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10 Second Order Partial Derivatives and the

Hessian Matrix

10.1 Second Order Partial Derivatives

Let X be an open subset of Rn and let f :X → R be a real-valued function
on X. We consider the second order partial derivatives of the function f
defined by

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
.

We shall show that if the partial derivatives

∂f

∂xi
,

∂f

∂xj
,

∂2f

∂xi∂xj
and

∂2f

∂xj∂xi

all exist and are continuous then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

First though we give a counterexample which demonstrates that there exist
functions f for which

∂2f

∂xi∂xj
6= ∂2f

∂xj∂xi
.

Example Let f :R2 → R be the function defined by

f(x, y) =


xy(x2 − y2)
x2 + y2

if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

For convenience of notation, let us write

fx(x, y) =
∂f(x, y)

∂x
,

fy(x, y) =
∂f(x, y)

∂y
,

fxy(x, y) =
∂2f(x, y)

∂x∂y
,

fyx(x, y) =
∂2f(x, y)

∂y∂x
.
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If (x, y) 6= (0, 0) then

fx =
(3x2y − y3)(x2 + y2)− 2x2y(x2 − y2)

(x2 + y2)2

=
3x4y + 3x2y3 − x2y3 − y5 − 2x4y + 2x2y3

(x2 + y2)2

=
x4y + 4x2y3 − y5

(x2 + y2)2
.

Similarly

fy =
−xy4 − 4x3y2 + x5

(x2 + y2)2
.

(This can be deduced from the formula for fx on noticing that f(x, y) changes
sign on interchanging the variables x and y.)

Differentiating again, when (x, y) 6= (0, 0), we find that

fxy(x, y) =
∂fy
∂x

=
(−y4 − 12x2y2 + 5x4)(x2 + y2)

(x2 + y2)3

+
−4x(−xy4 − 4x3y2 + x5)

(x2 + y2)3

=
−x2y4 − 12x4y2 + 5x6 − y6 − 12x2y4 + 5x4y2

(x2 + y2)3

+
4x2y4 + 16x4y2 − 4x6

(x2 + y2)3

=
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
.

Now the expression just obtained for fxy when (x, y) 6= (0, 0) changes
sign when the variables x and y are interchanged. The same is true of the
expression defining f(x, y). It follows that fyx. We conclude therefore that
if (x, y) 6= (0, 0) then

fxy = fyx =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
.

Now if (x, y) 6= (0, 0) and if r =
√
x2 + y2 then

|fx(x, y)| = |x
4y + 4x2y3 − y5|

r4
≤ 6r5

r4
= 6r.
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It follows that
lim

(x,y)→(0,0)
fx(x, y) = 0.

Similarly
lim

(x,y)→(0,0)
fy(x, y) = 0.

However
lim

(x,y)→(0,0)
fxy(x, y)

does not exist. Indeed

lim
x→0

fxy(x, 0) = lim
x→0

fyx(x, 0) = lim
x→0

x6

x6
= 1,

lim
y→0

fxy(0, y) = lim
y→0

fyx(0, y) = lim
y→0

−y6
y6

= −1.

Next we show that fx, fy, fxy and fyx all exist at (0, 0), and thus exist
everywhere on R2. Now f(x, 0) = 0 for all x, hence fx(0, 0) = 0. Also
f(0, y) = 0 for all y, hence fy(0, 0) = 0. Thus

fy(x, 0) = x, fx(0, y) = −y

for all x, y ∈ R. We conclude that

fxy(0, 0) =
d(fy(x, 0))

dx

∣∣∣∣
x=0

= 1,

fyx(0, 0) =
d(fx(0, y))

dy

∣∣∣∣
y=0

= −1,

Thus
∂2f

∂x∂y
6= ∂2f

∂y∂x

at (0, 0).
Observe that in this example the functions fxy and fyx are continuous

throughout R2 \ {(0, 0} and are equal to one another there. Although the
functions fxy and fyx are well-defined at (0, 0), they are not continuous at
(0, 0) and fxy(0, 0) 6= fyx(0, 0).

Theorem 10.1 Let X be an open set in R2 and let f :X → R be a real-valued
function on X. Suppose that the partial derivatives

∂f

∂x
,

∂f

∂y
and

∂2f

∂x∂y
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exist and are continuous throughout X. Then the partial derivative

∂2f

∂y∂x

exists and is continuous on X, and

∂2f

∂x∂y
=

∂2f

∂y∂x
.

Proof Let

fx(x, y) =
∂f

∂x
, fy(x, y) =

∂f

∂y
, fxy =

∂2f

∂x∂y
and fyx =

∂2f

∂y∂x

and let (a, b) be a point of X. The set X is open in Rn and therefore there
exists some positive real number L such that (a + h, b + k) ∈ X for all
(h, k) ∈ R2 satisfying |h| < L and |k| < L. Let

S(h, k) = f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

for all real numbers h and k satisfying |h| < L and |k| < L. We use the Mean
Value Theorem (Theorem 2.2) to prove the existence of real numbers u and
v, where u lies between a and a+h and v lies between b and b+ k, for which

S(h, k) = hk
∂2f

∂x∂y

∣∣∣∣
(x,y)=(u,v)

= hkfxy(u, v).

Let h be fixed, where |h| < L, and let q: (b−L, b+L)→ R be defined so
that q(t) = f(a+ h, t)− f(a, t) for all real numbers t satisfying b− L < t <
b + L. Then S(h, k) = q(b + k) − q(b). But it follows from the Mean Value
Theorem (Theorem 2.2) that there exists some real number v lying between b
and b+k for which q(b+k)−q(b) = kq′(v). But q′(v) = fy(a+h, v)−fy(a, v).
It follows that

S(h, k) = k(fy(a+ h, v)− fy(a, v)).

The Mean Value Theorem can now be applied to the function sending real
numbers s in the interval (a − L, a + L) to fy(s, v) to deduce the existence
of a real number u lying between a and a+ h for which

S(h, k) = hkfxy(u, v).

Now let some positive real number ε be given. The function fxy is contin-
uous. Therefore there exists some real number δ satisfying 0 < δ < L such
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that |fxy(a+h, b+k)−fxy(a, b)| ≤ ε whenever |h| < δ and |k| < δ. It follows
that ∣∣∣∣S(h, k)

hk
− fxy(a, b)

∣∣∣∣ ≤ ε

for all real numbers h and k satisfying 0 < |h| < δ and 0 < |k| < δ. Now

lim
h→0

S(h, k)

hk
=

1

k
lim
h→0

f(a+ h, b+ k)− f(a, b+ k)

h

− 1

k
lim
h→0

f(a+ h, b)− f(a, b)

h

=
fx(a, b+ k)− fx(a, b)

k
.

It follows that ∣∣∣∣fx(a, b+ k)− fx(a, b)
k

− fxy(a, b)
∣∣∣∣ ≤ ε

whenever 0 < |k| < δ. Thus the difference quotient
fx(a, b+ k)− fx(a, b)

k
tends to fxy(a, b) as k tends to zero, and therefore the second order partial
derivative fyx exists at the point (a, b) and

fyx(a, b) = lim
k→0

fx(a, b+ k)− fx(a, b)
k

= fxy(a, b),

as required.

Corollary 10.2 Let X be an open set in Rn and let f :X → R be a real-
valued function on X. Suppose that the partial derivatives

∂f

∂xi
and

∂2f

∂xi∂xj

exist and are continuous on X for all integers i and j between 1 and n. Then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

for all integers i and j between 1 and n.

10.2 Maxima and Minima for Functions of Several Real
Variables

Let f :X → R be a real-valued function defined over some open subset X of
Rn whose first and second order partial derivatives exist and are continuous
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throughout X. Suppose that f has a local minimum at some point p of X,
where p = (p1, p2, . . . , pn). Now for each integer i between 1 and n the map

t 7→ f(p1, . . . , pi−1, t, pi+1, . . . , pn)

has a local minimum at t = pi, hence the derivative of this map vanishes
there. Thus if f has a local minimum at p then

∂f

∂xi

∣∣∣∣
x=p

= 0.

In many situations the values of the second order partial derivatives of
a twice-differentiable function of several real variables at a stationary point
determines the qualitative behaviour of the function around that stationary
point, in particular ensuring, in some situations, that the stationary point is
a local minimum or a local maximum.

Lemma 10.3 Let f be a continuous real-valued function defined throughout
an open ball in Rn of radius R about some point p. Suppose that the partial
derivatives of f of orders one and two exist and are continuous throughout
this open ball. Then there exists some real number θ satisfying 0 < θ < 1 for
which

f(p + h) = f(p) +
n∑
k=1

hk
∂f

∂xk

∣∣∣∣
p

+ 1
2

n∑
j,k=1

hjhk
∂2f

∂xj ∂xk

∣∣∣∣
p+θh

for all h ∈ Rn satisfying |h| < δ.

Proof Let h satisfy |h| < R, and let

q(t) = f(p + th)

for all t ∈ [0, 1]. It follows from the Chain Rule for functions of several
variables (Theorem 8.12) that

q′(t) =
n∑
j=1

hk(∂kf)(p + th)

and

q′′(t) =
n∑

j,k=1

hjhk(∂j∂kf)(p + th),
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where

(∂jf)(x1, x2, . . . , xn) =
∂f(x1, x2, . . . , xn)

∂xj

and

(∂j∂kf)(x1, x2, . . . , xn) =
∂2f(x1, x2, . . . , xn)

∂xj ∂xk
.

Now
q(1) = q(0) + q′(0) + 1

2
q′′(θ)

for some real number θ satisfying 0 < θ < 1. (see Proposition 2.3). It follows
that

f(p + h) = f(p) +
n∑
k=1

hk(∂kf)(p) + 1
2

n∑
j,k=1

hjhk(∂j∂kf)(p + θh)

= f(p) +
n∑
k=1

hk
∂f

∂xk

∣∣∣∣
p

+ 1
2

n∑
j,k=1

hjhk
∂2f

∂xj ∂xk

∣∣∣∣
p+θh

,

as required.

Let f be a real-valued function of several variables whose first second order
partial derivatives exist and are continuous throughout some open neighbour-
hood of a given point p, and let R > 0 be chosen such that the function f is
defined throughout the open ball of radius R about the point p. It follows
from Lemma 10.3 that if

∂f

∂xj

∣∣∣∣
p

= 0

for j = 1, 2, . . . , n, and if |h| < R then

f(p + h) = f(p) +
1

2

n∑
i=1

n∑
j=1

hihj
∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

for some θ satisfying 0 < θ < 1.
Let us denote by (Hi,j(p)) the Hessian matrix at the point p, defined by

Hi,j(p) =
∂2f

∂xi∂xj

∣∣∣∣
x=p

.

If the partial derivatives of f of second order exist and are continuous then
Hi,j(p) = Hj,i(p) for all i and j, by Corollary 10.2. Thus the Hessian matrix
is symmetric.

We now recall some facts concerning symmetric matrices.
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Let (ci,j) be a symmetric n× n matrix.

The matrix (ci,j) is said to be positive semi-definite if
n∑
i=1

n∑
j=1

ci,jhihj ≥ 0

for all (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci,j) is said to be positive definite if
n∑
i=1

n∑
j=1

ci,jhihj > 0 for

all non-zero (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci,j) is said to be negative semi-definite if
n∑
i=1

n∑
j=1

ci,jhihj ≤ 0

for all (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci,j) is said to be negative definite if
n∑
i=1

n∑
j=1

ci,jhihj < 0 for

all non-zero (h1, h2, . . . , hn) ∈ Rn.
The matrix (ci,j) is said to be indefinite if it is neither positive semi-

definite nor negative semi-definite.

Lemma 10.4 Let (ci,j) be a positive definite symmetric n×n matrix. Then
there exists some ε > 0 with the following property: if all of the components
of a symmetric n × n matrix (bi,j) satisfy the inequality |bi,j − ci,j| < ε then
the matrix (bi,j) is positive definite.

Proof Let Sn−1 be the unit n− 1-sphere in Rn defined by

Sn−1 = {(h1, h2, . . . , hn) ∈ Rn : h21 + h22 + · · ·+ h2n = 1}.
Observe that a symmetric n× n matrix (bi,j) is positive definite if and only
if

n∑
i=1

n∑
j=1

bi,jhihj > 0

for all (h1, h2, . . . , hn) ∈ Sn−1. Now the matrix (ci,j) is positive definite, by
assumption. Therefore

n∑
i=1

n∑
j=1

ci,jhihj > 0

for all (h1, h2, . . . , hn) ∈ Sn−1.
But Sn−1 is a closed bounded set in Rn, it therefore follows from The-

orem 5.5 that there exists some (k1, k2, . . . , kn) ∈ Sn−1 with the property
that

n∑
i=1

n∑
j=1

ci,jhihj ≥
n∑
i=1

n∑
j=1

ci,jkikj

158



for all (h1, h2, . . . , hn) ∈ Sn−1. Let

A =
n∑
i=1

n∑
j=1

ci,jkikj.

Then A > 0 and
n∑
i=1

n∑
j=1

ci,jhihj ≥ A

for all (h1, h2, . . . , hn) ∈ Sn−1. Set ε = A/n2.
If (bi,j) is a symmetric n × n matrix all of whose components satisfy

|bi,j − ci,j| < ε then ∣∣∣∣∣
n∑
i=1

n∑
j=1

(bi,j − ci,j)hihj
∣∣∣∣∣ < εn2 = A,

for all (h1, h2, . . . , hn) ∈ Sn−1, hence

n∑
i=1

n∑
j=1

bi,jhihj >
n∑
i=1

n∑
j=1

ci,jhihj − A ≥ 0

for all (h1, h2, . . . , hn) ∈ Sn−1. Thus the matrix (bi,j) is positive-definite, as
required.

Using the fact that a symmetric n × n matrix (ci,j) is negative definite
if and only if the matrix (−ci,j) is positive-definite, we see that if (ci,j) is
a negative-definite matrix then there exists some ε > 0 with the following
property: if all of the components of a symmetric n× n matrix (bi,j) satisfy
the inequality |bi,j − ci,j| < ε then the matrix (bi,j) is negative definite.

Let f :X → R be a real-valued function whose partial derivatives of first
and second order exist and are continuous throughout some open set X in
Rn. Let p be a point of X. We have already observed that if the function f
has a local maximum or a local minimum at p then

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).

We now study the behaviour of the function f around a point p at which
the first order partial derivatives vanish. We consider the Hessian matrix
(Hi,j(p)) defined by

Hi,j(p) =
∂2f

∂xi∂xj

∣∣∣∣
x=p

.
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Lemma 10.5 Let f :X → R be a real-valued function whose partial deriva-
tives of first and second order exist and are continuous throughout some open
set X in Rn, and let p be a point of X at which

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).

If f has a local minimum at a point p of X then the Hessian matrix (Hi,j(p))
at p is positive semi-definite.

Proof The first order partial derivatives of f are zero at p. It follows that,
given any vector h ∈ Rn which is sufficiently close to 0, there exists some θ
satisfying 0 < θ < 1 (where θ depends on h) such that

f(p + h) = f(p) +
1

2

n∑
i=1

n∑
j=1

hihjHi,j(p + θh),

where

Hi,j(p + θh) =
∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

(see Lemma 10.3).
It follows from this result that

n∑
i=1

n∑
j=1

hihjHi,j(p) = lim
t→0

2(f(p + th)− f(p))

t2
≥ 0.

The result follows.

Let f :X → R be a real-valued function whose partial derivatives of first
and second order exist and are continuous throughout some open set X in Rn,
and let p be a point at which the first order partial derivatives of f vanish.
The above lemma shows that if the function f has a local minimum at h
then the Hessian matrix of f is positive semi-definite at p. However the fact
that the Hessian matrix of f is positive semi-definite at p is not sufficient to
ensure that f is has a local minimum at p, as the following example shows.

Example Consider the function f :R2 → R defined by f(x, y) = x2 − y3.
Then the first order partial derivatives of f vanish at (0, 0). The Hessian
matrix of f at (0, 0) is the matrix(

2 0
0 0

)
and this matrix is positive semi-definite. However (0, 0) is not a local mini-
mum of f since f(0, y) < f(0, 0) for all y > 0.
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The following theorem shows that if the Hessian of the function f is
positive definite at a point at which the first order partial derivatives of f
vanish then f has a local minimum at that point.

Theorem 10.6 Let f :X → R be a real-valued function whose partial deriva-
tives of first and second order exist and are continuous throughout some open
set X in Rn, and let p be a point of X at which

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).

Suppose that the Hessian matrix (Hi,j(p)) at p is positive definite. Then f
has a local minimum at p.

Proof The first order partial derivatives of f vanish at p. It therefore follows
from Taylor’s Theorem that, for any h ∈ Rn which is sufficiently close to 0,
there exists some θ satisfying 0 < θ < 1 (where θ depends on h) such that

f(p + h) = f(p) +
1

2

n∑
i=1

n∑
j=1

hihjHi,j(p + θh),

where

Hi,j(p + θh) =
∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

(see Lemma 10.3). Suppose that the Hessian matrix (Hi,j(p)) is positive
definite. It follows from Lemma 10.4 that there exists some ε > 0 such that
if |Hi,j(x)−Hi,j(p)| < ε for all i and j then (Hi,j(x)) is positive definite.

But it follows from the continuity of the second order partial derivatives
of f that there exists some δ > 0 such that |Hi,j(x)−Hi,j(p)| < ε whenever
|x − p| < δ. Thus if |h| < δ then (Hi,j(p + θh)) is positive definite for all
θ ∈ (0, 1) so that f(p + h) > f(p). Thus p is a local minimum of f .

A symmetric n × n matrix C is positive definite if and only if all its
eigenvalues are strictly positive. In particular if n = 2 and if λ1 and λ2 are
the eigenvalues of a symmetric 2× 2 matrix C, then

λ1 + λ2 = traceC, λ1λ2 = detC.

Thus a symmetric 2× 2 matrix C is positive definite if and only if its trace
and determinant are both positive.
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Example Consider the function f :R2 → R defined by

f(x, y) = 4x2 + 3y2 − 2xy − x3 − x2y − y3.

Now

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(0,0)

= (0, 0),
∂f(x, y)

∂y

∣∣∣∣
(x,y)=(0,0)

= (0, 0).

The Hessian matrix of f at (0, 0) is(
8 −2
−2 6

)
.

The trace and determinant of this matrix are 14 and 44 respectively. Hence
this matrix is positive definite. We conclude from Theorem 10.6 that the
function f has a local minimum at (0, 0).
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11 Repeated Differentiation and Smoothness

11.1 Repeated Differentiation of Functions of Several
Variables

Let ϕ:X → Rn be a function mapping some open subset X of a Euclidean
space Rm into a Euclidean space Rn. The function ϕ is “C1” if and only
if it is continuously differentiable, and this requires that the function be
differentiable throughout X and also that the function each point p of X to
the derivative (Dϕ)p of ϕ at the point p is a continuous function from X
to the space L(Rm,Rn) of linear maps from Rm to Rn. Moreover this is the
case if and only if the partial derivatives of the Cartesian components of ϕ
exist and are continuous throughout the open set X (see Corollary 8.17).

The process of differentiation can be repeated. Let ϕ:V → Rn be a dif-
ferentiable function defined over an open set V in Rn. Suppose that the
function ϕ is differentiable at each point p. Then the derivative of ϕ can
itself be regarded as a function on V taking values in the real vector space
L(Rm,Rn) of linear transformations between the real vector spaces Rm and
Rn. Moreover L(Rm,Rn) can itself be regarded as a Euclidean space whose
Euclidean norm is the Hilbert-Schmidt norm on L(Rm,Rn). It follows that
the definition of differentiability can be applied to derivative of a differen-
tiable function of several real variables to obtain the second derivative of a
twice-differentiable function. Continuing the process, one can obtain the kth
derivative of a k-times differentiable function for any positive integer k.

A more detailed analysis of this process shows that if ϕ is a k-times dif-
ferentiable function, and if the Cartesian components of ϕ are f1, f2, . . . , fn,
so that

ϕ(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ V , then the kth derivative of ϕ at each point of V is represented
by the multilinear transformation that maps each k-tuple (v(1),v(2), . . . ,v(k))
of vectors in Rm to the vector in Rn whose ith component is

m∑
j1=1

m∑
j2=1

· · ·
m∑

jk=1

∂kfi
∂xj1 ∂xj2 · · · ∂xjk

v
(1)
j1
v
(2)
j2
· · · v(k)jk

,

where v
(s)
j denotes the jth component of the vector v(s) for j = 1, 2, . . . ,m

and s = 1, 2, . . . , k. The kth derivative of the function ϕ is thus represented
by a function from the open set V to some real vector space of multilinear
transformations. Such a function is said to be a (Cartesian) tensor field on
V . Such tensor fields are ubiquitous in differential geometry and theoretical
physics.
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We can formally define the concept of functions of several variables being
differentiable of order k by recursion on k.

Definition Let V be an open set in Rm. A function ϕ:V → Rn is k-times
differentiable, where k > 1, if it is differentiable and the Dϕ:V → L(Rm,Rn)
that maps each point x of V to the derivative of ϕ at that point is a (k− 1)-
times differentiable function on V .

Definition Let V be an open set in Rm. A function ϕ:V → Rn is k-times
continuously differentiable, where k > 1, if the function Dϕ:V → L(Rm,Rn)
that maps each point x of V to the derivative of ϕ at that point is a (k− 1)-
times continuously differentiable function on V .

A function of several real variables is said to be “Ck” for some positive
integer k if and only if it is k-times continuously differentiable.

Definition A function ϕ:V → Rn is said to be smooth (or C∞) if it is
k-times differentiable for all positive integers k.

If a function of several real variables is (k + 1)-times differentiable, then
the components of its kth order derivative must be continuous functions,
because differentiability implies continuity (see Lemma 8.8). It follows that
a function of several real variables is smooth if and only if it is Ck for all
positive integers k.

Lemma 11.1 Let V be an open set in Rm. A function ϕ:V → Rn is k-times
continuously differentiable (or Ck) if and only if the partial derivatives of the
components of ϕ of all orders up to and including k exist and are continuous
throughout V .

Proof The result can be proved by induction on k. The result is true for
k = 1 by Lemma 8.13. Suppose as our induction hypothesis that k > 1 and
that continuously differentiable vector-valued functions on V are Ck−1 if and
only if their partial derivatives of orders up to and including k− 1 exist and
are continuous throughout V .

Now a vector-valued function is continuously differentiable if and only
if its components are continuously differentiable. Moreover a vector-valued
function is Ck−1 if and only if its components are all Ck−1. It follows that
the function ϕ is Ck if and only if the components of its derivative are Ck−1.
These components are the first-order partial derivatives of ϕ. The induction
hypothesis ensures that these first order partial derivatives of ϕ are Ck−1 if
and only if their partial derivatives of orders less than or equal to k− 1 exist
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and are continuous throughout V . It follows that the function ϕ itself is Ck

if and only if its partial derivatives of orders less than or equal to k exist and
are continuous throughout V , as required.

Lemma 11.2 Let V be an open set in Rm, and let f :V → R and g:V → R
be real-functions on V , and let f+g, f−g and f .g denote the sum, difference
and product of these functions, where

(f + g)(x) = f(x) + g(x), (f − g)(x) = f(x)− g(x),

(f . g)(x) = f(x)g(x)

for all x ∈ V . Suppose that the functions f and g are Ck for some positive
integer k. Then so are the functions f + g, f − g and f . g.

Proof The result can be proved by induction on k. It follows from Proposi-
tion 8.10 and Proposition 8.11 that the result is true when k = 1.

A real-valued function on V is Ck for some positive integer k if and only
if all the partial derivatives of its components of degree less than or equal to
k exist and are continuous throughout the open set V . It follows from this
that a real-valued function f on V is Ck if and only if its first order partial

derivatives ∂if are Ck−1, where ∂if =
∂f

∂xi
for i = 1, 2, . . . ,m.

Thus suppose as our induction hypothesis that k > 1 and that all sums,
differences and products of Ck−1 functions are known to be Ck−1. Let f and
g be Ck functions. Then

∂i(f + g) = ∂if + ∂ig, ∂i(f − g) = ∂if − ∂ig,

∂i(f . g) = f . (∂ig) + (∂if) . g

for i = 1, 2, . . . ,m. Now the functions f , g, ∂if and ∂ig are all Ck−1. The
induction hypothesis then ensures that ∂i(f + g), ∂i(f − g) and ∂i(f . g) are
all Ck−1 for i = 1, 2, . . . ,m, and therefore the functions f + g, f − g and f . g
are Ck.

The required result therefore follows by induction on the degree k of the
derivatives required to be continuous.

Lemma 11.3 Let V and W be open sets in Rm and Rn respectively, and let
ϕ:V → Rn and ψ:W → Rl be functions mapping V and W into Rn and Rl

respectively, where ϕ(V ) ⊂ W . Suppose that the functions ϕ:V → Rn and
ψ:W → Rl are Ck. Then the composition function ψ ◦ϕ:V → Rl is also Ck.
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Proof We prove the result by induction on k. The Chain Rule for functions
of several real variables (Proposition 8.12) ensures that the result is true for
k = 1.

We have shown that sums, differences and products of Ck functions are
Ck (see Lemma 11.2). We suppose as our induction hypothesis that all
compositions of Ck−1 functions of several real variables are Ck−1 for some
positive integer k, and show that this implies that all compositions of Ck

functions of several real variables are Ck.
Let ϕ:V → Rn and ψ:W → Rl be Ck functions, where V is an open

set in Rm, W is an open set in Rn and ϕ(V ) ⊂ W . Let the components
of ϕ be f1, f2, . . . , fm and let the components of ψ be g1, g2, . . . , gn, where
f1, f2, . . . , fm are real-valued functions on V , g1, g2, . . . , gn are real-valued
functions on W ,

ϕ(x) = (f1(x), f2(x), . . . , fm(x))

for all x ∈ V and
ψ(y) = (g1(y), g2(y), . . . , fn(y))

for all y ∈ W .
It then follows from the Chain Rule (Proposition 8.12) that

∂

∂xi

(
gj(ϕ(x1, x2, . . . , xm))

)
=

n∑
s=1

(
∂gj
∂us
◦ ϕ
)
∂fs
∂xi

.

Now the functions
∂gj
∂us
◦ ϕ are compositions of Ck−1 functions. The induc-

tion hypothesis therefore ensures that these functions are Ck−1. This then

ensures that the functions
∂

∂xi

(
gj(ϕ(x1, x2, . . . , xm))

)
are expressible as sums

of products of Ck−1 functions, and must therefore themselves be Ck−1 func-
tions (see Lemma 11.2). We have thus shown that the first order partial
derivatives of the components of the composition function ψ ◦ ϕ are Ck−1

functions. It follows that ψ ◦ ϕ must itself be a Ck function.
The required result therefore follows by induction on the degree k of the

derivatives required to be continuous.

It follows from Lemma 11.2 and Lemma 11.3 that functions that are
constructed from smooth vector-valued functions defined over open sets in
Euclidean spaces by means of the operations of additions, subtraction, multi-
plication and composition of functions must themselves be smooth functions
over the open sets over which they are defined.
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We now prove a lemma that guarantees the smoothness of matrix-valued
functions obtained from smooth matrix-valued functions through the opera-
tion of matrix inversion. The lemma applies to functions F :V → GL(n,R)
defined over an open subset V of a Euclidean space Rm and taking values in
the set GL(n,R) of invertible n×n matrices. The value F (x) of such a func-
tion at a point x of V is thus an invertible n×n matrix, and thus the function
F :V → GL(n,R) determines a corresponding function G:V → GL(n,R),
where G(x) = F (x)−1 for all x ∈ V . The coefficients of the matrices F (x)
and G(x) are then functions of x as x varies over the open set V . Now the
function F is Ck if and only if, for all i and j between 1 and n, the coef-
ficient of the matrix F (x) in the ith row and jth column is a Ck function
of x throughout the open set V . We prove that if the function F is Ck for
some positive integer k then the function G is also Ck. It follows that if the
function F is smooth, then the function G is smooth.

Lemma 11.4 Let n be a positive integer, let Mn(R) denote the real vector
space consisting of all n× n matrices with real coefficients, and let GL(n,R)
be the open set in Mn(R) whose elements are the invertible n × n matrices
with real coefficients. Let V be an open set in Rm let F :V → GL(n,R) be a
function mapping V into GL(n,R), and let G:V → GL(n,R) be defined such
that G(x) = F (x)−1 for all x ∈ V . Suppose that the function F is Ck. Then
the function G is Ck.

Proof For each x ∈ V , the matrices F (x) and G(x) satisfy F (x)G(x) = I,
where I is the identity matrix. On differentiating this identity with respect
to the ith coordinate function xi on V , where x = (x1, x2, . . . , xm), we find
that

∂F (x)

∂xi
G(x) + F (x)

∂G(x)

∂xi
= 0,

and therefore

∂G(x)

∂xi
= −F (x)−1

∂F (x)

∂xi
G(x) = −G(x)

∂F (x)

∂xi
G(x).

(In the above equation F (x), G(x) and their inverses and partial derivatives
are n×n matrices that are multiplied using the standard operation of matrix
multiplication.) Now sums and products of Ck real-valued functions are
themselves Ck (see Lemma 11.2). It follows that if matrices are multiplied
together, where the coefficients of those matrices are Ck real-valued functions
defined over the open set V , the coefficients of the resultant matrix will also
be Ck real-valued functions defined over V .
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The equation above ensures that if the matrix-valued function F is Ck

(so that the functions determining the coefficients of the matrix are real-
valued Ck functions on V ), then the first order partial derivatives of the
function G are continuous, and therefore the function G itself is C1, where
G(x) = F (x)−1 for all x ∈ V . Moreover if G is Cj, where 1 ≤ j < k then the
coefficients of the first order partial derivatives of G are expressible as a sums
of products of Cj real-valued functions and thus are themselves Cj functions.
Thus the matrix-valued function G itself is Cj+1. Repeated applications of
this result ensure that G is a Ck function as required.

11.2 Smoothness of Local Inverses

Lemma 11.5 Let ϕ:X → Rn be a continuously differentiable function de-
fined over an open set X in Rn that is locally invertible around some point
of X and let µ:W → Rn be a local inverse for ϕ. Suppose that ϕ:X → Rn

is Ck and that the local inverse µ:W → Rn is differentiable throughout W .
Then µ:W → Rn is Ck throughout W .

Proof The functions ϕ and µ are differentiable, and µ(ϕ(x)) = x for all x ∈
µ(W ). The Chain Rule (Proposition 8.12) then ensures that (Dµ)ϕ(x)◦(Dϕ)x
is the identity operator. Let F (x) denote the Jacobian matrix representing
the derivative (Dϕ)x of ϕ at each point x of µ(W ), and let G(x) denote the
Jacobian matrix representing the derivative (Dµ)ϕ(x) of µ at ϕ(x). Then the
Chain Rule ensures that G(x)F (x) is the identity matrix. It follows that
F (x) and G(x) are invertible matrices and G(x) = F (x)−1 for all x ∈ µ(W ).
Now the function ϕ is Ck on X and therefore the matrix-valued function
F :µ(W )→ GL(n,R) is is Ck on µ(W ). It follows from Lemma 11.4 that the
matrix-valued function G:µ(W )→ GL(n,R) is also Ck on µ(W ).

Now (Dµ)y is represented by the matrix G(µ(y)) for all y ∈ W . It follows
from the continuity of µ and G that the derivative Dµ of µ is continuous on
W . It follows that µ is C1. Moreover if µ:W → X is Cj for any integer j
satisfying 1 ≤ j < k then G ◦ µ is a composition of Cj functions and is
therefore Cj (Lemma 11.3). But the coefficients of the matrix G(µ(y)) are
the first order partial derivatives of the components of µ at y at each point y
of W . It follows therefore that the first order partial derivatives of µ are Cj

and therefore the function µ itself is Cj+1. It follows by repeated application
of this process that the function µ is Ck on W , as required.
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11.3 The Inverse and Implicit Function Theorems for
Smooth Maps

Theorem 11.6 (Inverse Function Theorem for Smooth Maps) Let ϕ:V →
Rn be a smooth function defined over an open set V in n-dimensional Eu-
clidean space Rn and mapping V into Rn, and let p be a point of V . Suppose
that the derivative (Dϕ)p:Rn → Rn of the map ϕ at the point p is an in-
vertible linear transformation. Then there exists an open set W in Rn and a
smooth function µ:W → V that satisfies the following conditions:—

(i) µ(W ) is an open set in Rn contained in V , and p ∈ µ(W );

(ii) ϕ(µ(y)) = y for all y ∈ W .

Proof The existence of continuously differentiable local inverse µ:W → V
follows from the Inverse Function Theorem (Theorem 9.5). The result that
this local inverse is smooth when ϕ is smooth then follows from Lemma 11.5.

Definition Let V and W be open sets in n-dimensional Euclidean space Rn,
and let ϕ:V → W be a function from V to W . The function ϕ is said to be
a diffeomorphism if it has a well-defined inverse ϕ−1:W → V and both the
function ϕ:V → W and its inverse ϕ−1:W → V are smooth functions.

Definition Let V be an open set in n-dimensional Euclidean space Rn, and
let ϕ:V → Rn be a smooth function from V to Rn. Let U be an open subset
of V . We say that ϕ maps U diffeomorphically onto an open set of Rn if
ϕ(U) is an open set in Rn and the restriction of the function ϕ to U is a
diffeomorphism from U to ϕ(U).

The following corollary is simply a restatement of the Inverse Function
Theorem (Theorem 11.6) for smooth maps, using the language of diffeomor-
phisms.

Corollary 11.7 Let V be an open set in n-dimensional Euclidean space Rn,
and let ϕ:V → Rn be a smooth function from V to Rn, and let p ∈ V .
Suppose that the derivative (Dϕ)p of ϕ is invertible at the point p. Then there
exists an open subset U of V , where p ∈ U , that is mapped diffeomorphically
by ϕ onto an open set in Rn.

The following theorem is a version of the Implicit Function Theorem
(Theorem 9.6 applicable when the functions u1, u2, . . . , um satisfying the con-
ditions of Theorem 9.6 are all smooth.
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Theorem 11.8 Let p be a point of Rn, where p = (p1, p2, . . . , pn) and let
u1, u2, . . . , um be a smooth real-valued functions defined over an open neigh-
bourhood V of the point p in Rn, where m < n, and let

M = {x ∈ V : uj(x) = 0 for j = 1, 2, . . . ,m}.

Suppose that u1, u2, . . . , un are zero at p and that the matrix

∂u1
∂x1

∂u1
∂x2

. . .
∂u1
∂xm

∂u2
∂x1

∂u2
∂x2

. . .
∂u2
∂xm

...
...

...
∂um
∂x1

∂um
∂x2

. . .
∂um
∂xm


is invertible at the point p. Then there exists an open neighbourhood U of p
and smooth functions f1, f2, . . . , fm of n − m real variables, defined around
(pm+1, . . . , pn) in Rn−m, such that

M ∩ U = {(x1, x2, . . . , xn) ∈ U :

xj = fj(xm+1, . . . , xn) for j = 1, 2, . . . ,m}.

Proof The Implicit Function Theorem for continuously differentiable maps
(Theorem 9.6) establishes the existence of continuously differentiable func-
tions f1, f2, . . . , fm. Examination of the proof of that theorem shows that
these functions are determined by a continuously differentiable local inverse
of a smooth map. Lemma 11.5 ensures that this local inverse is itself smooth.
It follows that that functions f1, f2, . . . , fm defined as described in the proof
of Theorem 9.6 are also smooth, and therefore satisfy the requirements of
this theorem.

11.4 Smooth Partitions of Unity

Proposition 11.9 Let f :R → R be the function mapping the set R of real
numbers to itself defined such that

f(x) =

 exp

(
−1

x

)
if x > 0;

0 if x ≤ 0.

Then the function f :R → R is smooth on R. In particular f (k)(0) = 0 for
all positive integers k.
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x

f(x)

Proof We show by induction on k that the function f is k times differentiable
on R and f (k)(0) = 0 for all positive integers k. Now it follows from standard
rules for differentiating functions that

f (k)(x) =
pk(x)

x2k
exp

(
−1

x

)
for all strictly positive real numbers x, where p1(x) = 1 and

pk+1(x) = x2p′k(x) + (1− 2kx)pk(x)

for all k. A straightforward proof by induction shows that pk(x) is a poly-
nomial in x of degree k − 1 for all positive integers k with leading term
(−1)k−1k!xk−1.

Now
d

dt

(
tne−t

)
= tn−1(n− t)e−t

for all positive real numbers t. It follows that function sending each positive
real number t to tne−t is increasing when 0 ≤ t < n and decreasing when
t > n, and therefore tne−t ≤ Mn for all positive real numbers t, where
Mn = nne−n. It follows that

0 ≤ 1

x2k+1
exp

(
−1

x

)
≤M2k+2x

for all positive real numbers x, and therefore

lim
h→0+

1

h2k+1
exp

(
−1

h

)
= 0.

It then follows that

lim
h→0+

f (k)(h)

h
= lim

h→0+

(
pk(h)

h2k+1
exp

(
−1

h

))
= lim

h→0+
pk(h)× lim

h→0+

(
1

h2k+1
exp

(
−1

h

))
= pk(0)× 0 = 0
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for all positive integers k. Now

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

f(h)

h
= 0 = lim

h→0−

f(h)− f(0)

h
.

It follows that the function f is differentiable at zero, and f ′(0) = 0.
Suppose that the function f(x) is k-times differentiable at zero for some

positive integer k, and that f (k)(0) = 0. Then

lim
h→0+

f (k)(h)− f (k)(0)

h
= lim

h→0+

f (k)(h)

h
= 0 = lim

h→0−

f (k)(h)− f (k)(0)

h
.

It then follows that the function f (k) is differentiable at zero, and moreover
the derivative f (k+1)(0) of this function at zero is equal to zero. The func-
tion f is thus (k + 1)-times differentiable at zero.

It now follows by induction on k that f (k)(x) exists for all positive inte-
gers k and real numbers x, and moreover

f (k)(x) =


pk(x)

x2k
exp

(
−1

x

)
if x > 0;

0 if x ≤ 0.

The function f :R→ R is thus a smooth function, as required.

Definition Let f :Rn → R be a real-valued function defined on n-dimensional
Euclidean space Rn. The support of f is defined to be the closure in Rn of
the set

{x ∈ Rn : f(x) 6= 0}.

Example Let r be a positive real number, and let f :Rn → R be the real-
valued function on Rn defined such that

f(x) =

 exp

(
− 1

r2 − |x|2
)

if |x| < r;

0 if |x| ≥ r.

Then the set of points x of Rn for which f(x) 6= 0 is the open ball of radius r
about the origin. It follows that the support of the function f is the closed
ball {x ∈ Rn : |x| ≤ r} of radius r about the origin.

Proposition 11.10 Let X be a closed bounded set in n-dimensional Eu-
clidean space Rn, and let V be a collection of open sets in Rn which covers
the set X. Then there exist smooth real-valued functions f1, f2, f3 . . . , fN ,
each defined throughout Rn such that the following properties are satisfied:—
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(i) 0 ≤ fj(x) ≤ 1 for j = 1, 2, . . . , N and for all points x of Rn;

(ii)
n∑
j=1

fj(x) = 1 for all points x of the set X;

(iii) given any integer j between 1 and N , there exists an open set V belong-
ing to the collection V which contains the support of the function fj.

Proof Let Y be a closed ball of radius R centred on the origin, where R is
chosen large enough to ensure that the set X is contained within a ball of
radius R − 3 about the origin. If we adjoin the set Rn \X to the collection
V we obtain a collection W of open sets in Rn which covers Y . Now every
open cover of a closed bounded subset of Rn has a Lebesgue number (see
Proposition 5.7). It follows that there exists a real number δ satisfying 0 <
δ < 1 with the property that, given any point p of Y , then the closed ball of
radius δ centred on the point p is a subset of one of the open sets belonging
to the collection W of open sets covering Y .

The set Y is compact (see Theorem 5.9). Therefore there is a finite list

p1,p2, . . . ,pM

of points of Y with the property that the collection of open balls of radius δ
centred on these points covers Y . We order these points so that, for some
integer N between 1 and M , the open balls of radius δ about points pj for
1 ≤ j ≤ N have non-empty intersection with the set X, whilst the open
balls of radius δ about the points pj for N < j ≤ M do not intersect the
set X. For each integer j between 1 and M we define a real-valued function
gj:Rn → R on Rn so that

gj(x) =

 exp

(
− 1

δ2 − |x− pj|2
)

if |x− pj| < δ;

0 if |x− pj| ≥ δ.

Then gj(x) = h(|x − pj|2), for j = 1, 2, . . . ,M and for all points x of Rn,
where h:R→ R is defined so that

h(t) =

 exp

(
−1

t

)
if t > 0;

0 if t ≤ 0.

Now the function h is smooth on R (see Proposition 11.9) Also |x − pj|2 is
a smooth function of x throughout Rn, as this function is the sum of the
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squares of the components of the vector x−pj. It follows that the functions
g1, g2, . . . , gM are smooth functions throughout Y . Now g(x) ≥ 0 for all
x ∈ Rn. Also, given any point x of Y , there exists some integer j between 1
and M for which |x − pj| < δ, because the points p1,p2, . . . ,pM have been
chosen so that the open balls of radius δ about these points cover Y . It
follows that G(x) > 0 for all x ∈ Y , where

G(x) =
M∑
j=1

gj(x)

for all x ∈ Rm. Also if j > N then the open ball of radius δ about the
point pj does not intersect the set X, and therefore gj(x) = 0 for all x ∈ X.
Define real-valued functions f1, f2, . . . , fN throughout Rn such that

fj(x) =


gj(x)

G(x)
if |x| < R;

0 if |x| ≥ R.

Now if j is an integer between 1 and N then the open ball of radius δ about
the point pj intersects the set X and therefore every point of Rn for which
gj(x) > 0 lies within a distance 2δ of a point of X, where δ < 1, and
therefore lies within the closed ball of radius R − 1 about the origin in Rn.
It follows that, for each integer j between 1 and n, the function fj satisfies
fj(x) = 0 at all points x of Rn whose distance from the boundary sphere
of the closed ball Y is less than one. The function fj is therefore smooth
around all points of the boundary sphere of Y (being identically equal to
zero throughout some open neighbourhood of that boundary sphere), and
thus each function fj is smooth throughout Rn. Now 0 ≤ fj(x) ≤ 1 for all
x ∈ Rn. The support of each function fj is contained within a closed ball
of radius δ about the point pj and is therefore contained within one of the
open sets belonging to the collectionW of open sets that covers Y . But none
of the functions f1, f2, . . . , fN has support contained in Rn \ X. It follows
that, for each integer j between 1 and N , the support of the function fj is
contained within one of the open sets belonging to the given collection V of
open sets covering the set X.

Finally we note that if x is a point of the set X then gj(x) = 0 for all
integers j satisfying N < j ≤M , and therefore

N∑
j=1

fj(x) =
N∑
j=1

gj(x)

G(x)
=

M∑
j=1

gj(x)

G(x)
=
G(x)

G(x)
= 1.

This completes the proof.
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11.5 Taylor’s Theorem

Lemma 11.11 Let s and h be real numbers, let f be a k times differentiable
real-valued function defined on some open interval containing s and s + h,
let c0, c1, . . . , ck−1 be real numbers, and let

p(t) = f(s+ th)−
k−1∑
n=0

cnt
n.

for all real numbers t belonging to some open interval D for which 0 ∈ D and
1 ∈ D. Then p(n)(0) = 0 for all integers n satisfying 0 ≤ n < k if and only if

cn =
hnf (n)(s)

n!

for all integers n satisfying 0 ≤ n < k.

Proof On setting t = 0, we find that p(0) = f(s)− c0, and thus p(0) = 0 if
and only if c0 = f(s).

Let the integer n satisfy 0 < n < k. On differentiating p(t) n times with
respect to t, we find that

p(n)(t) = hnf (n)(s+ th)−
k−1∑
j=n

j!

(j − n)!
cjt

j−n.

Then, on setting t = 0, we find that only the term with j = n contributes
to the value of the sum on the right hand side of the above identity, and
therefore

p(n)(0) = hnf (n)(s)− n!cn.

The result follows.

Theorem 11.12 [Taylor’s Theorem] Let s and h be real numbers, and let f
be a k times differentiable real-valued function defined on some open interval
containing s and s+ h. Then

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh)

for some real number θ satisfying 0 < θ < 1.
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Proof Let D be an open interval, containing the real numbers 0 and 1,
chosen to ensure that f(s+ th) is defined for all t ∈ D, and let p:D → R be
defined so that

p(t) = f(s+ th)− f(s)−
k−1∑
n=1

tnhn

n!
f (n)(s)

for all t ∈ D. A straightforward calculation shows that p(n)(0) = 0 for
n = 0, 1, . . . , k− 1 (see Lemma 11.11). Thus if q(t) = p(t)− p(1)tk for all s ∈
[0, 1] then q(n)(0) = 0 for n = 0, 1, . . . , k− 1, and q(1) = 0. We can therefore
apply Rolle’s Theorem (Theorem 2.1) to the function q on the interval [0, 1]
to deduce the existence of some real number t1 satisfying 0 < t1 < 1 for
which q′(t1) = 0. We can then apply Rolle’s Theorem to the function q′ on
the interval [0, t1] to deduce the existence of some real number t2 satisfying
0 < t2 < t1 for which q′′(t2) = 0. By continuing in this fashion, applying
Rolle’s Theorem in turn to the functions q′′, q′′′, . . . , q(k−1), we deduce the
existence of real numbers t1, t2, . . . , tk satisfying 0 < tk < tk−1 < · · · < t1 < 1
with the property that q(n)(tn) = 0 for n = 1, 2, . . . , k. Let θ = tk. Then
0 < θ < 1 and

0 =
1

k!
q(k)(θ) =

1

k!
p(k)(θ)− p(1) =

hk

k!
f (k)(s+ θh)− p(1),

hence

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) + p(1)

= f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh),

as required.

Corollary 11.13 Let f :D → R be a k-times continuously differentiable
function defined over an open subset D of R and let s ∈ R. Then given
any strictly positive real number ε, there exists some strictly positive real
number δ such that∣∣∣∣∣f(s+ h)− f(s)−

k∑
n=1

hn

n!
f (n)(s)

∣∣∣∣∣ < ε|h|k

whenever |h| < δ.
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Proof The function f is k-times continuously differentiable, and therefore
its kth derivative f (k) is continuous. Let some strictly positive real number ε
be given. Then there exists some strictly positive real number δ that is small
enough to ensure that s + h ∈ D and |f (k)(s + h)− f (k)(s)| < k!ε whenever
|h| < δ. If h is an real number satisfying |h| < δ, and if θ is a real number
satisfying 0 < θ < 1, then s + θh ∈ D and |f (k)(s + θh) − f (k)(s)| < k!ε.
Now it follows from Taylor’s Theorem (Theorem 11.12) that, given any real
number h satisfying |h| < δ there exists some real number θ satisfying 0 <
θ < 1 for which

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh).

Then∣∣∣∣∣f(s+ h)− f(s)−
k∑

n=1

hn

n!
f (n)(s)

∣∣∣∣∣ =
|h|k
k!
|f (k)(s+ θh)− f (k)(s)|

< ε|h|k,

as required.

Theorem 11.14 (Taylor’s Theorem in Higher Dimensions) Let f :X →
R be a real-valued function defined on an open set X in Rn that is k-times
continuously differentiable on X, let p be a point of X, and let δ be a posi-
tive number small enough to ensure that the open ball of radius δ about the
point p is contained in X. Then, given any vector h satisfying |h| < δ, there
exists some real number θ satisfying 0 < θ < 1 for which

f(p + h) = f(p)

+
∑

j1≥0,...,jn≥0

0<j1+j2+···+jn<k

hj11 · · ·hjnn
j1!j2! · · · jn!

∂j1+j2+···+jnf

∂j1x1 . . . ∂jnxn

∣∣∣∣∣
p

+
∑

j1≥0,...,jn≥0

j1+j2+···+jn=k

hj11 · · ·hjnn
j1!j2! · · · jn!

∂j1+j2+···+jnf

∂j1x1 . . . ∂jnxn

∣∣∣∣∣
p+θh

.

Proof Taylor’s Theorem for functions of a single real variable (Theorem 11.12),
applied to the function sending real numbers t in the interval [0, 1] to f(p +
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th), ensures the existence of real constants cj1···jn independent of f for which

f(p + h) = f(p)

+
∑

j1≥0,...,jn≥0

0<j1+j2+···+jn<k

cj1,...,jnh
j1
1 · · ·hjnn

∂j1+j2+···+jnf

∂j1x1 . . . ∂jnxn

∣∣∣∣
p

+
∑

j1≥0,...,jn≥0

j1+j2+···+jn=k

cj1,...,jnh
j1
1 · · ·hjnn

∂j1+j2+···+jnf

∂j1x1 . . . ∂jnxn

∣∣∣∣
p+θh

.

The values of these constants cj1···jn can then be determined by applying the
identity with

f(x1, x2, . . . , xn) = xj11 x
j2
2 · · ·xjnn .

11.6 Real-Analytic Functions

Definition A real-valued function f :D → R defined over an open subset D
of the set R of real numbers is said to be real-analytic if, given any real
number s belonging to the domain D of the function, there exists some
strictly positive real number δ such that

f(s+ h) = f(s) +
+∞∑
n=1

hn

n!
f (n)(s)

for all real numbers h satisfying |h| < δ.

It can be shown that sums, differences, products, quotients and com-
positions of real-analytic functions are themselves real-analytic over their
domains of definition. In particular, polynomial functions and quotients of
polynomial functions are real-analytic. The natural logarithm function is
real-analytic over the set of positive real numbers because its derivative is
real-analytic. The exponential, natural logarithm, sine and cosine functions
are examples of real-analytic functions. Inverses of real-analytic functions
are real-analytic.

All real-analytic functions are smooth. However not all smooth functions
are real-analytic. The function considered in Proposition 11.9 is an example
of such a function.
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