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3 The Riemann Integral in One Real Variable

3.1 Darboux Sums and the Riemann Integral

The approach to the theory of integration discussed below was developed
by Jean-Gaston Darboux (1842–1917). The integral defined using lower and
upper sums in the manner described below is sometimes referred to as the
Darboux integral of a function on a given interval. However the class of func-
tions that are integrable according to the definitions introduced by Darboux
is the class of Riemann-integrable functions. Thus the approach using Dar-
boux sums provides a convenient approach to define and establish the basic
properties of the Riemann integral.

A partition P of an interval [a, b] is a set {x0, x1, x2, . . . , xn} of real num-
bers satisfying a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Given any bounded real-valued function f on [a, b], the lower sum (or
lower Darboux sum) L(P, f) and the upper sum (or upper Darboux sum)
U(P, f) of f for the partition P of [a, b] are defined by

L(P, f) =
n∑
i=1

mi(xi − xi−1), U(P, f) =
n∑
i=1

Mi(xi − xi−1),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Clearly L(P, f) ≤ U(P, f). Moreover

n∑
i=1

(xi−xi−1) = b−a, and therefore

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a),

for any real numbers m and M satisfying m ≤ f(x) ≤M for all x ∈ [a, b].

Definition Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b
a
f(x) dx (or upper Darboux

integral) and the lower Riemann integral L
∫ b
a
f(x) dx (or lower Darboux

integral) of the function f on [a, b] are defined by

U
∫ b

a

f(x) dx = inf {U(P, f) : P is a partition of [a, b]} ,

L
∫ b

a

f(x) dx = sup {L(P, f) : P is a partition of [a, b]} .

The definition of upper and lower integrals thus requires that U
∫ b
a
f(x) dx

be the infimum of the values of U(P, f) and that L
∫ b
a
f(x) dx be the supre-

mum of the values of L(P, f) as P ranges over all possible partitions of the
interval [a, b].
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Definition A bounded function f : [a, b] → R on a closed bounded interval
[a, b] is said to be Riemann-integrable (or Darboux-integrable) on [a, b] if

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

in which case the Riemann integral
∫ b
a
f(x) dx (or Darboux integral) of f on

[a, b] is defined to be the common value of U
∫ b
a
f(x) dx and L

∫ b
a
f(x) dx.

When a > b we define∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

for all Riemann-integrable functions f on [b, a]. We set
∫ b
a
f(x) dx = 0 when

b = a.
If f and g are bounded Riemann-integrable functions on the interval

[a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx, since

L(P, f) ≤ L(P, g) and U(P, f) ≤ U(P, g) for all partitions P of [a, b].

Definition Let P and R be partitions of [a, b], given by P = {x0, x1, . . . , xn}
and R = {u0, u1, . . . , um}. We say that the partition R is a refinement of P
if P ⊂ R, so that, for each xi in P , there is some uj in R with xi = uj.

Lemma 3.1 Let R be a refinement of some partition P of [a, b]. Then

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f)

for any bounded function f : [a, b]→ R.

Proof Let P = {x0, x1, . . . , xn} and R = {u0, u1, . . . , um}, where a = x0 <
x1 < · · · < xn = b and a = u0 < u1 < · · · < um = b. Now for each
integer i between 0 and n there exists some integer j(i) between 0 and m
such that xi = uj(i) for each i, since R is a refinement of P . Moreover 0 =
j(0) < j(1) < · · · < j(n) = n. For each i, let Ri be the partition of [xi−1, xi]

given by Ri = {uj : j(i − 1) ≤ j ≤ j(i)}. Then L(R, f) =
n∑
i=1

L(Ri, f) and

U(R, f) =
n∑
i=1

U(Ri, f). Moreover

mi(xi − xi−1) ≤ L(Ri, f) ≤ U(Ri, f) ≤Mi(xi − xi−1),

since mi ≤ f(x) ≤ Mi for all x ∈ [xi−1, xi]. On summing these inequal-
ities over i, we deduce that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(P, f), as
required.
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Given any two partitions P and Q of [a, b] there exists a partition R of
[a, b] which is a refinement of both P and Q. For example, we can take
R = P ∪ Q. Such a partition is said to be a common refinement of the
partitions P and Q.

Lemma 3.2 Let f be a bounded real-valued function on the interval [a, b].
Then

L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx.

Proof Let P and Q be partitions of [a, b], and let R be a common refinement
of P and Q. It follows from Lemma 3.1 that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤
U(Q, f). Thus, on taking the supremum of the left hand side of the inequality
L(P, f) ≤ U(Q, f) as P ranges over all possible partitions of the interval [a, b],

we see that L
∫ b
a
f(x) dx ≤ U(Q, f) for all partitions Q of [a, b]. But then,

taking the infimum of the right hand side of this inequality as Q ranges over
all possible partitions of [a, b], we see that L

∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx, as

required.

Example Let f(x) = cx+d, where c ≥ 0. We shall show that f is Riemann-

integrable on [0, 1] and evaluate
∫ 1

0
f(x) dx from first principles.

For each positive integer n, let Pn denote the partition of [0, 1] into n
subintervals of equal length. Thus Pn = {x0, x1, . . . , xn}, where xi = i/n.
Now the function f takes values between (i− 1)c/n+ d and ic/n+ d on the
interval [xi−1, xi], and therefore

mi =
(i− 1)c

n
+ d, Mi =

ic

n
+ d

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Thus

L(Pn, f) =
n∑
i=1

mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d− c

n

)
=

c(n+ 1)

2n
+ d− c

n
=
c

2
+ d− c

2n
,

U(Pn, f) =
n∑
i=1

Mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d

)
=

c(n+ 1)

2n
+ d =

c

2
+ d+

c

2n
.
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It follows that
lim

n→+∞
L(Pn, f) =

c

2
+ d

and
lim

n→+∞
U(Pn, f) =

c

2
+ d

Now L(Pn, f) ≤ L
∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx ≤ U(Pn, f) for all positive

integers n. It follows that L
∫ b
a
f(x) dx = 1

2
c + d = U

∫ b
a
f(x) dx. Thus f is

Riemann-integrable on the interval [0, 1], and
∫ 1

0
f(x) dx = 1

2
c+ d.

Example Let f : [0, 1]→ R be the function defined by

f(x) =

{
1 if x is rational;
0 if x is irrational.

Let P be a partition of the interval [0, 1] given by P = {x0, x1, x2, . . . , xn},
where 0 = x0 < x1 < x2 < · · · < xn = 1. Then

inf{f(x) : xi−1 ≤ x ≤ xi} = 0, sup{f(x) : xi−1 ≤ x ≤ xi} = 1,

for i = 1, 2, . . . , n, and thus L(P, f) = 0 and U(P, f) = 1 for all partitions P

of the interval [0, 1]. It follows that L
∫ 1

0
f(x) dx = 0 and U

∫ 1

0
f(x) dx = 1,

and therefore the function f is not Riemann-integrable on the interval [0, 1].

3.2 Basic Properties of the Riemann Integral

Lemma 3.3 Let f : [a, b] → R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a ≤ b. Then the
lower and upper Riemann integrals of f and −f are related by the identities

U
∫ b

a

(−f(x)) dx = −L
∫ b

a

f(x) dx,

L
∫ b

a

(−f(x)) dx = −U
∫ b

a

f(x) dx.

Proof Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b,

and let

mi = inf{f(x) : xi−1 ≤ x ≤ xi},
Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
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Then the lower and upper sums of f for the partition P are given by the
formulae

L(P, f) =
n∑
i=1

mi(xi − xi−1), U(P, f) =
n∑
i=1

Mi(xi − xi−1).

Now

sup{−f(x) : xi−1 ≤ x ≤ xi}
= − inf{f(x) : xi−1 ≤ x ≤ xi} = −mi,

inf{−f(x) : xi−1 ≤ x ≤ xi}
= − sup{f(x) : xi−1 ≤ x ≤ xi} = −Mi

It follows that

U(P,−f) =
n∑
i=1

(−mi)(xi − xi−1) = −L(P, f),

L(P,−f) =
n∑
i=1

(−Mi)(xi − xi−1) = −U(P, f).

We have now shown that

U(P,−f) = −L(P, f) and L(P,−f) = −U(P, f)

for all partitions P of the interval [a, b]. Applying the definition of the upper
and lower integrals, we see that

U
∫ b

a

(−f(x)) dx = inf {U(P,−f) : P is a partition of [a, b]}

= inf {−L(P, f) : P is a partition of [a, b]}
= − sup {L(P, f) : P is a partition of [a, b]}

= −L
∫ b

a

f(x) dx

Similarly

L
∫ b

a

(−f(x)) dx = sup {L(P,−f) : P is a partition of [a, b]}

= sup {−U(P, f) : P is a partition of [a, b]}
= − inf {U(P, f) : P is a partition of [a, b]}

= −U
∫ b

a

f(x) dx.

This completes the proof.
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Lemma 3.4 Let f : [a, b] → R and g: [a, b] → R be bounded functions on
a closed bounded interval [a, b], where a and b are real numbers satisfying
a ≤ b, and let P be a partition of the interval [a, b]. Then the lower sums of
the functions f , g and f + g satisfy

L(P, f + g) ≥ L(P, f) + L(P, g),

and the upper sums of these functions satisfy

U(P, f + g) ≤ U(P, f) + U(P, g).

Proof Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b.

Then

L(P, f) =
n∑
i=1

mi(f)(xi − xi−1),

L(P, g) =
n∑
i=1

mi(g)(xi − xi−1),

L(P, f + g) =
n∑
i=1

mi(f + g)(xi − xi−1),

where

mi(f) = inf{f(x) : xi−1 ≤ x ≤ xi},
mi(g) = inf{g(x) : xi−1 ≤ x ≤ xi},

mi(f + g) = inf{f(x) + g(x) : xi−1 ≤ x ≤ xi}

for i = 1, 2, . . . , n.
Now

f(x) ≥ mi(f) and g(x) ≥ mi(g).

for all x ∈ [xi−1, xi]. Adding, we see that

f(x) + g(x) ≥ mi(f) +mi(g)

for all x ∈ [xi−1, xi], and therefore mi(f) +mi(g) is a lower bound for the set

{f(x) + g(x) : xi−1 ≤ x ≤ xi}.
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The greatest lower bound for this set is mi(f + g). Therefore

mi(f + g) ≥ mi(f) +mi(g).

It follows that

L(P, f + g) =
n∑
i=1

mi(f + g)(xi − xi−1)

≥
n∑
i=1

(mi(f) +mi(g))(xi − xi−1)

=
n∑
i=1

mi(f)(xi − xi−1) +
n∑
i=1

mi(g)(xi − xi−1)

= L(P, f) + L(P, g).

An analogous argument applies to upper sums. Now

U(P, f) =
n∑
i=1

Mi(f)(xi − xi−1),

U(P, g) =
n∑
i=1

Mi(g)(xi − xi−1),

U(P, f + g) =
n∑
i=1

Mi(f + g)(xi − xi−1),

where

Mi(f) = sup{f(x) : xi−1 ≤ x ≤ xi},
Mi(g) = sup{g(x) : xi−1 ≤ x ≤ xi},

Mi(f + g) = sup{f(x) + g(x) : xi−1 ≤ x ≤ xi}

for i = 1, 2, . . . , n.
Now

f(x) ≤Mi(f) and g(x) ≤Mi(g).

for all x ∈ [xi−1, xi]. Adding, we see that

f(x) + g(x) ≤Mi(f) +Mi(g)

for all x ∈ [xi−1, xi], and therefore Mi(f) +Mi(g) is an upper bound for the
set

{f(x) + g(x) : xi−1 ≤ x ≤ xi}.
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The least upper bound for this set is Mi(f + g). Therefore

Mi(f + g) ≤Mi(f) +Mi(g).

It follows that

U(P, f + g) =
n∑
i=1

Mi(f + g)(xi − xi−1)

≤
n∑
i=1

(Mi(f) +Mi(g))(xi − xi−1)

=
n∑
i=1

Mi(f)(xi − xi−1) +
n∑
i=1

Mi(g)(xi − xi−1)

= U(P, f) + U(P, g).

This completes the proof that

L(P, f + g) ≥ L(P, f) + L(P, g)

and
U(P, f + g) ≤ U(P, f) + U(P, g).

Proposition 3.5 Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-
integrable functions on a closed bounded interval [a, b], where a and b are
real numbers satisfying a ≤ b. Then the functions f + g and f − g are
Riemann-integrable on [a, b], and moreover∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

and ∫ b

a

(f(x)− g(x)) dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx.

Proof Let some strictly positive real number ε be given. The definition
of Riemann-integrability and the Riemann integral ensures that there exist
partitions P and Q of [a, b] for which

L(P, f) >

∫ b

a

f(x) dx− 1
2
ε

and

L(Q, g) >

∫ b

a

g(x) dx− 1
2
ε.
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Let the partition R be a common refinement of the partitions P and Q. Then

L(R, f) ≥ L(P, f) and L(R, g) ≥ L(P, g).

Applying Lemma 3.4, and the definition of the lower Riemann integral, we
see that

L
∫ b

a

(f(x) + g(x)) dx

≥ L(R, f + g) ≥ L(R, f) + L(R, g)

≥ L(P, f) + L(Q, g)

>

(∫ b

a

f(x) dx− 1
2
ε

)
+

(∫ b

a

g(x) dx− 1
2
ε

)
>

∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε

We have now shown that

L
∫ b

a

(f(x) + g(x)) dx >

∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε

for all strictly positive real numbers ε. However the quantities of

L
∫ b

a

(f(x) + g(x)) dx,

∫ b

a

f(x) dx and

∫ b

a

g(x) dx

have values that have no dependence whatsoever on the value of ε. It follows
that

L
∫ b

a

(f(x) + g(x)) dx ≥
∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

We can deduce a corresponding inequality involving the upper integral of
f +g by replacing f and g by −f and −g respectively (Lemma 3.3). We find
that

L
∫ b

a

(−f(x)− g(x)) dx ≥
∫ b

a

(−f(x)) dx+

∫ b

a

(−g(x)) dx

= −
∫ b

a

f(x) dx−
∫ b

a

g(x) dx

and therefore

U
∫ b

a

(f(x) + g(x)) dx = −L
∫ b

a

(−f(x)− g(x)) dx

≤
∫ b

a

f(x) dx+

∫ b

a

g(x) dx.
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Combining the inequalities obtained above, we find that∫ b

a

f(x) dx+

∫ b

a

g(x) dx

≤ L
∫ b

a

(f(x) + g(x)) dx

≤ U
∫ b

a

(f(x) + g(x)) dx

≤
∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

The quantities at the left and right hand ends of this chain of inequalities
are equal to each other. It follows that

L
∫ b

a

(f(x) + g(x)) dx = U
∫ b

a

(f(x) + g(x)) dx

=

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Thus the function f + g is Riemann-integrable on [a, b], and∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Then, replacing g by −g, we find that∫ b

a

(f(x)− g(x)) dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx.

as required.

Proposition 3.6 Let f : [a, b]→ R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a ≤ b. Then the
function f is Riemann-integrable on [a, b] if and only if, given any positive
real number ε, there exists a partition P of [a, b] with the property that

U(P, f)− L(P, f) < ε.

Proof First suppose that f : [a, b] → R is Riemann-integrable on [a, b]. Let
some positive real number ε be given. Then∫ b

a

f(x) dx
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is equal to the common value of the lower and upper integrals of the func-
tion f on [a, b], and therefore there exist partitions Q and R of [a, b] for
which

L(Q, f) >

∫ b

a

f(x) dx− 1
2
ε

and

U(R, f) <

∫ b

a

f(x) dx+ 1
2
ε.

Let P be a common refinement of the partitions Q and R. Now

L(Q, f) ≤ L(P, f) ≤ U(P, f) ≤ U(R, f).

(see Lemma 3.1). It follows that

U(P, f)− L(P, f) ≤ U(R, f)− L(Q, f) < ε.

Now suppose that f : [a, b] → R is a bounded function on [a, b] with the
property that, given any positive real number ε, there exists a partition P of
[a, b] for which U(P, f)− L(P, f) < ε. Let ε > 0 be given. Then there exists
a partition P of [a, b] for which U(P, f) − L(P, f) < ε. Now it follows from
the definitions of the upper and lower integrals that

L(P, f) ≤ L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx ≤ U(P, f),

and therefore

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < U(P, f)− L(P, f) < ε.

Thus the difference between the values of the upper and lower integrals of f
on [a, b] must be less than every strictly positive real number ε, and therefore

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx.

This completes the proof.

Let u and v be real numbers. Then

|u| ≤ |u− v|+ |v| and |v| ≤ |u− v|+ |u|,

and therefore |u|−|v| ≤ |u−v|. Interchanging u and v, and using the identity
|u− v| = |v − u|, we see that |v| − |u| ≤ |u− v|. It follows from this that∣∣∣|u| − |v|∣∣∣ ≤ |u− v|
for all real numbers u and v.
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Lemma 3.7 Let f :X → R be a bounded real-valued function defined on a
non-empty set X, and let

MX(f) = sup{f(x) : x ∈ X},
mX(f) = inf{f(x) : x ∈ X}.

Then
|f(v)− f(u)| ≤MX(f)−mX(f)

for all u, v ∈ X.

Proof Let u, v ∈ X. Then either f(v) ≥ f(u) or f(u) ≥ f(v). In the case
where f(v) ≥ f(u) the inequalities mX(f) ≤ f(u) ≤ f(v) ≤ MX(f) ensure
that |f(v) − f(u)| ≤ MX(f) − mX(f). In the case where f(u) ≥ f(v) the
inequalities mX(f) ≤ f(v) ≤ f(u) ≤ MX(f) ensure that |f(v) − f(u)| ≤
MX(f)−mX(f). The result follows.

Lemma 3.8 Let f :X → R be a bounded real-valued function defined on a
non-empty set X, and let

MX(f) = sup{f(x) : x ∈ X},
MX(|f |) = sup{|f(x)| : x ∈ X},
mX(f) = inf{f(x) : x ∈ X},
mX(|f |) = inf{|f(x)| : x ∈ X}.

Then
MX(|f |)−mX(|f |) ≤MX(f)−mX(f).

Proof Let δ be a positive real number. Then there exist u, v ∈ X such that

mX(|f |) ≤ |f(u)| < mX(|f |) + δ

and
MX(|f |)− δ < |f(v)| ≤MX(|f |).

Then
|f(v)| − |f(u)| > MX(|f |)−mX(|f |)− 2δ.

But
|f(v)| − |f(u)| ≤ |f(v)− f(u)|,
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and
|f(v)− f(u)| ≤MX(f)−mX(f)

(see Lemma 3.7). It follows that

MX(|f |)−mX(|f |)− 2δ < |f(v)| − |f(u)| ≤ |f(v)− f(u)|
≤ MX(f)−mX(f).

But the values of MX(|f |)−mX(|f |) and MX(f)−mX(f) are independent
of δ, where δ > 0. It follows that

MX(|f |)−mX(|f |) ≤MX(f)−mX(f),

as required.

Lemma 3.9 Let f : [a, b]→ R be a bounded Riemann-integrable function on
a closed interval [a, b], where a and b are real numbers satisfying a ≤ b,
let |f |: [a, b] → R be the function defined such that |f |(x) = |f(x)| for all
x ∈ [a, b], and let P be a partition of the interval [a, b]. Then the Darboux
sums U(P, f) and L(P, f) of the function f on [a, b] and the Darboux sums
U(P, |f |) and L(P, |f |) of the function |f | on [a, b] satisfy the inequality

U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f).

Proof Let P be a partition of [a, b], and let

P = {x0, x1, x2, . . . , xn},

where
a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

and let

Mi(f) = sup{f(x) : xi−1 ≤ x ≤ xi},
Mi(|f |) = sup{|f(x)| : xi−1 ≤ x ≤ xi},
mi(f) = inf{f(x) : xi−1 ≤ x ≤ xi},
mi(|f |) = inf{|f(x)| : xi−1 ≤ x ≤ xi}

for i = 1, 2, . . . , n. It follows from Lemma 3.8 that

Mi(|f |)−mi(|f |) ≤Mi(f)−mi(f)
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for i = 1, 2, . . . , n. Now the Darboux sums of the functions f and |f | for the
partition P are defined by the identities

L(P, f) =
n∑
i=1

mi(f)(xi − xi−1),

L(P, |f |) =
n∑
i=1

mi(|f |)(xi − xi−1),

U(P, f) =
n∑
i=1

Mi(f)(xi − xi−1),

U(P, |f |) =
n∑
i=1

Mi(|f |)(xi − xi−1).

It follows that

U(P, |f |)− L(P, |f |) =
n∑
i=1

(Mi(|f |)−mi(|f |))(xi − xi−1)

≤
n∑
i=1

(Mi(f)−mi(f))(xi − xi−1)

= U(P, f)− L(P, f),

as required.

Proposition 3.10 Let f : [a, b] → R be a bounded Riemann-integrable func-
tion on a closed interval [a, b], where a and b are real numbers satisfying
a ≤ b, and let |f |: [a, b]→ R be the function defined such that |f |(x) = |f(x)|
for all x ∈ [a, b]. Then the function |f | is Riemann-integrable on [a, b], and∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

Proof Let some positive real number ε be given. It follows from Proposi-
tion 3.6 that there exists a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.

It then follows from Lemma 3.9 that

U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f) < ε.
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Proposition 3.6 then ensures that the function |f | is Riemann-integrable on
[a, b].

Now −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ [a, b]. It follows that

−
∫ b

a

|f(x)| dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx.

It follows that ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx,

as required.

Let X be a non-empty set, and let f :X → R and g:X → R be real-valued
functions on X. We denote by f · g:XR the product function defined such
that We denote by (f · g)(x) = f(x)g(x) for all x ∈ X.

Lemma 3.11 Let f :X → R and g:X → R be bounded real-valued functions
defined on a non-empty set X, let K be a positive real number with the
property that |f(x)| ≤ K and |g(x)| ≤ K for all x ∈ X, and let

MX(f) = sup{f(x) : x ∈ X},
MX(g) = sup{g(x) : x ∈ X},

MX(f · g) = sup{f(x)g(x) : x ∈ X},
mX(f) = inf{f(x) : x ∈ X},
mX(g) = inf{g(x) : x ∈ X},

mX(f · g) = inf{f(x)g(x) : x ∈ X}.

Then

MX(f · g)−mX(f · g) ≤ K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
.

Proof Let u and v be elements of the set X. Then

f(v)g(v)− f(u)g(u) = (f(v)− f(u))g(v) + f(u)(g(v)− g(u)),

and therefore

|f(v)g(v)− f(u)g(u)|
≤ |f(v)− f(u)| |g(v)|+ |f(u)| |g(v)− g(u)|,

≤ K
(
|f(v)− f(u)|+ |g(v)− g(u)|

)
.
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Now |f(v) − f(u)| ≤ MX(f) −mX(f) and |g(v) − g(u)| ≤ MX(g) −mX(g)
and (see Lemma 3.7). Therefore

|f(v)g(v)− f(u)g(u)| ≤ K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
.

Now, given any positive real number δ, elements u and v of X can be
chosen so that

mX(f · g) ≤ f(u)g(u) < mX(f · g) + δ

and
MX(f · g)− δ < f(v)g(v) ≤MX(f · g).

Then
f(v)g(v)− f(u)g(u) > MX(f · g)−mX(f · g)− 2δ.

It follows that

MX(f · g)−mX(f · g)− 2δ < K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
for all positive real numbers δ, and therefore

MX(f · g)−mX(f · g) ≤ K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
,

as required.

Lemma 3.12 Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-
integrable functions on a closed interval [a, b], where a and b are real num-
bers satisfying a ≤ b, let K be a positive real number with the property that
|f(x)| ≤ K and |g(x)| ≤ K for all x ∈ [a, b], and let P be a partition of the
interval [a, b]. Then the Darboux sums U(P, f), U(P, g), U(P, f · g), L(P, f),
L(P, g) and L(P, f · g) of the functions f , g and f · g on [a, b] satisfy the
inequality

U(P, f · g)− L(P, f · g)

≤ K
(
U(P, f)− L(P, f) + U(P, g)− L(P, g)

)
.

Proof Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b.
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Then

U(P, f) =
n∑
i=1

Mi(f)(xi − xi−1),

U(P, g) =
n∑
i=1

Mi(g)(xi − xi−1),

U(P, f · g) =
n∑
i=1

Mi(f · g)(xi − xi−1),

L(P, f) =
n∑
i=1

mi(f)(xi − xi−1),

L(P, g) =
n∑
i=1

mi(g)(xi − xi−1),

L(P, f · g) =
n∑
i=1

mi(f · g)(xi − xi−1),

where

Mi(f) = sup{f(x) : xi−1 ≤ x ≤ xi},
Mi(g) = sup{g(x) : xi−1 ≤ x ≤ xi},

Mi(f · g) = sup{f(x)g(x) : xi−1 ≤ x ≤ xi}
mi(f) = inf{f(x) : xi−1 ≤ x ≤ xi},
mi(g) = inf{g(x) : xi−1 ≤ x ≤ xi},

mi(f · g) = inf{f(x)g(x) : xi−1 ≤ x ≤ xi}.

for i = 1, 2, . . . , n.
Now it follows from Lemma 3.11 that

Mi(f · g)−mi(f · g) ≤ K
(
Mi(f)−mi(f) +Mi(g)−mi(g)

)
.

for i = 1, 2, . . . , n. The required inequality therefore holds on multiplying
both sides of the inequality above by xi−xi−1 and summing over all integers
between 1 and n.

Proposition 3.13 Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-
integrable functions on a closed bounded interval [a, b], where a and b are real
numbers satisfying a ≤ b. Then the function f · g is Riemann-integrable on
[a, b], where (f · g)(x) = f(x)g(x) for all x ∈ [a, b].
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Proof The functions f and g are bounded on [a, b], and therefore there
exists some positive real number K with the property that |f(x)| ≤ K and
|g(x)| ≤ K for all x ∈ [a, b].

Let some positive real number ε be given. It follows from Proposition 3.6
that there exist partitions Q and R of the closed interval [a, b] for which

U(Q, f)− L(Q, f) <
ε

2K

and
U(R, g)− L(R, g) <

ε

2K
.

Let P be a common refinement of the partitions Q and R. It follows from
Lemma 3.1 that

U(P, f)− L(P, f) ≤ U(Q, f)− L(Q, f) <
ε

2K

and
U(P, g)− L(P, g) ≤ U(R, g)− L(R, g) <

ε

2K
.

It then follows from Proposition 3.12 that

U(P, f · g)− L(P, f · g)

≤ K
(
U(P, f)− L(P, f) + U(P, g)− L(P, g)

)
< ε

We have thus shown that, given any positive real number ε, there exists a
partition P of the closed bounded interval [a, b] with the property that

U(P, f · g)− L(P, f · g) < ε.

It follows from Proposition 3.6 that the product function f · g is Riemann-
integrable, as required.

Proposition 3.14 Let f be a bounded real-valued function on the interval
[a, c]. Suppose that f is Riemann-integrable on the intervals [a, b] and [b, c],
where a < b < c. Then f is Riemann-integrable on [a, c], and∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Proof Let some positive real number ε be given. The function f is Riemann-
integrable on the interval [a, b] and therefore there exists a partition Q of [a, b]
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such that the lower Darboux sum L(Q, f) of f on [a, b] with respect to the
partition Q of [a, b] satisfies

L(Q, f) >

∫ b

a

f(x) dx− 1
2
ε.

Similarly there exists a partition R of [b, c] of [a, b] such that the lower Dar-
boux sum L(Q, f) of f on [b, c] with respect to the partition R of [b, c] satisfies

L(R, f) >

∫ c

b

f(x) dx− 1
2
ε.

Now the partitions Q and R combine to give a partition P of the interval
[a, c], where P = Q ∪ R. Indeed Q = {u0, u1, . . . , um}, where u0, u1, . . . , um
are real numbers satisfying

a = u0 < u1 < u2 < · · ·um−1 < um = b,

and R = {v0, v1, . . . , vn}, where v0, v1, . . . , vn are real numbers satisfying

b = v0 < v1 < v2 < · · · vn−1 < vn = c.

Then
P = {a, u1, u2, . . . , um−1, b, v1, v2, . . . , vn−1, c}.

It follows directly from the definition of Darboux lower sums that

L(P, f) = L(Q, f) + L(R, f).

The choice of the partitions Q and R then ensures that

L(P, f) >

∫ b

a

f(x) dx+

∫ c

b

f(x) dx− ε.

The lower Riemann integral L
∫ c

a

f(x) dx is by definition the least upper

bound of the lower Darboux sums of f on the interval [a, c]. It follows that

L
∫ c

a

f(x) dx >

∫ b

a

f(x) dx+

∫ c

b

f(x) dx− ε.

Moreover this inequality holds for all values of the positive real number ε. It
follows that

L
∫ c

a

f(x) dx ≥
∫ b

a

f(x) dx+

∫ c

b

f(x) dx.
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Applying this result with the function f replaced by −f yields the in-
equality

L
∫ c

a

(−f(x)) dx ≥ −
∫ b

a

f(x) dx−
∫ c

b

f(x) dx.

But

L
∫ c

a

(−f(x)) dx = −U
∫ c

a

f(x) dx

(see Lemma 3.3). It follows that

U
∫ c

a

f(x) dx ≤
∫ b

a

f(x) dx+

∫ c

b

f(x) dx ≤ L
∫ c

a

f(x) dx.

But

L
∫ c

a

f(x) dx ≤ U
∫ c

a

f(x) dx.

It follows that

L
∫ c

a

f(x) dx = U
∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

The result follows.

3.3 Integrability of Monotonic Functions

Let a and b be real numbers satisfying a < b. A real-valued function
f : [a, b] → R defined on the closed bounded interval [a, b] is said to be non-
decreasing if f(u) ≤ f(v) for all real numbers u and v satisfying a ≤ u ≤ v ≤
b. Similarly f : [a, b] → R is said to be non-increasing if f(u) ≥ f(v) for all
real numbers u and v satisfying a ≤ u ≤ v ≤ b. The function f : [a, b]→ R is
said to be monotonic on [a, b] if either it is non-decreasing on [a, b] or else it
is non-increasing on [a, b].

Proposition 3.15 Let a and b be real numbers satisfying a < b. Then every
monotonic function on the interval [a, b] is Riemann-integrable on [a, b].

Proof Let f : [a, b]→ R be a non-decreasing function on the closed bounded
interval [a, b]. Then f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b], and therefore the
function f is bounded on [a, b]. Let some positive real number ε be given.
Let δ be some strictly positive real number for which (f(b)−f(a))δ < ε, and
let P be a partition of [a, b] of the form P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b
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and xi − xi−1 < δ for i = 1, 2, . . . , n.
The maximum and minimum values of f(x) on the interval [xi−1, xi] are

attained at xi and xi−1 respectively, and therefore the upper sum U(P, f)
and L(P, f) of f for the partition P satisfy

U(P, f) =
n∑
i=1

f(xi)(xi − xi−1)

and

L(P, f) =
n∑
i=1

f(xi−1)(xi − xi−1).

Now f(xi)− f(xi−1) ≥ 0 for i = 1, 2, . . . , n. It follows that

U(P, f)− L(P, f)

=
n∑
i=1

(f(xi)− f(xi−1))(xi − xi−1)

< δ
n∑
i=1

(f(xi)− f(xi−1)) = δ(f(b)− f(a)) < ε.

We have thus shown that

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < ε

for all strictly positive numbers ε. But

U
∫ b

a

f(x) dx ≥ L
∫ b

a

f(x) dx.

It follows that

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].
Now let f : [a, b]→ R be a non-increasing function on [a, b]. Then −f is a

non-decreasing function on [a, b] and it follows from what we have just shown
that −f is Riemann-integrable on [a, b]. It follows that the function f itself
must be Riemann-integrable on [a, b], as required.

Corollary 3.16 Let a and b be real numbers satisfying a < b, and let f : [a, b]→
R be a real-valued function on the interval [a, b]. Suppose that there exist real
numbers x0, x1, . . . , xn, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,
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such that the function f restricted to the interval [xi−1, xi] is monotonic on
[xi−1, xi] for i = 1, 2, . . . , n. Then f is Riemann-integrable on [a, b].

Proof The result follows immediately on applying the results of Proposi-
tion 3.14 and Proposition 3.15.

Remark The result and proof of Proposition 3.15 are to be found in their es-
sentials, though expressed in different language, in Isaac Newton, Philosophiae
naturalis principia mathematica (1686), Book 1, Section 1, Lemmas 2 and 3.

3.4 Integrability of Continuous functions

Theorem 3.17 Let a and b be real numbers satisfying a < b. Then any
continuous real-valued function on the interval [a, b] is Riemann-integrable.

Proof Let f be a continuous real-valued function on [a, b]. Then f is
bounded above and below on the interval [a, b], and moreover f : [a, b]→ R is
uniformly continuous on [a, b]. (These results follow from Theorem 1.7 and
Theorem 1.8.) Therefore there exists some strictly positive real number δ
such that |f(x)− f(y)| < ε whenever x, y ∈ [a, b] satisfy |x− y| < δ.

Choose a partition P of the interval [a, b] such that each subinterval in
the partition has length less than δ. Write P = {x0, x1, . . . , xn}, where
a = x0 < x1 < · · · < xn = b. Now if xi−1 ≤ x ≤ xi then |x − xi| < δ, and
hence f(xi)− ε < f(x) < f(xi) + ε. It follows that

f(xi)− ε ≤ mi ≤Mi ≤ f(xi) + ε (i = 1, 2, . . . , n),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Therefore

n∑
i=1

f(xi)(xi − xi−1)− ε(b− a)

≤ L(P, f) ≤ U(P, f)

≤
n∑
i=1

f(xi)(xi − xi−1) + ε(b− a),

where L(P, f) and U(P, f) denote the lower and upper sums of the function f
for the partition P .

We have now shown that

0 ≤ U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx ≤ U(P, f)− L(P, f) ≤ 2ε(b− a).
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But this inequality must be satisfied for any strictly positive real number ε.
Therefore

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].

3.5 The Fundamental Theorem of Calculus

Let a and b be real numbers satisfying a < b. One can show that all con-
tinuous functions on the interval [a, b] are Riemann-integrable (see Theo-
rem 3.17). However the task of calculating the Riemann integral of a contin-
uous function directly from the definition is difficult if not impossible for all
but the simplest functions. Thus to calculate such integrals one makes use
of the Fundamental Theorem of Calculus.

Theorem 3.18 (The Fundamental Theorem of Calculus) Let f be a
continuous real-valued function on the interval [a, b], where a < b. Then

d

dx

(∫ x

a

f(t) dt

)
= f(x)

for all x satisfying a < x < b.

Proof Let some strictly positive real number ε be given, and let ε0 be a real
number chosen so that 0 < ε0 < ε. (For example, one could choose ε0 = 1

2
ε.)

Now the function f is continuous at x, where a < x < b. It follows that there
exists some strictly positive real number δ such that

f(x)− ε0 ≤ f(t) ≤ f(x) + ε0

for all t ∈ [a, b] satisfying x− δ < t < x+ δ.
Let F (s) =

∫ s
a
f(t) dt for all s ∈ (a, b). Then

F (x+ h) =

∫ x+h

a

f(t) dt =

∫ x

a

f(t) dt+

∫ x+h

x

f(t) dt

= F (x) +

∫ x+h

x

f(t) dt

whenever x+ h ∈ [a, b]. Also

1

h

∫ x+h

x

f(x) dt =
f(x)

h

∫ x+h

x

dt = f(x),
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because f(x) is constant as t varies between x and x+ h. It follows that

F (x+ h)− F (x)

h
− f(x) =

1

h

∫ x+h

x

(f(t)− f(x)) dt

whenever x+ h ∈ [a, b]. But if 0 < |h| < δ and x+ h ∈ [a, b] then

−ε0 ≤ f(t)− f(x) ≤ ε0

for all real numbers t belonging to the closed interval with endpoints x and
x+ h, and therefore

−ε0|h| ≤
∫ x+h

x

(f(t)− f(x)) dt ≤ ε0|h|.

It follows that ∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ ≤ ε0 < ε

whenever x+ h ∈ [a, b] and 0 < |h| < δ. We conclude that

d

dx

(∫ x

a

f(t) dt

)
= lim

h→0

F (x+ h)− F (x)

h
= f(x),

as required.

Let f : [a, b] → R be a continuous function on a closed interval [a, b]. We
say that f is continuously differentiable on [a, b] if the derivative f ′(x) of f
exists for all x satisfying a < x < b, the one-sided derivatives

f ′(a) = lim
h→0+

f(a+ h)− f(a)

h
,

f ′(b) = lim
h→0−

f(b+ h)− f(b)

h

exist at the endpoints of [a, b], and the function f ′ is continuous on [a, b].
If f : [a, b] → R is continuous, and if F (x) =

∫ x
a
f(t) dt for all x ∈ [a, b]

then the one-sided derivatives of F at the endpoints of [a, b] exist, and

lim
h→0+

F (a+ h)− F (a)

h
= f(a), lim

h→0−

F (b+ h)− F (b)

h
= f(b).

One can verify these results by adapting the proof of the Fundamental The-
orem of Calculus.
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Corollary 3.19 Let f be a continuously differentiable real-valued function
on the interval [a, b]. Then∫ b

a

df(x)

dx
dx = f(b)− f(a)

Proof Define g: [a, b]→ R by

g(x) = f(x)− f(a)−
∫ x

a

df(t)

dt
dt.

Then g(a) = 0, and

dg(x)

dx
=
df(x)

dx
− d

dx

(∫ x

a

df(t)

dt
dt

)
= 0

for all x satisfying a < x < b, by the Fundamental Theorem of Calculus.
Now it follows from the Mean Value Theorem (Theorem 2.2) that there
exists some s satisfying a < s < b for which g(b) − g(a) = (b − a)g′(s). We
deduce therefore that g(b) = 0, which yields the required result.

Corollary 3.20 (Integration by Parts) Let f and g be continuously dif-
ferentiable real-valued functions on the interval [a, b]. Then∫ b

a

f(x)
dg(x)

dx
dx = f(b)g(b)− f(a)g(a)−

∫ b

a

g(x)
df(x)

dx
dx.

Proof This result follows from Corollary 3.19 on integrating the identity

f(x)
dg(x)

dx
=

d

dx
(f(x)g(x))− g(x)

df(x)

dx
.

Corollary 3.21 (Integration by Substitution) Let u: [a, b]→ R be a con-
tinuously differentiable monotonically increasing function on the interval [a, b],
and let c = u(a) and d = u(b). Then∫ d

c

f(x) dx =

∫ b

a

f(u(t))
du(t)

dt
dt.

for all continuous real-valued functions f on [c, d].

Proof Let F and G be the functions on [a, b] defined by

F (x) =

∫ u(x)

c

f(y)dy, G(x) =

∫ x

a

f(u(t))
du(t)

dt
dt.
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Then F (a) = 0 = G(a). Moreover F (x) = H(u(x)), where

H(s) =

∫ s

c

f(y) dy,

and H ′(s) = f(s) for all s ∈ [a, b]. Using the Chain Rule and the Fundamen-
tal Theorem of Calculus, we deduce that

F ′(x) = H ′(u(x))u′(x) = f(u(x))u′(x) = G′(x)

for all x ∈ (a, b). On applying the Mean Value Theorem (Theorem 2.2) to the
function F−G on the interval [a, b], we see that F (b)−G(b) = F (a)−G(a) =
0. Thus H(d) = F (b) = G(b), which yields the required identity.

3.6 Interchanging Limits and Integrals

Let f1, f2, f3, . . . be a sequence of Riemann-integrable functions defined over
the interval [a, b], where a and b are real numbers satisfying a ≤ b. Suppose
that the sequence f1(x), f2(x), f3(x) converges for all x ∈ [a, b]. We wish to
determine whether or not

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

(
lim

j→+∞
fj(x)

)
dx.

The following example demonstrates that this identity can fail to hold, even
when the functions involved are well-behaved polynomial functions.

Example Let f1, f2, f3, . . . be the sequence of continuous functions on the
interval [0, 1] defined by fj(x) = j(xj − x2j). Now

lim
j→+∞

∫ 1

0

fj(x) dx = lim
j→+∞

(
j

j + 1
− j

2j + 1

)
=

1

2
.

On the other hand, we shall show that lim
j→+∞

fj(x) = 0 for all x ∈ [0, 1]. Thus

one cannot interchange limits and integrals in this case.
Suppose that 0 ≤ x < 1. We claim that jxj → 0 as j → +∞. Now

lim
j→+∞

j + 1

j
= 1.

It follows that

lim
j→+∞

(j + 1)x

j
= x < 1,
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Let r be chosen so that x < r < 1. Then there exists some positive integer N
such that

(j + 1)xj+1

jxj
=

(j + 1)x

j
≤ r

whenever j ≥ N . Then 0 ≤ (j + 1)xj+1 ≤ rjxj whenever j ≥ N . Let
B = NxN . Then 0 ≤ jxj ≤ Brj−N whenever j ≥ N , and therefore jxj → 0
as j → +∞. It follows that

lim
j→+∞

fj(x) =

(
lim

j→+∞
jxj
)(

lim
j→+∞

(1− xj)
)

= 0

for all x satisfying 0 ≤ x < 1. Also fj(1) = 0 for all positive integers j. We
conclude that lim

j→+∞
fj(x) = 0 for all x ∈ [0, 1], which is what we set out to

show.

3.7 Uniform Convergence

We now introduce the concept of uniform convergence. Later shall show
that, given a sequence f1, f2, f3, . . . of Riemann-integrable functions on some
interval [a, b], the identity

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

(
lim

j→+∞
fj(x)

)
dx.

is valid, provided that the sequence f1, f2, f3, . . . of functions converges uni-
formly on the interval [a, b].

Definition Let f1, f2, f3, . . . be a sequence of real-valued functions defined
on some subset D of R. The sequence (fj) is said to converge uniformly to a
function f on D as j → +∞ if and only if the following criterion is satisfied:

given any strictly positive real number ε, there exists some posi-
tive integer N such that |fj(x)− f(x)| < ε for all x ∈ D and for
all positive integers j satisfying j ≥ N (where the value of N is
independent of x).

Let f1, f2, f3, . . . be a sequence of bounded real-valued functions on some
subset D of R which converges uniformly on D to the zero function. For each
positive integer j, let Mj = sup{fj(x) : x ∈ D}. We claim that Mj → 0 as
j → +∞.

To prove this, let some strictly positive real number ε be given. Then
there exists some positive integer N such that |fj(x)| < 1

2
ε for all x ∈ D and

j ≥ N . Thus if j ≥ N then Mj ≤ 1
2
ε < ε. This shows that Mj → 0 as

j → +∞, as claimed.
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Example Let (fj : n ∈ N) be the sequence of continuous functions on
the interval [0, 1] defined by fj(x) = j(xj − x2j). We have already shown
(in an earlier example) that lim

j→+∞
fj(x) = 0 for all x ∈ [0, 1]. However a

straightforward exercise in calculus shows that the maximum value attained

by the function fj is j/4 (which is attained at x = 1/2
1
j ), and j/4 → +∞

as j → +∞. It follows from this that the sequence f1, f2, f3, . . . does not
converge uniformly to the zero function on the interval [0, 1].

Proposition 3.22 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions defined on some subset D of R. Suppose that this sequence con-
verges uniformly on D to some real-valued function f . Then f is continuous
on D.

Proof Let s be an element of D, and let some strictly positive real number ε
be given. If j is chosen sufficiently large then |f(x) − fj(x)| < 1

3
ε for all

x ∈ D, since fj → f uniformly on D as j → +∞. It then follows from the
continuity of fj that there exists some strictly positive real number δ such
that |fj(x)− fj(s)| < 1

3
ε for all x ∈ D satisfying |x− s| < δ. But then

|f(x)− f(s)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(s)|+ |fj(s)− f(s)|
< 1

3
ε+ 1

3
ε+ 1

3
ε = ε

whenever |x−s| < δ. Thus the function f is continuous at s, as required.

Theorem 3.23 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions which converges uniformly on the interval [a, b] to some continuous
real-valued function f . Then

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

f(x) dx.

Proof Let some strictly positive real number ε. Choose ε0 small enough to
ensure that 0 < ε0(b − a) < ε. Then there exists some positive integer N
such that |fj(x)− f(x)| < ε0 for all x ∈ [a, b] and j ≥ N , since the sequence
f1, f2, f3, . . . of functions converges uniformly to f on [a, b]. Now∣∣∣∣∫ b

a

(fj(x)− f(x)) dx

∣∣∣∣ ≤ ∫ b

a

|fj(x)− f(x)| dx

for all positive integers j (see Proposition 3.10). It follows that∣∣∣∣∫ b

a

fj(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|fj(x)− f(x)| dx ≤ ε0(b− a) < ε

whenever j ≥ N . The result follows.
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3.8 Integrals over Unbounded Intervals

We define integrals over unbounded intervals by appropriate limiting pro-
cesses. Given any function f that is bounded and Riemann-integrable over
each closed bounded subinterval of [a,+∞), we define∫ +∞

a

f(x) dx = lim
b→+∞

∫ b

a

f(x) dx,

provided that this limit is well-defined. Similarly, given any function f that
is bounded and Riemann-integrable over each closed bounded subinterval of
(−∞, b], we define ∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx,

provided that this limit is well-defined.
If f is bounded and Riemann integrable over each closed bounded interval

in R then we define ∫ +∞

−∞
f(x) dx = lim

a→−∞

b→+∞

∫ b

a

f(x) dx,

provided that this limit exists.

Remark Using techniques of complex analysis, it can be shown that

lim
b→+∞

∫ b

0

sinx

x
dx =

π

2
.

However it can also be shown that∫ b

0

| sinx|
x

dx→ +∞ as b→ +∞.

Therefore, in the standard theory of the Riemann integral, the integral of the

function (sinx)/x on the interval [0,+∞) is defined, and

∫ +∞

0

sinx

x
dx =

π

2
.

There is an alternative theory of integration, due to Lebesgue, which is
generally more powerful. All bounded Riemann-integrable functions on a
closed bounded interval are Lebesgue-integrable on that interval. But a real-
valued function f on a “measure space” is Lebesgue-integrable if and only if
|f | is Lebesgue-integrable on that measure space. Let f : [0,+∞)→ R be the
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real-valued function defined such that f(0) = 1 and f(x) = (sinx)/x for all
positive real numbers x. Then the function |f | is neither Riemann-integrable
nor Lebesgue-integrable on [0,+∞). It follows that the function f itself is
not Lebesgue-integrable on [0,+∞). But, as we have remarked, the theory
of the Riemann integral assigns a value of π

2
to
∫ +∞
0

f(x) dx.
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