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2 The Mean Value Theorem

2.1 Interior Points and Open Sets in the Real Line

Definition Let D be a subset of the set R of real numbers, and let s be a
real number belonging to D. We say that s is an interior point of D if there
exists some strictly positive number δ such that x ∈ D for all real numbers x
satisfying s − δ < x < s + δ. The interior of D is then the subset of D
consisting of all real numbers belonging to D that are interior points of D.

Definition Let D be a subset of the set R of real numbers. We say that D
is an open set in R if every point of D is an interior point of D.

Let s be a real number. We say that a function f :D → R is defined
around s if the real number s is an interior point of the domain D of the
function f . It follows that the function f is defined around s if and only if
there exists some strictly positive real number δ such that f(x) is defined for
all real numbers x satisfying s− δ < x < s+ δ.

2.2 Differentiable Functions of a Single Real Variable

We recall basic results of the theory of differentiable functions.

Definition Let s be some real number, and let f be a real-valued function
defined around s. The function f is said to be differentiable at s, with
derivative f ′(s), if and only if the limit

f ′(s) = lim
h→0

f(s+ h)− f(s)

h

is well-defined. We denote by f ′, or by
df

dx
the function whose value at s is

the derivative f ′(s) of f at s.

Let s be some real number, and let f and g be real-valued functions
defined around s that are differentiable at s. The basic rules of differential
calculus then ensure that the functions f+g, f−g and f ·g are differentiable
at s (where

(f+g)(x) = f(x)+g(x), (f−g)(x) = f(x)−g(x) and (f.g)(x) = f(x)g(x)

for all real numbers x at which both f(x) and g(x) are defined), and

(f + g)′(s) = f ′(s) + g′(s), (f − g)′(s) = f ′(s)− g′(s).
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(f · g)′(s) = f ′(s)g(s) + f(s)g′(s) (Product Rule).

If moreover g(s) 6= 0 then the function f/g is differentiable at s (where
(f/g)(x) = f(x)/g(x) where both f(x) and g(x) are defined), and

(f/g)′(s) =
f ′(s)g(s)− f(s)g′(s)

g(s)2
(Quotient Rule).

Moreover if h is a real-valued function defined around f(s) which is differ-
entiable at f(s) then the composition function h ◦ f is differentiable at f(s)
and

(h ◦ f)′(s) = h′(f(s))f ′(s) (Chain Rule).

Derivatives of some standard functions are as follows:—

d

dx
(xm) = mxm−1,

d

dx
(sinx) = cos x,

d

dx
(cosx) = − sinx,

d

dx
(expx) = exp x,

d

dx
(log x) =

1

x
(x > 0).

2.3 Rolle’s Theorem

Theorem 2.1 (Rolle’s Theorem) Let f : [a, b]→ R be a real-valued function
defined on some interval [a, b]. Suppose that f is continuous on [a, b] and
is differentiable on (a, b). Suppose also that f(a) = f(b). Then there exists
some real number s satisfying a < s < b which has the property that f ′(s) = 0.

Proof First we show that if the function f attains its minimum value at u,
and if a < u < b, then f ′(u) = 0. Now the difference quotient

f(u+ h)− f(u)

h

is non-negative for all sufficiently small positive values of h; therefore f ′(u) ≥
0. On the other hand, this difference quotient is non-positive for all suffi-
ciently small negative values of h; therefore f ′(u) ≤ 0. We deduce therefore
that f ′(u) = 0.

Similarly if the function f attains its maximum value at v, and if a < v <
b, then f ′(v) = 0. (Indeed the result for local maxima can be deduced from
the corresponding result for local minima simply by replacing the function f
by −f .)

Now the function f is continuous on the closed bounded interval [a, b].
It therefore follows from the Extreme Value Theorem that there must exist
real numbers u and v in the interval [a, b] with the property that f(u) ≤
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f(x) ≤ f(v) for all real numbers x satisfying a ≤ x ≤ b (see Theorem 1.7).
If a < u < b then f ′(u) = 0 and we can take s = u. Similarly if a < v < b
then f ′(v) = 0 and we can take s = v. The only remaining case to consider
is when both u and v are endpoints of the interval [a, b]. In that case the
function f is constant on [a, b], since f(a) = f(b), and we can choose s to be
any real number satisfying a < s < b.

2.4 The Mean Value Theorem

Rolle’s Theorem can be generalized to yield the following important theorem.

Theorem 2.2 (The Mean Value Theorem) Let f : [a, b]→ R be a real-valued
function defined on some interval [a, b]. Suppose that f is continuous on [a, b]
and is differentiable on (a, b). Then there exists some real number s satisfying
a < s < b which has the property that

f(b)− f(a) = f ′(s)(b− a).

Proof Let g: [a, b] → R be the real-valued function on the closed inter-
val [a, b] defined by

g(x) = f(x)− b− x
b− a

f(a)− x− a
b− a

f(b).

Then the function g is continuous on [a, b] and differentiable on (a, b). More-
over g(a) = 0 and g(b) = 0. It follows from Rolle’s Theorem (Theorem 2.1)
that g′(s) = 0 for some real number s satisfying a < s < b. But

g′(s) = f ′(s)− f(b)− f(a)

b− a
.

Therefore f(b)− f(a) = f ′(s)(b− a), as required.

2.5 Concavity and the Second Derivative

Proposition 2.3 Let s and h be real numbers, and let f be a twice dif-
ferentiable real-valued function defined on some open interval containing s
and s+ h. Then there exists a real number θ satisfying 0 < θ < 1 for which

f(s+ h) = f(s) + hf ′(s) + 1
2
h2f ′′(s+ θh).
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Proof Let I be an open interval, containing the real numbers 0 and 1, chosen
to ensure that f(s + th) is defined for all t ∈ I, and let q: I → R be defined
so that

q(t) = f(s+ th)− f(s)− thf ′(s)− t2(f(s+ h)− f(s)− hf ′(s)).

for all t ∈ I. Differentiating, we find that

q′(t) = hf ′(s+ th)− hf ′(s)− 2t(f(s+ h)− f(s)− hf ′(s))

and
q′′(t) = h2f ′′(s+ th)− 2(f(s+ h)− f(s)− hf ′(s)).

Now q(0) = q(1) = 0. It follows from Rolle’s Theorem, applied to the
function q on the interval [0, 1], that there exists some real number ϕ satis-
fying 0 < ϕ < 1 for which q′(ϕ) = 0.

Then q′(0) = q′(ϕ) = 0, and therefore Rolle’s Theorem can be applied
to the function q′ on the interval [0, ϕ] to prove the existence of some real
number θ satisfying 0 < θ < ϕ for which q′′(θ) = 0. Then

0 = q′′(θ) = h2f ′′(s+ θh)− 2(f(s+ h)− f(s)− hf ′(s)).

Rearranging, we find that

f(s+ h) = f(s) + hf ′(s) + 1
2
h2f ′′(s+ θh),

as required.

Corollary 2.4 Let f : (s−δ0, s+δ0) be a twice-differentiable function through-
out some open interval (s − δ0, s + δ0) centred on a real number s. Suppose
that f ′′(s+ h) > 0 for all real numbers h satisfying |h| < δ0. Then

f(s+ h) ≥ f(s) + hf ′(s)

for all real numbers h satisfying |h| < δ0.

It follows from Corollary 2.4 that if a twice-differentiable function has
positive second derivative throughout some open interval, then it is concave
upwards throughout that interval. In particular the function has a local
minimum at any point of that open interval where the first derivative is zero
and the second derivative is positive.

Corollary 2.5 Let f :D → R be a twice-differentiable function defined over
a subset D of R, and let s be a point in the interior of D. Suppose that
f ′(s) = 0 and that f ′′(x) > 0 for all real numbers x belonging to some
sufficiently small neighbourhood of x. Then s is a local minimum for the
function f .
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