Module MA2321: Analysis in Several Real

Variables
Michaelmas Term 2016
Section I: The Real Number System

D. R. Wilkins
Copyright (©) David R. Wilkins 2015-2016

Contents

1 The Real Number System

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15

A Concise Characterization of the Real Number System . . . .
Fields . . . . . . . .
Ordered Fields . . . . .. ... .. .. ... ... .......
Least Upper Bounds . . . ... ... ... ... ........
Greatest Lower Bounds . . . . . . . .. ... ... ...
Bounded Sets of Real Numbers . . . . . ... ... ... ...
Convergence of Infinite Sequences of Real Numbers . . . . . .
Monotonic Sequences . . . . . . . ... ..o
Subsequences of Sequences of Real Numbers . . . . . . . . ..
The Bolzano-Weierstrass Theorem . . . . . . . . .. ... ...
The Definition of Continuity for Functions of a Real Variable .
The Intermediate Value Theorem . . . . ... ... ... ...
The Extreme Value Theorem . . . . . ... ... .......
Uniform Continuity . . . . . . . ... .. ... ... ... ...
Historical Note on the Real Number System . . . .. ... ..



1

1.1

The Real Number System

A Concise Characterization of the Real Number
System

The set R of real numbers, with its usual ordering algebraic operations, con-
stitutes a Dedekind-complete ordered field.

We describe below what a field is, what an ordered field is, and what is
meant by saying that an ordered field is Dedekind-complete.

1.2

Fields

Definition A field is a set F on which are defined operations of addition
and multiplication, associating elements x + y and zy of F to each pair z, y
of elements of F, for which the following axioms are satisfied:

(i)

(viii)

(ix)

r+y=y+ax foral x,y € F (i.e., the operation of addition on F is
commutative);

(r4y)+z=x+(y+z) forall z,y, z € F (i.e., the operation of addition
on F is associative);

there exists an element 0 of ' with the property that 0 + z = x for all
x € F (i.e., there exists a zero element for the operation of addition on
F);

given any = € [F, there exists an element —z of F satisfying z+(—z) = 0
(i.e., negatives of elements of F always exist);

xy = yx for all ,y € F (i.e., the operation of multiplication on F is
commutative);

(xy)z = z(yz) for all x,y,z € F (i.e., the operation of multiplication
on F is associative);

there exists an element 1 of F with the property that 1z = x for all
x € F (i.e., there exists an identity element for the operation of multi-
plication on F);

given any x € [ satisfying o # 0, there exists an element z~! of F
satisfying o=t = 1;

x(y+z2) = zy+zz for all x,y, z € F (i.e., multiplication is distributive
over addition).



The operations of subtraction and division are defined on a field F in
terms of the operations of addition and multiplication on that field in the
obvious fashion: z—y = z+ (—y) for all elements z and y of F, and moreover
x/y = zy~! provided that y # 0.

1.3 Ordered Fields

Definition An ordered field consists of a field F together with an ordering <
on that field that satisfies the following axioms:—

(x) if x and y are elements of IF then one and only one of the three state-
ments r < y, x = y and y < x is true (i.e., the ordering satisfies the
Trichotomy Law);

(xi) if z, y and z are elements of F and if x < y and y < z then z < z (i.e.,
the ordering is transitive);

(xii) if z, y and z are elements of F and if x < y then x + z < y + z;

(xiii) if z and y are elements of F which satisfy 0 < x and 0 < y then 0 < zy.

We can write x > y in cases where y < x. we can write x < y in cases
where either z = y or x < y. We can write x > y in cases where either r =y
ory < x.

The absolute value |z| of an element number x of an ordered field F is

defined by
| = xr ifx>0;
= -z ifz<o.

Note that |z| > 0 for all z and that || = 0 if and only if x = 0. Also
|z + y| < |z| + |y| and |zy| = |z||y| for all elements = and y of the ordered
field F.

Example The rational numbers, with the standard ordering, and the stan-
dard operations of addition, subtraction, multiplication, and division consti-
tute an ordered field.

Example Let Q(v/2) denote the set of all numbers that can be represented in
the form b+cv/2 , where b and c¢ are rational numbers. The sum and difference
of any two numbers belonging to Q(y/2) themselves belong to Q(v/2). Also
the product of any two numbers Q(+/2) itself belongs to Q(+/2) because, for
any rational numbers b, ¢, e and f,

(b4 cv2)(e + fV2) = (be + 2¢f) + (bf + ce)V/2,
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and both be + 2¢f and bf + ce are rational numbers. The reciprocal of any
non-zero element of Q(v/2) itself belongs to Q(v/2), because

1 _b—C\/§
b—|—c\/§_ b2 — 2¢2°

for all rational numbers b and c. It is then a straightforward exercise to verify
that Q(v/2) is an ordered field.

1.4 Least Upper Bounds

Let S be a subset of an ordered field F. An element u of F is said to be an
upper bound of the set S if x < u for all x € S. The set S is said to be
bounded above if such an upper bound exists.

Definition Let F be an ordered field, and let S be some subset of F which
is bounded above. An element s of F is said to be the least upper bound (or
supremum) of S (denoted by sup S) if s is an upper bound of S and s < u
for all upper bounds u of S.

Example The rational number 2 is the least upper bound, in the ordered
field of rational numbers, of the sets {zx € Q : 2 <2} and {z € Q : z < 2}.
Note that the first of these sets contains its least upper bound, whereas the
second set does not.

The following property is satisfied in some ordered fields but not in others.

Least Upper Bound Property: given any non-empty subset
S of F that is bounded above, there exists an element sup S of F
that is the least upper bound for the set S.

Definition A Dedekind-complete ordered field F is an ordered field which
has the Least Upper Bound Property.

1.5 Greatest Lower Bounds

Let S be a subset of an ordered field F. A lower bound of S is an element [ of
F with the property that [ < x for all x € S. The set S is said to be bounded
below if such a lower bound exists. A greatest lower bound (or infimum) for
a set S is a lower bound for that set that is greater than every other lower
bound for that set. The greatest lower bound of the set S (if it exists) is
denoted by inf S.

Let F be a Dedekind-complete ordered field. Then, given any non-empty
subset S of IF that is bounded below, there exists a greatest lower bound (or
infimum) inf S for the set S. Indeed inf S = —sup{z €e R: —x € S}.
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Remark It can be proved that any two Dedekind-complete ordered fields are
isomorphic via an isomorphism that respects the ordering and the algebraic
operations on the fields. The theory of Dedekind cuts provides a construction
that yields a Dedekind-complete ordered field that can represent the system
of real numbers. For an account of this construction, and for a proof that
these axioms are sufficient to characterize the real number system, see chap-
ters 27-29 of Calculus, by M. Spivak. The construction of the real number
system using Dedekind cuts is also described in detail in the Appendix to
Chapter 1 of Principles of Real Analysis by W. Rudin.

1.6 Bounded Sets of Real Numbers

The set R of real numbers, with its usual ordering algebraic operations, con-
stitutes a Dedekind-complete ordered field. Thus every non-empty subset S
of R that is bounded above has a least upper bound (or supremum) sup S,
and every non-empty subset S of R that is bounded below has a greatest
lower bound (or infimum) inf S.

Let S be a non-empty subset of the real numbers that is bounded (both
above and below). Then the closed interval [inf S,supS] is the smallest
closed interval in the set R of real numbers that contains the set S. Indeed if
S C |a, b], where a and b are real numbers satisfying a < b, then a < inf S <
sup S < b, and therefore

S C [inf S,sup S| C [a, b].

1.7 Convergence of Infinite Sequences of Real Num-
bers

An infinite sequence of real numbers is a sequence of the form x, o, 3, ...,
where x; is a real number for each positive integer j. (More formally, one can
view an infinite sequence of real numbers as a function from N to R which
sends each positive integer j to some real number z;.)

Definition An infinite sequence x1, s, 3, ... of real numbers is said to con-
verge to some real number [ if and only if the following criterion is satisfied:

given any strictly positive real number ¢, there exists some pos-
itive integer N such that |z; — I| < ¢ for all positive integers j
satisfying j > N.

If the sequence 1, x2, x3, ... converges to the limit [ then we denote this
fact by writing ‘z; — [ as j — +00’, or by writing * lim z; =1
J—+too



Let x and [ be real numbers, and let € be a strictly positive real number.
Then |z — | < ¢ if and only if both x — 1 < ¢ and | — z < . It follows
that |z — ] < e if and only if | — ¢ < z < [+ . The condition |z — | < ¢
essentially requires that the value of the real number x should agree with [
to within an error of at most €. An infinite sequence w1, x5, 3, ... of real
numbers converges to some real number [ if and only if, given any positive
real number €, there exists some positive integer N such that [—e < z; < [+¢
for all positive integers j satisfying 7 > V.

Lemma 1.1 Let S be a subset of the set R of real numbers which is non-
empty and bounded above, and let sup S denote the least upper bound of the
set S. Then there exists an infinite sequence x1, %2, 23, ... such that x; € S
for all positive integers j and jginoo xj =supS.

Proof Let s = sup S. For each positive integer j, the real number s — 1/j
is not an upper bound for the set S (because s is the least upper bound of
S), and therefore there exists some element z; of S satisfying x; > s — 1/j.
Moreover x; < s for all positive integers j, because s is an upper bound
for the set S. It follows that s —1/j < x; < s for all positive integers j.
Given any positive real number €, let N be a positive integer chosen so that
N > 1/e. Then |z; — s| < € whenever j > N. It follows that lim z; = s,

Jj—+oo
as required. |

1.8 Monotonic Sequences

An infinite sequence x1, xs, T3, . . . of real numbers is said to be strictly increas-
ing if x4 > x; for all positive integers j, strictly decreasing if x4, < x; for
all positive integers j, non-decreasing if x;,1 > x; for all positive integers j,
non-increasing if x;11 < x; for all positive integers j. A sequence satisfy-
ing any one of these conditions is said to be monotonic; thus a monotonic
sequence is either non-decreasing or non-increasing.

Theorem 1.2 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.

Proof Let xq, x5, x3,... be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Axiom that there
exists a least upper bound [ for the set {z; : j € N}. We claim that the
sequence converges to /.



Let some strictly positive real number € be given. We must show that
there exists some positive integer N such that |z; — | < e whenever j > N.
Now [ — ¢ is not an upper bound for the set {z; : j € N} (since [ is the least
upper bound), and therefore there must exist some positive integer N such
that xny > [ —¢. But then [ —e < x; <[ whenever j > N, since the sequence
is non-decreasing and bounded above by I. Thus |z;—(| < € whenever j > N.
Therefore ; — [ as j — 400, as required.

If the sequence x1,x9, 3, ... is non-increasing and bounded below then
the sequence —x1, —x9, —x3, ... is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence xq,xs,23,... is also

convergent. |

1.9 Subsequences of Sequences of Real Numbers

Definition Let xq,zs,x3,... be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form xz;,, z,, xj,, . ..
where ji, jo, J3, . .. is an infinite sequence of positive integers with

J1<Ja<jgz<---.

Let xq,x9,23,... be an infinite sequence of real numbers. The following
sequences are examples of subsequences of the above sequence:—

L1, L3, L5, L7y« -

X1,T4,T9,T16, - - -

1.10 The Bolzano-Weierstrass Theorem

Theorem 1.3 (Bolzano-Weierstrass) Every bounded sequence of real num-
bers has a convergent subsequence.

Proof Let aj,as,as, ... be a bounded sequence of real numbers. We define
a peak index to be a positive integer j with the property that a; > a; for all
positive integers k satisfying & > j. Thus a positive integer j is a peak index
if and only if the jth member of the infinite sequence aq, as, as, ... is greater
than or equal to all succeeding members of the sequence. Let S be the set of
all peak indices. Then

S={jeN:a; >aqyforal k> j}.

First let us suppose that the set S of peak indices is infinite. Arrange the
elements of S in increasing order so that S = {ji, j2, j3, ja, - . .}, wWhere j; <
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J2 < J3 < ja < ---. It follows from the definition of peak indices that a; >
aj, > aj, > a;, > ---. Thus a;,,aj,,a;,,... is a non-increasing subsequence
of the original sequence aq,as,as,.... This subsequence is bounded below
(since the original sequence is bounded). It follows from Theorem 1.2 that
aj,, aj,, a4y, - . . is a convergent subsequence of the original sequence.

Now suppose that the set S of peak indices is finite. Choose a positive
integer j7; which is greater than every peak index. Then j; is not a peak
index. Therefore there must exist some positive integer js satisfying jo > j;
such that aj, > a;,. Moreover j, is not a peak index (because js is greater
than j; and j; in turn is greater than every peak index). Therefore there
must exist some positive integer js satisfying j3 > j» such that a;, > a;,. We
can continue in this way to construct (by induction on j) a strictly increasing
subsequence a;,, aj,, aj,, ... of our original sequence. This increasing subse-
quence is bounded above (since the original sequence is bounded) and thus
is convergent, by Theorem 1.2. This completes the proof of the Bolzano-
Weierstrass Theorem. |}

1.11 The Definition of Continuity for Functions of a
Real Variable

Definition Let D be a subset of R, and let f: D — R be a real-valued
function on D. Let s be a point of D. The function f is said to be continuous
at s if, given any positive real number e, there exists some positive real
number § such that |f(z) — f(s)| < e for all z € D satisfying |x — s| < . If
f is continuous at every point of D then we say that f is continuous on D.

Lemma 1.4 Let f:D — R be a function defined on some subset D of R,
and let x1, 29,3, ... be a sequence of real numbers belonging to D. Suppose
that x; — s as j — +00, where s € D, and that f is continuous at s. Then
f(x;) = f(s) as j = +oo.

Proof Let some positive real number € be given. Then there exists some
positive real number 0 such that |f(x) — f(s)| < e for all x € D satisfying
|z—s| < ¢. But then there exists some positive integer N such that |z;—s| < §
for all j satisfying j > N. Thus |f(x;) — f(s)| < € whenever j > N. Hence

flz;) — f(s) as j — +oo. |}

1.12 The Intermediate Value Theorem

Theorem 1.5 (The Intermediate Value Theorem) Let a and b be real
numbers satisfying a < b, and let f:[a,b] — R be a continuous function
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defined on the interval [a,b]. Let ¢ be a real number which lies between f(a)
and f(b) (so that either f(a) < ¢ < f(b) or else f(a) > ¢ > f(b).) Then

there ezists some s € |a,b] for which f(s) = c.

Proof If f(a) = ¢ then we may take s = a, and if f(b) = ¢ then we may
take s = 0.

It remains to consider cases where f(a) < ¢ < f(b) or f(a) > ¢ > f(b).
In the case where f(a) < ¢ < f(b) let g:[a,b] — R be defined such that
g(x) = f(x) —c. In the case where f(a) > ¢ > f(b) let g:]a,b] — R
be defined such that g(x) = ¢ — f(x). In both cases the function g is a
continuous function on [a,b] defined so that g(a) < 0 and g(b) > 0, and in
both cases we must prove the existence of a real number s belonging to the
interval [a, b] for which g(s) = 0.

Let

S ={x € la,b]: g(x) <0}

Then a € S, and x < b for all x € S. The set S is thus non-empty and
bounded above, and therefore there exists a least upper bound sup .S for the
set S. Let s =supS.

Now it follows from Lemma 1.1 that there exists an infinite sequence

T1,T2, %3, ... such that z; € S for all positive integers j and lim z; = s.
J—+0o0

Now g(x;) < 0 for all positive integers j (because x; € S). Moreover the
continuity of the function g ensures that g(s) = .liin g(x;). It follows that
j—+oo

g(s) < 0. Moreover s < b (because g(b) > 0), and therefore there exists an

infinite sequence y1, Y2, ys, ... such that s < y; < b for all positive integers j
and .1121 y; = s. (Indeed we could take y; = s + (b — s)/j for all positive
J—+0o0

integers j.) Now g(y;) > 0 for all positive integers j (because y; ¢ S), and
g(s) = .liin g(y;), and therefore g(s) > 0. We have now shown that both
j—+oo

g(s) < 0 and g(s) > 0. It follows that g(s) = 0, and thus f(s) = ¢, as
required. |

1.13 The Extreme Value Theorem

Proposition 1.6 Let a and b be real numbers satisfying a < b, and let
f:la,b] = R be a continuous real-valued function defined on the closed in-
terval [a,b]. Then there exists a positive constant M with the property that
|f(z)] < M for all x € [a,b).

Proof Let S be the set consisting of those real numbers ¢ satisfyinga <t <b
for which the function f is bounded on [a,t]. A real number ¢ therefore



belongs to the set S if and only if a < ¢t < b and also there exists some
positive real number K; with the property that |f(x)| < K for all = € [a, t].
Now a € S and t < b for all £ € S. Thus set S is non-empty and bounded
above. It follows from the Least Upper Bound Principle that the set S has
a least upper bound sup S. Let s =sup S. Then s € [a, b].

Now the function f is continuous at s. Therefore there exists some pos-
itive real number 0 such that |f(z)| < [f(s)| + 1 for all whenever z € [a, b]
and s —0 < x < s+ 9. Also s — ¢ is not an upper bound for the set S and
therefore there exists some element t of S satisfying s — 9 <t < s. There
then exists some positive real number K; with the property that |f(x)| < K
for all z € [a, t].

Let M = max(Ky,|f(s)|4+1). Then |f(z)| < M for all x € [a, b] satisfying
x < s+ 0, and therefore z € S for all x € [a,b] satisfying z < s+ §. If it
were the case that s < b then s would not be an upper bound for the set S,
contradicting the definition of s as the least upper bound of S. Therefore
s = b. It follows that |f(z)] < M for all = € [a,b]. Thus the function f is
bounded on [a, b], as required. |}

Theorem 1.7 (The Extreme Value Theorem) Let a and b be real num-
bers satisfying a < b, and let f: [a,b] — R be a continuous real-valued function
defined on the closed interval [a,b]. Then there exist real numbers u and v
belonging to the interval [a,b] such that f(u) < f(z) < f(v) for all x € [a,b].

Proof It follows from Proposition 1.6 that the set

{f(z) : x € [a, 0]}

is bounded above and below. This set is also non-empty. It follows that there
exist real numbers M and m such that

M =sup{f(z) :z € [a,b]} and m =inf{f(z):z € [a,b]}.

If it were the case that f(z) < M for all € [a,b] then there would exist
a well-defined function g: [a, b] — R satisfying

1

g(x) = M——f(x)

for all z € [a,b]. This function would not be bounded, because, given any
positive constant K, there would exist = € [a, b] for which f(x) > M —1/K
and g(z) > K. The existence of such a function g would contradict the result
of Proposition 1.6. Therefore there must exist v € [a,b] with the property
that f(z) < f(v) for all x € [a, b].



Similarly there cannot exist any continuous function h: [a,b] — R with
the property that

for all x € [a,b], and therefore there must exist u € [a, b] with the property
that f(u) < f(x) for all = € [a,b]. This completes the proof. ||

1.14 Uniform Continuity

Definition A function f: D — R is said to be uniformly continuous over a
subset D of R if, given any strictly positive real number ¢, there exists some
strictly positive real number § such that |f(u) — f(v)| < ¢ for all u,v € [a, b
satisfying |u — v| < J. (where d does not depend on u or v).

A continuous function defined over a subset D of R is not necessarily
uniformly continuous on D. (One can verify for example that the function
sending a non-zero real number x to 1/z is not uniformly continuous on the
set of all non-zero real numbers.) However we show that continuity does
imply uniform continuity when D = [a,b] for some real numbers a and b
satisfying a < b.

Theorem 1.8 Let f:]a,b] — R be a continuous real-valued function on a
closed bounded interval [a,b]. Then the function f is uniformly continuous
on la, b.

Proof Let some strictly positive real number € be given. Suppose that there
did not exist any strictly positive real number § such that |f(u) — f(v)| <
e whenever |u — v| < §. Then, for each positive integer j, there would
exist values u; and v; in the interval [a,b] such that |u; — v;| < 1/j and
|f(u;) — f(v;)] > €. But the sequence uy, ug, us, ... would be bounded (since
a < u;j < b for all j) and thus would possess a convergent subsequence
Uky s Uky s Ukg s - - -, Dy the Bolzano-Weierstrass Theorem (Theorem 1.3).

Let | = lim wug,. Then ! = lim vy, also, since lim (vg, — ug,) = 0.
jo+oo j—+oo jtoo 7 I

Moreover a < [ < b. It follows from the continuity of f that ,hfjrﬂ flug,) =
Jj—+oo

lim f(vk,) = f(I) (see Lemma 1.4). Thus lim (f(ux,) — f(vk,)) = 0. But

J—+oo J—+oo

this is impossible, since u; and v; have been chosen so that | f(u;)— f(v;)| > ¢
for all positive integers 5. We conclude therefore that there must exist some
strictly positive real number § with the required property. |
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1.15 Historical Note on the Real Number System

From the time of the ancient Greeks to the present day, mathematicians
have recognized the necessity of establishing rigorous foundations for the
discipline. This led mathematicians such as Bolzano, Cauchy and Weierstrass
to establish in the nineteenth century the definitions of continuity, limits
and convergence that are required in order to establish a secure foundation
upon which to build theories of real and complex analysis that underpin the
application of standard techniques of the differential calculus in one or more
variables.

But mathematicians in the nineteenth century realised that, in order to
obtain satisfactory proofs of basic theorems underlying the applications of
calculus, they needed a deeper understanding of the nature of the real num-
ber system. Accordingly Dedekind developed a theory in which real numbers
were represented by Dedekind sections, in which each real number was char-
acterized by means of a partition of the set of rational numbers into two
subsets, where every rational number belonging to the first subset is less
than every rational number belonging to the second. Dedekind published his
construction of the real number system in 1872, in the work Stetigkeit und ir-
rationale Zahlen. In the same year, Georg Cantor published a construction of
the real number system in which real numbers are represented by sequences
of rational numbers satisfying an appropriate convergence criterion.

It has since been shown that the system of real numbers is completely
characterized by the statement that the real numbers constitute an ordered
field which satisfies the Least Upper Bound Axiom.
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