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2 The Mean Value Theorem

2.1 Interior Points and Open Sets in the Real Line

Definition Let D be a subset of the set R of real numbers, and let s be a
real number belonging to D. We say that s is an interior point of D if there
exists some strictly positive number § such that x € D for all real numbers x
satisfying s — 0 < x < s+ 0. The interior of D is then the subset of D
consisting of all real numbers belonging to D that are interior points of D.

Definition Let D be a subset of the set R of real numbers. We say that D
is an open set in R if every point of D is an interior point of D.

Let s be a real number. We say that a function f: D — R is defined
around s if the real number s is an interior point of the domain D of the
function f. It follows that the function f is defined around s if and only if
there exists some strictly positive real number ¢ such that f(x) is defined for
all real numbers x satisfying s —d < x < s+ 4.

2.2 Differentiable Functions of a Single Real Variable

We recall basic results of the theory of differentiable functions.

Definition Let s be some real number, and let f be a real-valued function
defined around s. The function f is said to be differentiable at s, with
derivative f'(s), if and only if the limit

F5) = iy L0 T =100

h—0

d,

is well-defined. We denote by f’, or by d_f the function whose value at s is
x

the derivative f'(s) of f at s.

Let s be some real number, and let f and g be real-valued functions
defined around s that are differentiable at s. The basic rules of differential
calculus then ensure that the functions f+g¢g, f —g and f- g are differentiable
at s (where

(f+9)(x) = f(2)+g(z),  (f=g)(x) = f(x)—g(z) and (f.g)(x) = f(x)g()
for all real numbers x at which both f(z) and g(z) are defined), and

(f+9)(s)=F(s)+d(s),  (f—g)(s)=[(s) —g'(s).
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(f-9)'(s) = f'(s)g(s) + f(s)g'(s) (Product Rule).

If moreover g(s) # 0 then the function f/g is differentiable at s (where
(f/9)(x) = f(x)/g(x) where both f(x) and g(x) are defined), and

f'(s)g(s) = f(s)g'(s)
9(s)?
Moreover if h is a real-valued function defined around f(s) which is differ-

entiable at f(s) then the composition function h o f is differentiable at f(s)
and

(f/9)'(s) =

(Quotient Rule).

(ho f)(s)=h'(f(s))f'(s) (Chain Rule).
Derivatives of some standard functions are as follows:—

d d d
%(xm) =ma™ %(sin T) = cosz, %(cos r) = —sinz,

d d 1
%(expx) = exp T, %(logx) = (x >0).

2.3 Rolle’s Theorem

Theorem 2.1 (Rolle’s Theorem) Let f:[a,b] — R be a real-valued function
defined on some interval [a,b]. Suppose that f is continuous on [a,b] and
is differentiable on (a,b). Suppose also that f(a) = f(b). Then there ezists
some real number s satisfying a < s < b which has the property that f'(s) = 0.

Proof First we show that if the function f attains its minimum value at u,
and if a < u < b, then f’(u) = 0. Now the difference quotient

fluth) — f(u)
h

is non-negative for all sufficiently small positive values of h; therefore f'(u) >
0. On the other hand, this difference quotient is non-positive for all suffi-
ciently small negative values of h; therefore f’(u) < 0. We deduce therefore
that f'(u) = 0.

Similarly if the function f attains its maximum value at v, and if a < v <
b, then f’(v) = 0. (Indeed the result for local maxima can be deduced from
the corresponding result for local minima simply by replacing the function f
by —f.)

Now the function f is continuous on the closed bounded interval [a, b].
It therefore follows from the Extreme Value Theorem that there must exist
real numbers v and v in the interval [a,b] with the property that f(u) <
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f(z) < f(v) for all real numbers x satisfying a < x < b (see Theorem 1.7).
If @ < u < bthen f'(u) =0 and we can take s = w. Similarly if a < v <b
then f’(v) = 0 and we can take s = v. The only remaining case to consider
is when both u and v are endpoints of the interval [a,b]. In that case the
function f is constant on [a, b], since f(a) = f(b), and we can choose s to be
any real number satisfying a < s <b. |

2.4 The Mean Value Theorem

Rolle’s Theorem can be generalized to yield the following important theorem.

Theorem 2.2 (The Mean Value Theorem) Let f:[a,b] — R be a real-valued
function defined on some interval [a,b]. Suppose that f is continuous on [a, D]
and is differentiable on (a,b). Then there exists some real number s satisfying
a < s < b which has the property that

f(b) = fla) = f'(s)(b—a).

Proof Let g:[a,b] — R be the real-valued function on the closed inter-
val [a, b] defined by

b—=x T —a
_b—af(a)_ b—a

g9(x) = f(z) f(b).

Then the function g is continuous on [a, b] and differentiable on (a,b). More-
over g(a) = 0 and g(b) = 0. It follows from Rolle’s Theorem (Theorem 2.1)
that ¢’'(s) = 0 for some real number s satisfying a < s < b. But

£(b) ~ fla)

gls) = fis) - H—

Therefore f(b) — f(a) = f'(s)(b — a), as required. |}

2.5 Concavity and the Second Derivative

Proposition 2.3 Let s and h be real numbers, and let f be a twice dif-
ferentiable real-valued function defined on some open interval containing s
and s + h. Then there exists a real number 6 satisfying 0 < 6 < 1 for which

Fls+h) = f(s)+ hf'(s)+ Lh2f" (s + Oh).
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Proof Let I be an open interval, containing the real numbers 0 and 1, chosen
to ensure that f(s + th) is defined for all ¢ € I, and let ¢: I — R be defined
so that

q(t) = f(s+th) = f(s) = thf'(s) = *(f(s + h) = f(s) = hf'(s)).
for all t € I. Differentiating, we find that

q'(t) =hf'(s+th) —hf'(s)=2t(f(s+h) = f(s) = hf'(s))
and
q"(t) = 12 f"(s +th) = 2(f(s + h) — f(s) = hf'(s)).

Now ¢(0) = ¢(1) = 0. It follows from Rolle’s Theorem, applied to the
function ¢ on the interval [0, 1], that there exists some real number ¢ satis-
fying 0 < ¢ < 1 for which ¢'(¢) = 0.

Then ¢'(0) = ¢'(¢) = 0, and therefore Rolle’s Theorem can be applied
to the function ¢’ on the interval [0, ¢] to prove the existence of some real
number 6 satisfying 0 < § < ¢ for which ¢”(6) = 0. Then

0=q"(0) = h*f"(s +0h) = 2(f(s + h) — f(s) — hf'(s)).
Rearranging, we find that
f(s+h) = f(s) +hf'(s)+ 5h*f"(s + Oh),
as required. |}

Corollary 2.4 Let f: (s—0dy, s+0d0) be a twice-differentiable function through-
out some open interval (s — dg, s + dg) centred on a real number s. Suppose
that f"(s 4+ h) > 0 for all real numbers h satisfying |h| < dg. Then

f(s+h) > f(s)+hf'(s)
for all real numbers h satisfying |h| < dy.

It follows from Corollary 2.4 that if a twice-differentiable function has
positive second derivative throughout some open interval, then it is concave
upwards throughout that interval. In particular the function has a local
minimum at any point of that open interval where the first derivative is zero
and the second derivative is positive.

Corollary 2.5 Let f: D — R be a twice-differentiable function defined over
a subset D of R, and let s be a point in the interior of D. Suppose that
f'(s) = 0 and that f"(x) > 0 for all real numbers x belonging to some
sufficiently small neighbourhood of x. Then s is a local minimum for the
function f.
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