Module MA2321: Analysis in Several Real Variables Michaelmas Term 2016 Section II: The Mean Value Theorem

D. R. Wilkins

Copyright © David R. Wilkins 2015–2016

Contents

2	The	e Mean Value Theorem	12
	2.1	Interior Points and Open Sets in the Real Line	12
	2.2	Differentiable Functions of a Single Real Variable	12
	2.3	Rolle's Theorem	13
	2.4	The Mean Value Theorem	14
	2.5	Concavity and the Second Derivative	14

2 The Mean Value Theorem

2.1 Interior Points and Open Sets in the Real Line

Definition Let D be a subset of the set \mathbb{R} of real numbers, and let s be a real number belonging to D. We say that s is an *interior point* of D if there exists some strictly positive number δ such that $x \in D$ for all real numbers x satisfying $s - \delta < x < s + \delta$. The *interior* of D is then the subset of D consisting of all real numbers belonging to D that are interior points of D.

Definition Let D be a subset of the set \mathbb{R} of real numbers. We say that D is an *open set* in \mathbb{R} if every point of D is an interior point of D.

Let s be a real number. We say that a function $f: D \to \mathbb{R}$ is defined around s if the real number s is an interior point of the domain D of the function f. It follows that the function f is defined around s if and only if there exists some strictly positive real number δ such that f(x) is defined for all real numbers x satisfying $s - \delta < x < s + \delta$.

2.2 Differentiable Functions of a Single Real Variable

We recall basic results of the theory of differentiable functions.

Definition Let s be some real number, and let f be a real-valued function defined around s. The function f is said to be *differentiable* at s, with *derivative* f'(s), if and only if the limit

$$f'(s) = \lim_{h \to 0} \frac{f(s+h) - f(s)}{h}$$

is well-defined. We denote by f', or by $\frac{df}{dx}$ the function whose value at s is the derivative f'(s) of f at s.

Let s be some real number, and let f and g be real-valued functions defined around s that are differentiable at s. The basic rules of differential calculus then ensure that the functions f + g, f - g and $f \cdot g$ are differentiable at s (where

$$(f+g)(x) = f(x)+g(x), \quad (f-g)(x) = f(x)-g(x) \text{ and } (f.g)(x) = f(x)g(x)$$

for all real numbers x at which both f(x) and g(x) are defined), and

$$(f+g)'(s) = f'(s) + g'(s),$$
 $(f-g)'(s) = f'(s) - g'(s).$

$$(f \cdot g)'(s) = f'(s)g(s) + f(s)g'(s) \quad (Product Rule).$$

If moreover $g(s) \neq 0$ then the function f/g is differentiable at s (where (f/g)(x) = f(x)/g(x) where both f(x) and g(x) are defined), and

$$(f/g)'(s) = \frac{f'(s)g(s) - f(s)g'(s)}{g(s)^2} \quad (Quotient \ Rule).$$

Moreover if h is a real-valued function defined around f(s) which is differentiable at f(s) then the composition function $h \circ f$ is differentiable at f(s)and

$$(h \circ f)'(s) = h'(f(s))f'(s)$$
 (Chain Rule).

Derivatives of some standard functions are as follows:—

$$\frac{d}{dx}(x^m) = mx^{m-1}, \quad \frac{d}{dx}(\sin x) = \cos x, \quad \frac{d}{dx}(\cos x) = -\sin x,$$
$$\frac{d}{dx}(\exp x) = \exp x, \quad \frac{d}{dx}(\log x) = \frac{1}{x} \quad (x > 0).$$

2.3 Rolle's Theorem

Theorem 2.1 (Rolle's Theorem) Let $f:[a,b] \to \mathbb{R}$ be a real-valued function defined on some interval [a,b]. Suppose that f is continuous on [a,b] and is differentiable on (a,b). Suppose also that f(a) = f(b). Then there exists some real number s satisfying a < s < b which has the property that f'(s) = 0.

Proof First we show that if the function f attains its minimum value at u, and if a < u < b, then f'(u) = 0. Now the difference quotient

$$\frac{f(u+h) - f(u)}{h}$$

is non-negative for all sufficiently small positive values of h; therefore $f'(u) \ge 0$. On the other hand, this difference quotient is non-positive for all sufficiently small negative values of h; therefore $f'(u) \le 0$. We deduce therefore that f'(u) = 0.

Similarly if the function f attains its maximum value at v, and if a < v < b, then f'(v) = 0. (Indeed the result for local maxima can be deduced from the corresponding result for local minima simply by replacing the function f by -f.)

Now the function f is continuous on the closed bounded interval [a, b]. It therefore follows from the Extreme Value Theorem that there must exist real numbers u and v in the interval [a, b] with the property that $f(u) \leq$ $f(x) \leq f(v)$ for all real numbers x satisfying $a \leq x \leq b$ (see Theorem 1.7). If a < u < b then f'(u) = 0 and we can take s = u. Similarly if a < v < b then f'(v) = 0 and we can take s = v. The only remaining case to consider is when both u and v are endpoints of the interval [a, b]. In that case the function f is constant on [a, b], since f(a) = f(b), and we can choose s to be any real number satisfying a < s < b.

2.4 The Mean Value Theorem

Rolle's Theorem can be generalized to yield the following important theorem.

Theorem 2.2 (The Mean Value Theorem) Let $f: [a, b] \to \mathbb{R}$ be a real-valued function defined on some interval [a, b]. Suppose that f is continuous on [a, b] and is differentiable on (a, b). Then there exists some real number s satisfying a < s < b which has the property that

$$f(b) - f(a) = f'(s)(b - a).$$

Proof Let $g: [a, b] \to \mathbb{R}$ be the real-valued function on the closed interval [a, b] defined by

$$g(x) = f(x) - \frac{b-x}{b-a}f(a) - \frac{x-a}{b-a}f(b).$$

Then the function g is continuous on [a, b] and differentiable on (a, b). Moreover g(a) = 0 and g(b) = 0. It follows from Rolle's Theorem (Theorem 2.1) that g'(s) = 0 for some real number s satisfying a < s < b. But

$$g'(s) = f'(s) - \frac{f(b) - f(a)}{b - a}.$$

Therefore f(b) - f(a) = f'(s)(b - a), as required.

2.5 Concavity and the Second Derivative

Proposition 2.3 Let s and h be real numbers, and let f be a twice differentiable real-valued function defined on some open interval containing s and s + h. Then there exists a real number θ satisfying $0 < \theta < 1$ for which

$$f(s+h) = f(s) + hf'(s) + \frac{1}{2}h^2f''(s+\theta h).$$

Proof Let *I* be an open interval, containing the real numbers 0 and 1, chosen to ensure that f(s + th) is defined for all $t \in I$, and let $q: I \to \mathbb{R}$ be defined so that

$$q(t) = f(s+th) - f(s) - thf'(s) - t^2(f(s+h) - f(s) - hf'(s)).$$

for all $t \in I$. Differentiating, we find that

$$q'(t) = hf'(s+th) - hf'(s) - 2t(f(s+h) - f(s) - hf'(s))$$

and

$$q''(t) = h^2 f''(s+th) - 2(f(s+h) - f(s) - hf'(s))$$

Now q(0) = q(1) = 0. It follows from Rolle's Theorem, applied to the function q on the interval [0, 1], that there exists some real number φ satisfying $0 < \varphi < 1$ for which $q'(\varphi) = 0$.

Then $q'(0) = q'(\varphi) = 0$, and therefore Rolle's Theorem can be applied to the function q' on the interval $[0, \varphi]$ to prove the existence of some real number θ satisfying $0 < \theta < \varphi$ for which $q''(\theta) = 0$. Then

$$0 = q''(\theta) = h^2 f''(s + \theta h) - 2(f(s + h) - f(s) - hf'(s)).$$

Rearranging, we find that

$$f(s+h) = f(s) + hf'(s) + \frac{1}{2}h^2f''(s+\theta h),$$

as required.

Corollary 2.4 Let $f: (s-\delta_0, s+\delta_0)$ be a twice-differentiable function throughout some open interval $(s - \delta_0, s + \delta_0)$ centred on a real number s. Suppose that f''(s+h) > 0 for all real numbers h satisfying $|h| < \delta_0$. Then

$$f(s+h) \ge f(s) + hf'(s)$$

for all real numbers h satisfying $|h| < \delta_0$.

It follows from Corollary 2.4 that if a twice-differentiable function has positive second derivative throughout some open interval, then it is concave upwards throughout that interval. In particular the function has a local minimum at any point of that open interval where the first derivative is zero and the second derivative is positive.

Corollary 2.5 Let $f: D \to \mathbb{R}$ be a twice-differentiable function defined over a subset D of \mathbb{R} , and let s be a point in the interior of D. Suppose that f'(s) = 0 and that f''(x) > 0 for all real numbers x belonging to some sufficiently small neighbourhood of x. Then s is a local minimum for the function f.