebesgue number δ_L then ensures that there exist members $V_1, V_2, ..., V_s$ of the open cover \mathcal{V} such that $B_X(\mathbf{p}_i, \delta_L) \subset V_i$ for i = 1, 2, ..., s. Then $A_i \subset V_i$ for i = 1, 2, ..., s, and therefore

$$X \subset V_1 \cup V_2 \cup \cdots \cup V_s.$$

Thus V_1, V_2, \ldots, V_s constitute a finite subcover of the open cover \mathcal{U} . We have therefore proved that every closed bounded subset of *n*-dimensional Euclidean space is compact, as required.