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10 Second Order Partial Derivatives and the
Hessian Matrix

10.1 Second Order Partial Derivatives

Let X be an open subset of R" and let f: X — R be a real-valued function
on X. We consider the second order partial derivatives of the function f

defined by
o'f 0 [of

We shall show that if the partial derivatives
of  of o f o*f

81'7;’ &cj’ &claxj and &Uj&cl

all exist and are continuous then

orf o
8331-8%- N 81']8.T1

First though we give a counterexample which demonstrates that there exist
functions f for which
0 f 0 f
8:16,093]- 09333171 ’

Example Let f:R? — R be the function defined by
———— 1
f(ili', y) = x? + y2
0 if (z,y) = (0,0).

For convenience of notation, let us write

folz,y) = 8f((;;y)7
filzy) = %a;y)?
fay(@,y) 82(;;525)
Frolz,y) = %
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If (z,y) # (0,0) then

(3z%y — y*)(2® + ) — 22%y(2* — y?)

fo = (22 + 42)?
3zty + 3x%y® — 2%y — b — 22ty + 22293
- (22 + y2)?2
2y + dz2yP — o

(22 + 2)?
Similarly
f = —xy4 — 4a3y? + 2P
L (x2 4 y2)2
(This can be deduced from the formula for f, on noticing that f(z,y) changes

sign on interchanging the variables z and y.)
Differentiating again, when (z,y) # (0,0), we find that

fay(2,y) = %
(—y* = 122%y* + 52*)(2” + y°)
- (% +y?)?
—4x(—zyt — 4a3y® + 2°)
(2 +y?)°
- —x?y* — 12242 + 528 — 9% — 1222y + 5aty?
a (22 + y2)3
422yt + 1621y? — 42°
(22 + 12)3
a4 9aty? — 922yt —yf°
(22 + y?)°

Now the expression just obtained for f,, when (z,y) # (0,0) changes
sign when the variables x and y are interchanged. The same is true of the
expression defining f(x,y). It follows that f,,. We conclude therefore that
if (z,y) # (0,0) then

2% + 9xty? — 9%yt — ¢/F

f;cy = fyz = (ZL‘2 T y2)3

Now if (z,y) # (0,0) and if r = \/2? + 32 then

zty + 42ty — P 6P

= 6r.
ra

| fa (2, 9)

rd
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It follows that
lim )fz(:v,y) =0.

(@,y)—(0,0
Similarly
hm x, — 0
($,y)—>(070) fy( y)
However
hm 2y Ty
(z,y)—(0,0) f y( y>
does not exist. Indeed
: . S
lim fo (2,0) = lim f,u(2,0) = lim —5 =1,
.6

Next we show that f,, f,, fiy, and f,, all exist at (0,0), and thus exist
everywhere on R?. Now f(x,0) = 0 for all z, hence f,(0,0) = 0. Also
f(0,y) =0 for all y, hence f,(0,0) = 0. Thus

fy(l'70) =, f:ﬂ(07y>:_y
for all z,y € R. We conclude that

d(fy(x,0))

0.0 -

fyl‘(oa 0) -

Thus

at (0,0).

Observe that in this example the functions f;, and f,, are continuous
throughout R? \ {(0,0} and are equal to one another there. Although the
functions f,, and f,, are well-defined at (0,0), they are not continuous at

(0,0) and f.,(0,0) # f,2(0,0).

Theorem 10.1 Let X be an open set in R? and let f: X — R be a real-valued
function on X. Suppose that the partial derivatives

g % and Of
ox’ Oy Oxdy
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exist and are continuous throughout X . Then the partial derivative

o0 f
Oyox

exists and is continuous on X, and

2 0
oxdy  Oydx’
Proof Let
_of _of O 0
fx(may> - (9.%7 fy(xay) - 8y7 fa:y - 8:683/ and fy:z: - 83/8:1:

and let (a,b) be a point of X. The set X is open in R™ and therefore there
exists some positive real number L such that (a + h,b + k) € X for all
(h, k) € R? satisfying |h| < L and |k| < L. Let

S(h,k) = f(a+h,b+k)— f(a+h,b) — f(a,b+ k) + f(a,b)

for all real numbers h and k satisfying |h| < L and |k| < L. We use the Mean
Value Theorem (Theorem 2.2) to prove the existence of real numbers u and
v, where u lies between a and a + h and v lies between b and b+ k, for which

S(h, k) = hk

— W foy 1, 0).
(z,y)=(u,v)

Let h be fixed, where |h| < L, and let ¢: (b — L,b+ L) — R be defined so
that q(t) = f(a+ h,t) — f(a,t) for all real numbers ¢ satisfying b — L < t <
b+ L. Then S(h,k) = q(b+ k) — q(b). But it follows from the Mean Value
Theorem (Theorem 2.2) that there exists some real number v lying between b
and b+k for which ¢(b+k) —q(b) = kq¢'(v). But ¢'(v) = fy(a+h,v)— f,(a,v).
It follows that

S(h, k) =k(fy(a+ h,v) — f,(a,v)).

The Mean Value Theorem can now be applied to the function sending real
numbers s in the interval (e — L,a + L) to f,(s,v) to deduce the existence
of a real number u lying between a and a + h for which

S(h, k) = hk fuy(u,v).

Now let some positive real number € be given. The function f,, is contin-
uous. Therefore there exists some real number ¢§ satisfying 0 < § < L such
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that |fu,(a+h,b+k)— fzy(a,b)] < e whenever |h| < ¢ and |k| < d. It follows

that
S(h, k)

hk
for all real numbers h and k satisfying 0 < |h| < ¢ and 0 < |k|] < §. Now

S(h, k) 1. fla+hb+k)— fla,b+k)

— fay(a,b)| <e¢

R L h
1 _
1y flathb) — fa,b)
k h—0
_ fx(aab+k>_fx(aab>
= 2 .

It follows that
fx(aa b + k) - fx(aa b)
k

— fay(a,b)] <¢

fe(a,b+ k) — f.(a,b)

tends to f,y(a,b) as k tends to zero, and therefore the second order partial
derivative f,, exists at the point (a,b) and

f(am:hmﬁWW+@—nm@

k=0 k

whenever 0 < |k| < §. Thus the difference quotient

= facy(aa b)7
as required. Jj

Corollary 10.2 Let X be an open set in R™ and let f: X — R be a real-
valued function on X. Suppose that the partial derivatives

of p 0% f
83:2- an 31’18:15]

exist and are continuous on X for all integers i and j between 1 and n. Then

o’f O*f
8@-896]- N 81’]8331

for all integers i and j between 1 and n.

10.2 Maxima and Minima for Functions of Several Real
Variables

Let f: X — R be a real-valued function defined over some open subset X of
R™ whose first and second order partial derivatives exist and are continuous
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throughout X. Suppose that f has a local minimum at some point p of X,
where p = (p1,p2, ..., pn). Now for each integer i between 1 and n the map

t— f(p1,. Pic1,t,Dit1y - Dn)

has a local minimum at ¢ = p;, hence the derivative of this map vanishes
there. Thus if f has a local minimum at p then

of

=0.
af[]i x=p

In many situations the values of the second order partial derivatives of
a twice-differentiable function of several real variables at a stationary point
determines the qualitative behaviour of the function around that stationary
point, in particular ensuring, in some situations, that the stationary point is
a local minimum or a local maximum.

Lemma 10.3 Let f be a continuous real-valued function defined throughout
an open ball in R™ of radius R about some point p. Suppose that the partial
derivatives of f of orders one and two exist and are continuous throughout

this open ball. Then there exists some real number 0 satisfying 0 < 6 < 1 for
which

f(p+h) = +th

p+6h
for all h € R™ satisfying |h| < 0.

Proof Let h satisfy |h| < R, and let

q(t) = f(p +th)

for all t € [0,1]. It follows from the Chain Rule for functions of several
variables (Theorem 8.12) that

"(t) = th(akf)<p + th)

=1
and

= > hih(9;001)(p + th),

jk=1
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where

Of (x1,z9,...,2p)

(ajf)(xl,l’g, . 7:L’n) =

8xj
and 52 ( )
. T1,X2,...,Tp
(8j8kf)($lax27"'7wn) - ax]axk :
Now

q(1) = q(0) + ¢'(0) + 5¢"(0)
for some real number 6 satisfying 0 < # < 1. (see Proposition 2.3). It follows
that

f(p+h) = +th Of)(p Zhhkﬁﬁkf)(p+9h)

jk 1
= h hih

f(pH; ’“a Z J"‘ax]axk

as required. |}

+0h

Let f be a real-valued function of several variables whose first second order
partial derivatives exist and are continuous throughout some open neighbour-
hood of a given point p, and let R > 0 be chosen such that the function f is
defined throughout the open ball of radius R about the point p. It follows
from Lemma 10.3 that if

af | 0

al’j p

for j =1,2,...,n, and if |h| < R then

i = 1)+ § 35 L

=1 j=1

x=p+6h

for some 6 satisfying 0 < 6 < 1.
Let us denote by (H; ;(p)) the Hessian matriz at the point p, defined by

w\P) = 81‘181‘]

X=p

If the partial derivatives of f of second order exist and are continuous then
H, ;(p) = H;,(p) for all i and j, by Corollary 10.2. Thus the Hessian matrix
is symmetric.

We now recall some facts concerning symmetric matrices.
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Let (¢; ;) be a symmetric n x n matrix.

The matrix (¢; ;) is said to be positive semi-definite if Z Z cijhih; >0
i=1 j=1

for all (hq, ho, ..., h,) € R™.
The matrix (¢, ;) is said to be positive definite if Z Z c;jhih; > 0 for

i=1 j=1
all non-zero (hq, hs, ..., h,) € R™

The matrix (¢; ;) is said to be negative semi-definite if Z Z cijhih; <0
i=1 j=1

for all (hy, ha, ..., h,) € R™.
The matrix (c; ;) is said to be negative definite if Z Zci,jhihj < 0 for

i=1 j=1
all non-zero (hy, ha, ..., h,) € R™

The matrix (¢;;) is said to be indefinite if it is neither positive semi-
definite nor negative semi-definite.

Lemma 10.4 Let (¢; ;) be a positive definite symmetric n x n matriz. Then
there exists some € > 0 with the following property: if all of the components
of a symmetric n x n matriz (b; ;) satisfy the inequality |b; ; — ¢; ;| < € then
the matriz (b; ;) is positive definite.

Proof Let S"! be the unit n — 1-sphere in R" defined by
St ={(hy,hg,...,hy,) ER" K2 + A5+ -+ h: =1}
Observe that a symmetric n x n matrix (b; ;) is positive definite if and only

if
Z Z bi,jhihj >0

i=1 j=1
for all (hy,ha, ..., h,) € S*~1. Now the matrix (c; ;) is positive definite, by

assumption. Therefore
Z Z Ci,jhihj >0
i=1 j=1
for all (hl, ]’LQ, R 7hn) S Sn—l'
But S"7! is a closed bounded set in R", it therefore follows from The-
orem 5.5 that there exists some (ki, ks, ..., k,) € S" ! with the property

that L I
Z Z Ci,jhihj Z Z Z Ci,jkikj

i=1 j=1 i=1 j=1
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for all (hy, ho, ..., h,) € S*1. Let

A= i i Ci,jkikj-

i=1 j=1

Then A > 0 and o
Z Z Ci,jhihj Z A
i=1 j=1

for all (hy, ho, ..., h,) € S"71. Set e = A/n?.
If (b;;) is a symmetric n x n matrix all of whose components satisfy
’bi,j — Ci,j| < ¢ then

ii(bm‘ — ¢ j)hih;| < en® = A,

i=1 j=1

for all (hy,ho,...,h,) € S"1 hence

En: Zn: bijhil; > 2": zn:cwhihj —A>0

i=1 j=1 i=1 j=1

for all (hy, ha, ..., hy,) € S*~!. Thus the matrix (b;;) is positive-definite, as
required. |

Using the fact that a symmetric n X n matrix (¢; ;) is negative definite
if and only if the matrix (—¢;;) is positive-definite, we see that if (c; ;) is
a negative-definite matrix then there exists some ¢ > 0 with the following
property: if all of the components of a symmetric n X n matrix (b; ;) satisfy
the inequality |b;; — ¢; j| < € then the matrix (b; ;) is negative definite.

Let f: X — R be a real-valued function whose partial derivatives of first
and second order exist and are continuous throughout some open set X in
R™. Let p be a point of X. We have already observed that if the function f
has a local maximum or a local minimum at p then

af

8302- x=p

=0 (i=1,2,...,n).

We now study the behaviour of the function f around a point p at which
the first order partial derivatives vanish. We consider the Hessian matrix
(H;j(p)) defined by

0% f

8xi8xj x=p

Hi,j(l))
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Lemma 10.5 Let f: X — R be a real-valued function whose partial deriva-
tives of first and second order exist and are continuous throughout some open
set X in R™, and let p be a point of X at which

af

3@- x=p

=0 (1=1,2,...,n).

If f has a local minimum at a point p of X then the Hessian matriz (H; ;(p))
at p is positive semi-definite.

Proof The first order partial derivatives of f are zero at p. It follows that,
given any vector h € R which is sufficiently close to 0, there exists some 6
satisfying 0 < 6 < 1 (where 6 depends on h) such that

Fp+1) = F(p)+ 5 D05 hulyHiy(p + 0h),

i=1 j=1

where
o*f

00 |, on

H;;(p+6h) =

(see Lemma 10.3).
It follows from this result that

t—0 t2 -

i=1 j=1
The result follows. |

Let f: X — R be a real-valued function whose partial derivatives of first
and second order exist and are continuous throughout some open set X in R”,
and let p be a point at which the first order partial derivatives of f vanish.
The above lemma shows that if the function f has a local minimum at h
then the Hessian matrix of f is positive semi-definite at p. However the fact
that the Hessian matrix of f is positive semi-definite at p is not sufficient to
ensure that f is has a local minimum at p, as the following example shows.

Example Consider the function f:R? — R defined by f(x,y) = 2* — >
Then the first order partial derivatives of f vanish at (0,0). The Hessian
matrix of f at (0,0) is the matrix

20
00
and this matrix is positive semi-definite. However (0,0) is not a local mini-

mum of f since f(0,y) < f(0,0) for all y > 0.
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The following theorem shows that if the Hessian of the function f is
positive definite at a point at which the first order partial derivatives of f
vanish then f has a local minimum at that point.

Theorem 10.6 Let f: X — R be a real-valued function whose partial deriva-
tives of first and second order exist and are continuous throughout some open
set X in R™, and let p be a point of X at which

=0 =1,2,...,n).
amix:p (Z ) 7”)

Suppose that the Hessian matriz (H; j(p)) at p is positive definite. Then f
has a local minimum at p.

Proof The first order partial derivatives of f vanish at p. It therefore follows
from Taylor’s Theorem that, for any h € R™ which is sufficiently close to 0,
there exists some 6 satisfying 0 < 6 < 1 (where ¢ depends on h) such that

Fp+h) = F(p)+ 5 D05 hulyHiy(p+ 0h),

i=1 j=1

where
0 f
8362- 896]-

H; ;(p +6h) =

x=p+6h

(see Lemma 10.3). Suppose that the Hessian matrix (H;;(p)) is positive
definite. It follows from Lemma 10.4 that there exists some ¢ > 0 such that
if |H; ;(x) — H; j(p)| < ¢ for all  and j then (H; ;(x)) is positive definite.

But it follows from the continuity of the second order partial derivatives
of f that there exists some 6 > 0 such that |H; ;(x) — H; ;(p)| < ¢ whenever
|x —p| < 0. Thus if |h| < § then (H,;(p + ¢h)) is positive definite for all
0 € (0,1) so that f(p+h) > f(p). Thus p is a local minimum of f. |

A symmetric n x n matrix C is positive definite if and only if all its
eigenvalues are strictly positive. In particular if n = 2 and if \; and A\, are
the eigenvalues of a symmetric 2 x 2 matrix C', then

A+ Ay = trace C, AAg = det C.

Thus a symmetric 2 x 2 matrix C' is positive definite if and only if its trace
and determinant are both positive.

161



Example Consider the function f:R? — R defined by
flz,y) =42 + 3y — 20y — 2 — 2y — y°.

Now

of (z,y)

ox = (0,0),

(x’y):(o’o)

The Hessian matrix of f at (0,0) is

(55

The trace and determinant of this matrix are 14 and 44 respectively. Hence
this matrix is positive definite. We conclude from Theorem 10.6 that the
function f has a local minimum at (0, 0).
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11 Repeated Differentiation and Smoothness

11.1 Repeated Differentiation of Functions of Several
Variables

Let ¢: X — R” be a function mapping some open subset X of a Euclidean
space R™ into a Euclidean space R™. The function ¢ is “C'” if and only
if it is continuously differentiable, and this requires that the function be
differentiable throughout X and also that the function each point p of X to
the derivative (Dy), of ¢ at the point p is a continuous function from X
to the space L(R™,R") of linear maps from R™ to R™. Moreover this is the
case if and only if the partial derivatives of the Cartesian components of ¢
exist and are continuous throughout the open set X (see Corollary 8.17).

The process of differentiation can be repeated. Let ¢:V — R” be a dif-
ferentiable function defined over an open set V' in R™. Suppose that the
function ¢ is differentiable at each point p. Then the derivative of ¢ can
itself be regarded as a function on V' taking values in the real vector space
L(R™,R™) of linear transformations between the real vector spaces R™ and
R™. Moreover L(R™,R™) can itself be regarded as a Euclidean space whose
Euclidean norm is the Hilbert-Schmidt norm on L(R™,R™). It follows that
the definition of differentiability can be applied to derivative of a differen-
tiable function of several real variables to obtain the second derivative of a
twice-differentiable function. Continuing the process, one can obtain the kth
derivative of a k-times differentiable function for any positive integer k.

A more detailed analysis of this process shows that if ¢ is a k-times dif-
ferentiable function, and if the Cartesian components of ¢ are fi, fo, ..., [y,
so that

p(x) = (f1(x), fa(x), ..., fu(x))

for all x € V', then the kth derivative of ¢ at each point of V' is represented
by the multilinear transformation that maps each k-tuple (v, v ... v(*))
of vectors in R™ to the vector in R™ whose ith component is

m

S gt ol
' 4 a$]1 8.1"72 P 83:]]9 k

where "UJ(-S) denotes the jth component of the vector v®) for j = 1,2,...,m
and s = 1,2,..., k. The kth derivative of the function ¢ is thus represented
by a function from the open set V to some real vector space of multilinear
transformations. Such a function is said to be a (Cartesian) tensor field on
V. Such tensor fields are ubiquitous in differential geometry and theoretical
physics.
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We can formally define the concept of functions of several variables being
differentiable of order k by recursion on k.

Definition Let V' be an open set in R™. A function ¢: V — R" is k-times
differentiable, where k > 1, if it is differentiable and the Dy: V' — L(R™,R")
that maps each point x of V' to the derivative of ¢ at that point is a (k —1)-
times differentiable function on V.

Definition Let V be an open set in R™. A function ¢:V — R" is k-times
continuously differentiable, where k > 1, if the function Dp:V — L(R™ R")
that maps each point x of V' to the derivative of ¢ at that point is a (k —1)-
times continuously differentiable function on V.

A function of several real variables is said to be “C*” for some positive
integer £ if and only if it is k-times continuously differentiable.

Definition A function ¢:V — R"™ is said to be smooth (or C*) if it is
k-times differentiable for all positive integers k.

If a function of several real variables is (k 4 1)-times differentiable, then
the components of its kth order derivative must be continuous functions,
because differentiability implies continuity (see Lemma 8.8). It follows that
a function of several real variables is smooth if and only if it is C* for all
positive integers k.

Lemma 11.1 Let V' be an open set in R™. A function ¢:V — R" is k-times
continuously differentiable (or C*) if and only if the partial derivatives of the
components of ¢ of all orders up to and including k exist and are continuous
throughout V.

Proof The result can be proved by induction on k. The result is true for
k =1 by Lemma 8.13. Suppose as our induction hypothesis that £ > 1 and
that continuously differentiable vector-valued functions on V are C*~! if and
only if their partial derivatives of orders up to and including k — 1 exist and
are continuous throughout V.

Now a vector-valued function is continuously differentiable if and only
if its components are continuously differentiable. Moreover a vector-valued
function is C*~! if and only if its components are all C*~!. It follows that
the function ¢ is C* if and only if the components of its derivative are C*~1.
These components are the first-order partial derivatives of ¢. The induction
hypothesis ensures that these first order partial derivatives of ¢ are C*~! if
and only if their partial derivatives of orders less than or equal to & — 1 exist
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and are continuous throughout V. It follows that the function ¢ itself is C*
if and only if its partial derivatives of orders less than or equal to k exist and
are continuous throughout V', as required. |

Lemma 11.2 Let V' be an open set in R™, and let f:V — R and g:V — R
be real-functions on' V', and let f+g, f—g and f.g denote the sum, difference
and product of these functions, where

(f+9)(x) =Fx) +9(x), (f=9)x) = f(x) -9(x),
(f-9)(x) = f(x)g(x)

for all x € V. Suppose that the functions f and g are C* for some positive
integer k. Then so are the functions f+gq, f —g and f.g.

Proof The result can be proved by induction on k. It follows from Proposi-
tion 8.10 and Proposition 8.11 that the result is true when £ = 1.

A real-valued function on V is C* for some positive integer % if and only
if all the partial derivatives of its components of degree less than or equal to
k exist and are continuous throughout the open set V. It follows from this
that a real-valued function f on V is C* if and only if its first order partial
derivatives 0; f are C*~!, where 0;f = —— fori=1,2,...,m.

83,"1-
Thus suppose as our induction hypothesis that £ > 1 and that all sums,

differences and products of C*~! functions are known to be C¥~1. Let f and
g be C* functions. Then

Oi(f+g)=0if +0ig, O(f—g)=0if — g,

a(f.g)=1f (0ig) +(0if) . g

for i = 1,2,...,m. Now the functions f, g, 0;f and 9;g are all C*~'. The
induction hypothesis then ensures that 0;(f + g), 0;(f — g) and 9;(f . g) are
all C*=1 for i = 1,2,...,m, and therefore the functions f +g, f —g and f.g
are C*.

The required result therefore follows by induction on the degree k of the
derivatives required to be continuous. |

Lemma 11.3 Let V and W be open sets in R™ and R™ respectively, and let
©:V = R" and : W — R! be functions mapping V and W into R" and R!
respectively, where o(V)) C W. Suppose that the functions ¢:V — R™ and
W — R are C*. Then the composition function o p:V — R is also CF.
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Proof We prove the result by induction on k. The Chain Rule for functions
of several real variables (Proposition 8.12) ensures that the result is true for
k=1.

We have shown that sums, differences and products of C* functions are
C* (see Lemma 11.2). We suppose as our induction hypothesis that all
compositions of C*~! functions of several real variables are C*~! for some
positive integer k, and show that this implies that all compositions of C¥
functions of several real variables are C*.

Let o:V — R™ and ¢: W — R! be C* functions, where V is an open
set in R™, W is an open set in R™ and ¢(V) C W. Let the components
of ¢ be fi, fo,..., fm and let the components of 1) be g1, ¢go, ..., g,, where
fi, fo, ..., fin are real-valued functions on V', g1,¢s,...,¢, are real-valued
functions on W,

p(x) = (fi(x), fa(x), .-+, fm(x))
for all x € V and
V() = (01(¥), 92(¥), -+ fa(¥))

forally € W.
It then follows from the Chain Rule (Proposition 8.12) that

0 " (0g; Ofs
a—%(gj(w(xl,wz,...,xm))) = (azi O@) 3;'

s=1

dg;

Now the functions o ¢ are compositions of C*~! functions. The induc-

tion hypothesis therefore ensures that these functions are C*~'. This then

ensures that the functions % (gj(go(xl, oy .., :L’m))> are expressible as sums
of products of C*~! functions, and must therefore themselves be C*~! func-
tions (see Lemma 11.2). We have thus shown that the first order partial
derivatives of the components of the composition function ¥ o ¢ are C*!
functions. It follows that 1) o ¢ must itself be a C* function.

The required result therefore follows by induction on the degree k of the
derivatives required to be continuous. |

It follows from Lemma 11.2 and Lemma 11.3 that functions that are
constructed from smooth vector-valued functions defined over open sets in
Euclidean spaces by means of the operations of additions, subtraction, multi-
plication and composition of functions must themselves be smooth functions
over the open sets over which they are defined.
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We now prove a lemma that guarantees the smoothness of matrix-valued
functions obtained from smooth matrix-valued functions through the opera-
tion of matrix inversion. The lemma applies to functions F:V — GL(n,R)
defined over an open subset V' of a Euclidean space R™ and taking values in
the set GL(n,R) of invertible n x n matrices. The value F(x) of such a func-
tion at a point x of V' is thus an invertible n x n matrix, and thus the function
F:V — GL(n,R) determines a corresponding function G: V' — GL(n,R),
where G(x) = F(x)~! for all x € V. The coefficients of the matrices F'(x)
and G(x) are then functions of x as x varies over the open set V. Now the
function F is C* if and only if, for all i and j between 1 and n, the coef-
ficient of the matrix F(x) in the ith row and jth column is a C* function
of x throughout the open set V. We prove that if the function F is C* for
some positive integer k then the function G is also C*. It follows that if the
function F'is smooth, then the function G is smooth.

Lemma 11.4 Let n be a positive integer, let M,(R) denote the real vector
space consisting of all n X n matrices with real coefficients, and let GL(n,R)
be the open set in M, (R) whose elements are the invertible n X n matrices
with real coefficients. Let V' be an open set in R™ let F:V — GL(n,R) be a
function mapping V' into GL(n,R), and let G:V — GL(n,R) be defined such
that G(x) = F(x)~! for all x € V. Suppose that the function F is C*. Then
the function G is C*.

Proof For each x € V, the matrices F'(x) and G(x) satisfy F'(x)G(x) = I,
where [ is the identity matrix. On differentiating this identity with respect

to the ith coordinate function x; on V| where x = (x1, 29, ..., z,,), we find
that OF(x) 9G(x)
X X
F _
oz C (x) + F(x) Froal

and therefore

9G(x)
81:1»

LOF(x
axi

®
=
x

= F(x)°

(In the above equation F'(x), G(x) and their inverses and partial derivatives
are n X n matrices that are multiplied using the standard operation of matrix
multiplication.) Now sums and products of C* real-valued functions are
themselves C* (see Lemma 11.2). It follows that if matrices are multiplied
together, where the coefficients of those matrices are C* real-valued functions
defined over the open set V', the coefficients of the resultant matrix will also
be C* real-valued functions defined over V.
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The equation above ensures that if the matrix-valued function F is C*
(so that the functions determining the coefficients of the matrix are real-
valued C* functions on V), then the first order partial derivatives of the
function G are continuous, and therefore the function G itself is C', where
G(x) = F(x)! for all x € V. Moreover if G is C?, where 1 < j < k then the
coefficients of the first order partial derivatives of G are expressible as a sums
of products of C7 real-valued functions and thus are themselves C? functions.
Thus the matrix-valued function G itself is C’*!. Repeated applications of
this result ensure that G is a C* function as required. ]

11.2 Smoothness of Local Inverses

Lemma 11.5 Let p: X — R" be a continuously differentiable function de-
fined over an open set X in R™ that is locally invertible around some point
of X and let : W — R™ be a local inverse for ¢. Suppose that ¢: X — R”
is C* and that the local inverse u: W — R™ is differentiable throughout W.
Then p: W — R™ is C* throughout W .

Proof The functions ¢ and u are differentiable, and u(p(x)) = x for all x €
p(W). The Chain Rule (Proposition 8.12) then ensures that (D))o (D¢)x
is the identity operator. Let F'(x) denote the Jacobian matrix representing
the derivative (Dy)x of ¢ at each point x of u(W), and let G(x) denote the
Jacobian matrix representing the derivative (D), x) of p at ¢(x). Then the
Chain Rule ensures that G(x)F(x) is the identity matrix. It follows that
F(x) and G(x) are invertible matrices and G(x) = F(x)! for all x € u(W).
Now the function ¢ is C* on X and therefore the matrix-valued function
F:u(W) — GL(n,R) is is C* on pu(W). It follows from Lemma 11.4 that the
matrix-valued function G: u(W) — GL(n,R) is also C* on u(W).

Now (Dp)y is represented by the matrix G(u(y)) for ally € W. It follows
from the continuity of ¢ and G that the derivative Dy of i is continuous on
W. It follows that u is C'. Moreover if p: W — X is ¢V for any integer j
satisfying 1 < j < k then G o u is a composition of C7 functions and is
therefore C7 (Lemma 11.3). But the coefficients of the matrix G(u(y)) are
the first order partial derivatives of the components of p at y at each point y
of W. It follows therefore that the first order partial derivatives of u are C”
and therefore the function p itself is C7*1. It follows by repeated application
of this process that the function p is C* on W, as required. |
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11.3 The Inverse and Implicit Function Theorems for
Smooth Maps

Theorem 11.6 (Inverse Function Theorem for Smooth Maps) Let¢:V —
R™ be a smooth function defined over an open set V in n-dimensional Eu-
clidean space R"™ and mapping V' into R™, and let p be a point of V. Suppose

that the derivative (Dy)p:R™ — R™ of the map ¢ at the point p is an in-
vertible linear transformation. Then there exists an open set W in R"™ and a
smooth function u: W — V' that satisfies the following conditions:—

(i) w(W) is an open set in R™ contained in V', and p € p(W);
(ii) o(u(y)) =y for ally € W.

Proof The existence of continuously differentiable local inverse pu: W — V
follows from the Inverse Function Theorem (Theorem 9.5). The result that
this local inverse is smooth when ¢ is smooth then follows from Lemma 11.5. |

Definition Let V and W be open sets in n-dimensional Euclidean space R",
and let ¢: V' — W be a function from V' to W. The function ¢ is said to be
a diffeomorphism if it has a well-defined inverse ¢~': W — V and both the
function ¢:V — W and its inverse ¢~ 1: W — V are smooth functions.

Definition Let V' be an open set in n-dimensional Euclidean space R", and
let p: V' — R" be a smooth function from V to R"™. Let U be an open subset
of V. We say that ¢ maps U diffeomorphically onto an open set of R™ if
©(U) is an open set in R™ and the restriction of the function ¢ to U is a
diffeomorphism from U to ¢(U).

The following corollary is simply a restatement of the Inverse Function
Theorem (Theorem 11.6) for smooth maps, using the language of diffeomor-
phisms.

Corollary 11.7 Let V' be an open set in n-dimensional Euclidean space R™,
and let p:V — R" be a smooth function from V to R", and let p € V.
Suppose that the derivative (Dy)y of ¢ is invertible at the point p. Then there
exists an open subset U of V', where p € U, that is mapped diffeomorphically
by ¢ onto an open set in R".

The following theorem is a version of the Implicit Function Theorem
(Theorem 9.6 applicable when the functions uy, us, . . ., u,, satisfying the con-
ditions of Theorem 9.6 are all smooth.
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Theorem 11.8 Let p be a point of R", where p = (p1,p2,...,pn) and let
Uy, U, - . . , Uy be a smooth real-valued functions defined over an open neigh-
bourhood V' of the point p in R"™, where m < n, and let

M={xeV:ujx)=0forj=12...,m}.

Suppose that uq,us, ..., u, are zero at p and that the matrix
ou; Ouy ouq
Oxy Oxs Oz,
8uQ @UQ 8u2
Oory Oxe Oz
Oy, Oy, Oy,
Oxry Oxs Oz,

is invertible at the point p. Then there exists an open neighbourhood U of p
and smooth functions fi, fa,..., fm of n — m real variables, defined around
(Pmats -« Pn) in R*™™™ such that

MnNU = {(x1,29,...,2,) €U :

;= fi(@me1, ... 1) for j=1,2,... mj}.

Proof The Implicit Function Theorem for continuously differentiable maps
(Theorem 9.6) establishes the existence of continuously differentiable func-
tions f1, fa,..., fm- Examination of the proof of that theorem shows that
these functions are determined by a continuously differentiable local inverse
of a smooth map. Lemma 11.5 ensures that this local inverse is itself smooth.
It follows that that functions fi, fs, ..., f,, defined as described in the proof
of Theorem 9.6 are also smooth, and therefore satisfy the requirements of
this theorem. |

11.4 Smooth Partitions of Unity

Proposition 11.9 Let f:R — R be the function mapping the set R of real
numbers to itself defined such that

exp 1 if £ > 0;
f(z) = T
0 if £ <0.

Then the function f:R — R is smooth on R. In particular f*(0) = 0 for
all positive integers k.
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Proof We show by induction on k that the function f is k times differentiable
on R and f*)(0) = 0 for all positive integers k. Now it follows from standard
rules for differentiating functions that

o= ()

for all strictly positive real numbers z, where p;(z) = 1 and

pres1(x) = 229, (2) + (1 — 2kx)pi(x)

for all k. A straightforward proof by induction shows that py(z) is a poly-
nomial in x of degree k — 1 for all positive integers k£ with leading term
(—1)kLklah—t,
Now p
pr (t"e*t) =t""n—t)e "

for all positive real numbers ¢. It follows that function sending each positive
real number ¢ to t"e~" is increasing when 0 < ¢ < n and decreasing when
t > n, and therefore t"e~* < M, for all positive real numbers ¢, where
M, = n"e ™. It follows that

1 1
0< 371 P (_E) < Mopqox

for all positive real numbers x, and therefore

It then follows that

lim fO ) = lim pe(h) exp _1
h—0+ h h—0+ \ h2k+1 h

. ) 1 1
= hm, pi(h) x limy (WGXP (—ﬁ))
= p(0) x0=0
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for all positive integers k. Now

o S0 = 1)

h—0t h h—0+t h h—0— h

It follows that the function f is differentiable at zero, and f/(0) = 0.
Suppose that the function f(z) is k-times differentiable at zero for some

positive integer k, and that f*)(0) = 0. Then

f®(h) = f®(0) f®(n)

5 i W g
hi\%l‘*‘ h hi\%l‘*‘ h 0 hgél— h

It then follows that the function f*) is differentiable at zero, and moreover
the derivative f*#+1(0) of this function at zero is equal to zero. The func-
tion f is thus (k + 1)-times differentiable at zero.

It now follows by induction on k that f*)(z) exists for all positive inte-
gers k and real numbers x, and moreover

pr(z) Iy . '
f(k) (27) _ L2k exp (—x> if x > 0;
0 if x <0.

The function f:R — R is thus a smooth function, as required. |}

Definition Let f:R™ — R be a real-valued function defined on n-dimensional
Euclidean space R™. The support of f is defined to be the closure in R™ of
the set

{x e R": f(x) # 0}.

Example Let r be a positive real number, and let f:R™ — R be the real-
valued function on R™ defined such that

1 ’ .
f(X) _ exp —m 1 |X| <r;
0

if |x| > 7.

Then the set of points x of R™ for which f(x) # 0 is the open ball of radius r
about the origin. It follows that the support of the function f is the closed
ball {x € R": |x| < r} of radius r about the origin.

Proposition 11.10 Let X be a closed bounded set in n-dimensional Eu-
clidean space R™, and let V be a collection of open sets in R™ which covers
the set X. Then there exist smooth real-valued functions fi, fa, f3..., fn,
each defined throughout R™ such that the following properties are satisfied:—
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(1) 0 < f;(x) <1 forj=1,2,...,N and for all points x of R";
(it) Y f;(x) =1 for all points x of the set X;
j=1

(111) given any integer j between 1 and N, there exists an open set V' belong-
ing to the collection V which contains the support of the function f;.

Proof Let Y be a closed ball of radius R centred on the origin, where R is
chosen large enough to ensure that the set X is contained within a ball of
radius R — 3 about the origin. If we adjoin the set R" \ X to the collection
V we obtain a collection W of open sets in R™ which covers Y. Now every
open cover of a closed bounded subset of R™ has a Lebesgue number (see
Proposition 5.7). It follows that there exists a real number § satisfying 0 <
0 < 1 with the property that, given any point p of Y, then the closed ball of
radius 0 centred on the point p is a subset of one of the open sets belonging
to the collection W of open sets covering Y.
The set Y is compact (see Theorem 5.9). Therefore there is a finite list

P1,P2;,-..,Pm

of points of Y with the property that the collection of open balls of radius
centred on these points covers Y. We order these points so that, for some
integer N between 1 and M, the open balls of radius  about points p; for
1 < 7 < N have non-empty intersection with the set X, whilst the open
balls of radius ¢ about the points p; for N < j < M do not intersect the
set X. For each integer j between 1 and M we define a real-valued function
gi:R" — R on R" so that

e p( ! ) if |x —p;| <6
Xp| - — P ;
g;(x) = 6% — [x — p;/? ’

0 if |x — p;| > 6.

Then g;(x) = h(|x — p;|*), for j = 1,2,..., M and for all points x of R",
where h: R — R is defined so that

Ly .
exp (——) if t > 0;
h(t) = 13
0 if t <0.

Now the function A is smooth on R (see Proposition 11.9) Also |x — p;|? is
a smooth function of x throughout R", as this function is the sum of the
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squares of the components of the vector x — p;. It follows that the functions
91,92, - - -, gy are smooth functions throughout Y. Now g(x) > 0 for all
x € R™. Also, given any point x of Y, there exists some integer j between 1
and M for which |x — p;| < §, because the points pi, ps, ..., py have been
chosen so that the open balls of radius  about these points cover Y. It
follows that G(x) > 0 for all x € Y, where

SEDIE

for all x € R™. Also if j > N then the open ball of radius § about the
point p; does not intersect the set X, and therefore g;(x) = 0 for all x € X.
Define real-valued functions f, fo,..., fy throughout R™ such that

9;(x)

filx) =4 G&x)
0 if |x| > R.

if |x| < R;

Now if j is an integer between 1 and N then the open ball of radius ¢ about
the point p; intersects the set X and therefore every point of R" for which
gj(x) > 0 lies within a distance 20 of a point of X, where 6 < 1, and
therefore lies within the closed ball of radius R — 1 about the origin in R".
It follows that, for each integer j between 1 and n, the function f; satisfies
fj(x) = 0 at all points x of R™ whose distance from the boundary sphere
of the closed ball Y is less than one. The function f; is therefore smooth
around all points of the boundary sphere of Y (being identically equal to
zero throughout some open neighbourhood of that boundary sphere), and
thus each function f; is smooth throughout R". Now 0 < f;(x) < 1 for all
x € R™. The support of each function f; is contained within a closed ball
of radius ¢ about the point p; and is therefore contained within one of the
open sets belonging to the collection W of open sets that covers Y. But none
of the functions fi, fa, ..., fy has support contained in R™ \ X. It follows
that, for each integer j between 1 and N, the support of the function f; is
contained within one of the open sets belonging to the given collection V of
open sets covering the set X.

Finally we note that if x is a point of the set X then g;(x) = 0 for all
integers j satisfying N < j < M, and therefore

ng

This completes the proof. |}
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11.5 Taylor’s Theorem

Lemma 11.11 Let s and h be real numbers, let f be a k times differentiable
real-valued function defined on some open interval containing s and s + h,
let co,cq, ..., c_1 be real numbers, and let

k—1
p(t) = f(s+th) =Y et

for all real numbers t belonging to some open interval D for which 0 € D and
1€ D. Then p™(0) = 0 for all integers n satisfying 0 < n < k if and only if

_ hge(s)

Cp, '
n.

for all integers n satisfying 0 < n < k.

Proof On setting ¢t = 0, we find that p(0) = f(s) — ¢o, and thus p(0) = 0 if
and only if cg = f(s).

Let the integer n satisfy 0 < n < k. On differentiating p(t) n times with
respect to t, we find that

e

SO
(7 —n)

p"(t) = h"f (s + th) —

i~
cit’ .

n

.
Il

Then, on setting ¢t = 0, we find that only the term with 7 = n contributes
to the value of the sum on the right hand side of the above identity, and
therefore

p™(0) = h"fM(s) — nle,.
The result follows. |}

Theorem 11.12 [Taylor’s Theorem] Let s and h be real numbers, and let f
be a k times differentiable real-valued function defined on some open interval
containing s and s + h. Then

k—1 h" hk
fls+h) = f(s)+ D~ fOs) + 71N (s + )

n=1

for some real number 0 satisfying 0 < 6 < 1.
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Proof Let D be an open interval, containing the real numbers 0 and 1,
chosen to ensure that f(s+ th) is defined for all ¢t € D, and let p: D — R be
defined so that

k—1

p(t) = f(s+1th) — f(s) =

n=1

thh
n!

F(s)

for all t € D. A straightforward calculation shows that p™(0) = 0 for
n=0,1,...,k—1 (see Lemma 11.11). Thus if q(t) = p(t) — p(1)t* for all s €
[0,1] then ¢™(0) =0 forn =0,1,...,k— 1, and ¢(1) = 0. We can therefore
apply Rolle’s Theorem (Theorem 2.1) to the function ¢ on the interval [0, 1]
to deduce the existence of some real number t; satisfying 0 < ¢; < 1 for
which ¢/(t;) = 0. We can then apply Rolle’s Theorem to the function ¢’ on
the interval [0,%;] to deduce the existence of some real number ¢ satisfying
0 < ty < t; for which ¢"(t3) = 0. By continuing in this fashion, applying
Rolle’s Theorem in turn to the functions ¢”,¢”,...,q¢*™ Y, we deduce the
existence of real numbers t1, %o, ..., t; satisfying 0 < t, <tp_1 <---<t; <1
with the property that ¢ (t,) = 0 for n = 1,2,...,k. Let # = t;. Then
0<6f<1and

0= 2q®(8) = Lp(0) ~ p(1) = "o F O s+ 0h) — p(1),
hence
k=1 5,
Fls+h) = )+ 3 —fs) +p()
-1 B .
= f)+ ) )+ 7 (s + 0n)

as required. |

Corollary 11.13 Let f:D — R be a k-times continuously differentiable
function defined over an open subset D of R and let s € R. Then given
any strictly positive real number €, there exists some strictly positive real
number ¢ such that

f(s+h)— Z

n=1

:’—li

f <elhl*

whenever |h| < 6.
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Proof The function f is k-times continuously differentiable, and therefore
its kth derivative f*) is continuous. Let some strictly positive real number &
be given. Then there exists some strictly positive real number § that is small
enough to ensure that s +h € D and |f*) (s + h) — f#)(s)| < kle whenever
|h| < 6. If h is an real number satisfying |h| < d, and if € is a real number
satisfying 0 < @ < 1, then s +6h € D and |fF) (s + 0h) — fF)(s)| < kle.
Now it follows from Taylor’s Theorem (Theorem 11.12) that, given any real
number h satisfying |h| < ¢ there exists some real number # satisfying 0 <
6 < 1 for which

k-1 hr hk
fls+h)=f(s)+ D~ fO(s) + 77N (s + 0h).
Then
i b | o
fls+h) = fs) =D ") = Sl f (s +0n) = fO(s)]

n=1

< é‘lhlk,
as required. |

Theorem 11.14 (Taylor’s Theorem in Higher Dimensions) Let f: X —
R be a real-valued function defined on an open set X in R™ that is k-times
continuously differentiable on X, let p be a point of X, and let § be a posi-
tive number small enough to ensure that the open ball of radius § about the
point p is contained in X. Then, given any vector h satisfying |h| < 0, there
exists some real number 6 satisfying 0 < 6 < 1 for which

f(p+h) = f(p)

D

hﬂil .. hjn aj1+j2+---+jnf
n

]1‘]2' .- jn' 8j1x1 R 8jnxn

J12077]7L20 P
0<j1+jo+-+in<k
i j 142+ 4]
n hl "'h%" oItz n f
Z PR R s 1| Oin
1-72! . Ty ... €T
JiJ Jn "] oron

J120,..,jn >0
Ji+je+-+in=k

Proof Taylor’s Theorem for functions of a single real variable (Theorem 11.12),
applied to the function sending real numbers ¢ in the interval [0, 1] to f(p +
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th), ensures the existence of real constants c;,...;, independent of f for which
flp+h) = f(p)
Qir-tiattin f

jl ]n
Z Tdn "ohgy ... Oingy,
.7120’).]7720
0<j1+j2+-+in<k

p

. ) aj1+j2+---+jnf
+ Y gk |
J1s-es)n n 3319U1 o 8J"I'n
J120,...,jn 20
J1+je+-+in=k

p+6h

The values of these constants c;,...;, can then be determined by applying the
identity with '
flr1, 20, . ) =y al--alr. |

11.6 Real-Analytic Functions

Definition A real-valued function f: D — R defined over an open subset D
of the set R of real numbers is said to be real-analytic if, given any real
number s belonging to the domain D of the function, there exists some
strictly positive real number ¢ such that

Fls4h) = Fs) + 3 o fO(s)

for all real numbers h satisfying |h| < 9.

It can be shown that sums, differences, products, quotients and com-
positions of real-analytic functions are themselves real-analytic over their
domains of definition. In particular, polynomial functions and quotients of
polynomial functions are real-analytic. The natural logarithm function is
real-analytic over the set of positive real numbers because its derivative is
real-analytic. The exponential, natural logarithm, sine and cosine functions
are examples of real-analytic functions. Inverses of real-analytic functions
are real-analytic.

All real-analytic functions are smooth. However not all smooth functions
are real-analytic. The function considered in Proposition 11.9 is an example
of such a function.
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