
Module MA2321: Analysis in Several Real
Variables

Michaelmas Term 2016
Part III (Sections 8 and 9)

D. R. Wilkins

Copyright c© David R. Wilkins 2015–2016

Contents

8 Differentiation of Functions of Several Real Variables 116
8.1 Review of Differentiability for Functions of One Real Variable 116
8.2 Derivatives of Functions of Several Variables . . . . . . . . . . 117
8.3 Differentiation of Square Matrices . . . . . . . . . . . . . . . . 119
8.4 Properties of Differentiable Functions of Several Real Variables 123
8.5 The Multidimensional Product Rule . . . . . . . . . . . . . . . 124
8.6 The Multidimensional Chain Rule . . . . . . . . . . . . . . . . 126
8.7 Partial Derivatives and Continuous Differentiability . . . . . . 131
8.8 Functions with Continuous Partial Derivatives . . . . . . . . . 132
8.9 Summary of Differentiability Results . . . . . . . . . . . . . . 137

9 The Inverse and Implicit Function Theorems 139
9.1 Local Invertibility of Differentiable Functions . . . . . . . . . . 139
9.2 Convergence of Contractive Sequences . . . . . . . . . . . . . 142
9.3 The Inverse Function Theorem . . . . . . . . . . . . . . . . . . 143
9.4 The Implicit Function Theorem . . . . . . . . . . . . . . . . . 147

i



8 Differentiation of Functions of Several Real

Variables

8.1 Review of Differentiability for Functions of One
Real Variable

Let f :D → R be a real-valued function defined on a subset D of the set R
of real numbers. Let s be an element in the interior of D. the function f is
differentiable at s if and only if

lim
x→s

f(x)− f(s)

x− s
exists, and the value of this limit (if it exists) is known as the derivative of
f at s, and may be denoted by f ′(s).

We wish to define the notion of differentiability for functions of more than
one variable. However we cannot immediately generalize the above definition
as it stands (because this would require us to divide one element in Rm by
another, which we cannot do since the operation of division is not defined on
Rm). We shall therefore reformulate the above definition of differentiability
for functions of one real variable, exhibiting a criterion which is equivalent
to the definition of differentiability given above and which can be easily
generalized to functions of more than one real variable. This criterion is
provided by the following lemma.

Lemma 8.1 Let f :D → R be a real-valued function defined on some sub-
set D of the set of real numbers. Let s be a real number in the interior of
D. The function f is differentiable at s with derivative f ′(s) (where f ′(s) is
some real number) if and only if

lim
x→s

1

|x− s|
(f(x)− f(s)− f ′(s)(x− s)) = 0.

Proof It follows directly from the definition of the limit of a function that

lim
x→s

f(x)− f(s)

x− s
= f ′(s)

if and only if

lim
x→s

∣∣∣∣f(x)− f(s)

x− s
− f ′(s)

∣∣∣∣ = 0.

But ∣∣∣∣f(x)− f(s)

x− s
− f ′(s)

∣∣∣∣ =
1

|x− s|
|f(x)− f(s)− f ′(s)(x− s)| .
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It follows immediately from this that the function f is differentiable at s with
derivative f ′(s) if and only if

lim
x→s

1

|x− s|
(f(x)− f(s)− f ′(s)(x− s)) = 0.

Now let us observe that, for any real number c, the map h 7→ ch defines a
linear transformation from R to R. Conversely, every linear transformation
from R to R is of the form h 7→ ch for some c ∈ R. Because of this, we may
regard the derivative f ′(s) of f at s as representing a linear transformation
h 7→ f ′(s)h, characterized by the property that the map

x 7→ f(s) + f ′(s)(x− s)

provides a ‘good’ approximation to f around s in the sense that

lim
x→s

e(x)

|x− s|
= 0,

where
e(x) = f(x)− f(s)− f ′(s)(x− s)

(i.e., e(x) measures the difference between f(x) and the value f(s)+f ′(s)(x−
s) of the approximation at x, and thus provides a measure of the error of
this approximation).

We shall generalize the notion of differentiability to functions ϕ from Rm

to Rn by defining the derivative (Dϕ)p of ϕ at p to be a linear transformation
from Rm to Rn characterized by the property that the map

x 7→ ϕ(p) + (Dϕ)p (x− p)

provides a ‘good’ approximation to f around p.

8.2 Derivatives of Functions of Several Variables

Definition Let X be an open subset of Rm and let ϕ:X → Rn be a map
from X into Rn. Let p be a point of X. The function ϕ is said to be
differentiable at p, with derivative (Dϕ)p:Rm → Rn, where (Dϕ)p is a linear
transformation from Rm to Rn, if and only if

lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− (Dϕ)p(x− p)) = 0.
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The derivative of a map ϕ:X → Rn defined on a open subset X of Rm

at a point p of X is usually denoted either by (Dϕ)p or else by ϕ′(p).
The derivative (Dϕ)p of ϕ at p is sometimes referred to as the total

derivative of ϕ at p. If ϕ is differentiable at every point of X then we say
that ϕ is differentiable on X.

Lemma 8.2 Let T :Rm → Rn be a linear transformation from Rm into Rn.
Then T is differentiable at each point p of Rm, and (DT )p = T .

Proof This follows immediately from the identity Tx−Tp−T (x−p) = 0.

Lemma 8.3 Let ϕ:X → Rn be a function, let T :Rm → Rn be a linear
transformation, and let Ω:X → Rn be defined so that

Ω(x) =


1

|x− p|
(ϕ(x)− ϕ(p)− T (x− p)) if x 6= p;

0 if x = p.

Then ϕ:X → Rn is differentiable at p with derivative T :Rm → Rn if and
only if lim

x→p
Ω(x) = 0 = Ω(p). Thus the function ϕ:X → Rn is differentiable

at p, with derivative T , if and only if the associated function Ω:X → Rn is
continuous at p

Proof It follows from the definition of differentiability that the function ϕ is
differentiable, with derivative T :Rm → Rn, if and only if limx→p Ω(x) = 0.
But Ω(p) = 0. It follows that limx→p Ω(x) = 0 if and only if the function Ω
is continuous at p (see Proposition 4.20). The result follows.

Example Let ϕ:R2 → R2 be defined so that

ϕ

((
x
y

))
=

(
x2 − y2

2xy

)
for all real numbers x and y. Let p and q be fixed real numbers. Then

ϕ

((
x
y

))
− ϕ

((
p
q

))
=

(
x2 − y2

2xy

)
−
(
p2 − q2

2pq

)
=

(
(x+ p)(x− p)− (y + q)(y − q)

2q(x− p) + 2p(y − q) + 2(x− p)(y − q)

)
=

(
2p(x− p)− 2q(y − q) + (x− p)2 − (y − q)2

2q(x− p) + 2p(y − q) + 2(x− p)(y − q)

)
=

(
2p −2q
2q 2p

)(
x− p
y − q

)
+

(
(x− p)2 − (y − q)2

2(x− p)(y − q)

)
.
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Now

lim
(x,y)→(0,0)

1√
(x− p)2 + (y − q)2

(
(x− p)2 − (y − q)2

2(x− p)(y − q)

)
=

(
0
0

)
.

It follows that the function ϕ:R2 → R2 is differentiable at (p, q), and the
derivative of this function at (p, q) is the linear transformation represented
by the matrix (

2p −2q
2q 2p

)
.

8.3 Differentiation of Square Matrices

Let Mn(R) denote the real vector space consisting of all n× n matrices with
real coefficients. Mn(R) may be regarded as a Euclidean space, where the
Euclidean distance between two n × n matrices A and B is the Hilbert-
Schmidt norm of ‖A−B‖HS of A−B, defined such that

‖A−B‖HS =

√√√√ n∑
i=1

n∑
j=1

(Ai,j −Bi,j)2.

We now review the relationship between the Hilbert-Schmidt norm ‖A‖HS

and the operator norm ‖A‖op of an n×n matrix A. The operator norm ‖A‖op
is by definition the smallest non-negative real number with the property that
|Ax| ≤ ‖A‖op|x| for all x ∈ Rm. Its properties are set out in the statement
of Lemma 7.5.

Proposition 8.4 The Hilbert-Schmidt norm ‖A‖HS and the operator norm
‖A‖op of an n× n matrix satisfy the inequalities

‖A‖op ≤ ‖A‖HS ≤
√
n‖A‖op.

Proof The inequality |Ax| ≤ ‖A‖HS |x| is satisfied for all x ∈ Rn (see
Lemma 7.6). It follows that ‖A‖op ≤ ‖A‖HS.

Now let Ai,j denote the coefficient of the matrix A in the ith row and jth
column, and let ei denote the vector whose ith component is equal to i and
whose other components are equal to zero. Then

Aej =
n∑

i=1

Ai,jei

119



for i = 1, 2, . . . , n. It follows from the orthogonality of e1, e2, . . . , en that

n∑
i=1

A2
i,j ≤ ‖A‖2op.

Adding these inequalities for j = 1, 2, . . . , n, we find that

‖A‖2HS =
n∑

i=1

n∑
j=1

A2
i,j ≤ n‖A‖2op,

and therefore ‖A‖HS ≤
√
n‖A‖op. The result follows.

Lemma 8.5 Let V be a subset of the set Mn(R). Then V is open in Mn(R)
if and only if, given any n × n matrix A belonging to V , there exists some
positive number δ such that

{B ∈Mn : ‖A−B‖op < δ} ⊂ V.

Proof Suppose that V is open in Mn(R). Let some positive real number ε
be given. Now Mn(R) is a Euclidean space whose Euclidean norm is the
Hilbert-Schmidt norm. It follows that there exists some positive real number
δHS for which

{B ∈Mn(R) : ‖A−B‖HS < δHS} ⊂ V.

Let δop be chosen so that 0 <
√
n δop ≤ δHS. It follows from Proposition 8.4

that an n× n matrix B satisfies ‖A−B‖op < δop then

‖A−B‖HS <
√
n‖A−B‖op <

√
n δop ≤ δHS

and therefore B ∈ V . Thus

{B ∈Mn(R) : ‖A−B‖op < δop} ⊂ V.

Conversely let V be a subset of Mn(R) with the property that, given any
n × n matrix A belonging to Mn(R), there exists some positive number δ
such that

{B ∈Mn(R) : ‖A−B‖op < δ} ⊂ V.

Let B ∈Mn(R) satisfy |A−B|HS < δ. Then

‖A−B‖op ≤ ‖A−B‖HS < δ,

and therefore B ∈ V . It follows that the set V is open in Mn(R). The result
follows.
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Definition The group GL(n,R) is the group of invertible n×n matrices with
real coefficients, the group operation being the operation of multiplication of
n× n matrices.

Lemma 8.6 The group GL(n,R) is an open set in the Euclidean space
Mn(R).

Proof The group GL(n,R) consists of those n × n matrices whose deter-
minant is non-zero. Now the determinant detA of an n × n matrix A is a
sum of products of coefficients of A. It follows that the determinant func-
tion is continuous on Mn(R). It then follows from a direct application of
Proposition 4.17 that

{A ∈Mn(R) : detA 6= 0}

is an open set in Mn(R), as required.

The determinant detA of a square n×n matrix A is a continuous function
of the coefficients of the matrix. It follows from this that GL(n,R) is an open
subset of Mn(R). We denote the identity n×n matrix by I. It follows directly
from the definition of the operator norm that ‖I‖op = 1.

Proposition 8.7 Let ϕ: GL(n,R) → GL(n,R) be the function defined so
that ϕ(A) = A−1 for all invertible n × n matrices A. Then the function
ϕ: GL(n,R)→ GL(n,R) is differentiable, and

(Dϕ)A(H) = −A−1HA−1.

Proof Let A be an invertible n×n matrix. Then, given any n×n matrix H,
the matrix I+A−1H is invertible if and only if det(I+A−1H) 6= 0. Moreover
this determinant is a continuous function of the coefficients of the matrix H.
It follows that there exists some positive number δ0 such that I + A−1H is
invertible whenever ‖H‖op < δ0. Now the coefficients of the matrix (I +
A−1H)−1 are continuous functions of the coefficients of H on the open set
consisting of those n×n matrices H for which det(I+A−1H) 6= 0. It follows
that the function mapping the matrix H to ‖(I +A−1H)−1‖op is continuous
(see Lemma 7.3). This function takes the value 1 when H is the zero matrix.
We can therefore choose a positive number δ0 small enough to ensure that
I + A−1H is invertible and ‖(I + A−1H)−1‖op < 2 whenever ‖H‖op < δ0.

Let the n× n matrix H satisfy ‖H‖op < δ0. Then

(I − A−1H)(I + A−1H) = I − A−1HA−1H,
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and therefore

I = (I − A−1H)(I + A−1H) + A−1HA−1H.

Multiplying this identity on the right by the matrix (I + A−1H)−1, we find
that

(I + A−1H)−1 = I − A−1H + A−1HA−1H(I + A−1H)−1.

It follows that

(A+H)−1 = (A(I + A−1H))−1 = (I + A−1H)−1A−1

= A−1 − A−1HA−1 + A−1HA−1H(I + A−1H)−1A−1.

Now

|A−1HA−1H(I + A−1H)−1A−1x|
≤ ‖A−1‖op‖H‖op‖A−1‖op‖H‖op‖(I + A−1H)−1‖op‖A−1‖op|x|

for all x ∈ Rn, and therefore

‖A−1HA−1H(I + A−1H)−1A−1‖op
≤ ‖A−1‖3op‖(I + A−1H)−1‖op‖H‖2op.

Moreover ‖(I + A−1H)−1‖op < 2 whenever ‖H‖op < δ0, and therefore∥∥(A+H)−1 − A−1 + A−1HA−1
∥∥
op
≤ 2‖A−1‖3op‖H‖2op

whenever ‖H‖op < δ0. It follows that

lim
H→0

1

‖H‖op
∥∥(A+H)−1 − A−1 + A−1HA−1

∥∥
op

= 0.

and thus

lim
B→A

1

‖B − A‖op
∥∥B−1 − A−1 + A−1(B − A)A−1

∥∥
op

= 0.

Proposition 8.4 ensures that the corresponding inequality with Hilbert-Schmidt
norms in place of operator norms is also satisfied. Therefore the function
ϕ: GL(n,R) → GL(n,R) is differentiable, where ϕ(A) = A−1 for all invert-
ible n× n matrices A with real coefficients, and moreover

(Dϕ)A(H) = −A−1HA−1,

as required.
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8.4 Properties of Differentiable Functions of Several
Real Variables

Lemma 8.8 Let ϕ:X → Rn be a function which maps an open subset X
of Rm into Rn which is differentiable at some point p of X. Then ϕ is
continuous at p.

Proof Let Ω:X → Rn be defined so that Ω(p) = 0 and

Ω(x) =
1

|x− p|
(ϕ(x)− ϕ(p)− (Dϕ)p (x− p))

for all points x of X satisfying x 6= p. If ϕ:X → Rn is differentiable at p
then Ω:X → Rn is continuous at p (see Lemma 8.3). Moreover

ϕ(x) = ϕ(p) + (Dϕ)p (x− p) + |x− p|Ω(x)

for all x ∈ X. It follows that ϕ:X → Rn is continuous at p, as required.

Lemma 8.9 Let ϕ:X → Rn be a function which maps an open subset X of
Rm into Rn which is differentiable at some point p of X. Let (Dϕ)p:Rm →
Rn be the derivative of ϕ at p. Let u be an element of Rm. Then

(Dϕ)pu = lim
t→0

1

t
(ϕ(p + tu)− ϕ(p)) .

Thus the derivative (Dϕ)p of ϕ at p is uniquely determined by the map ϕ.

Proof It follows from the differentiability of ϕ at p that

lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− (Dϕ)p (x− p)) = 0.

In particular, if we set (x − p) = tu, and (x − p) = −tu, where t is a real
variable, we can conclude that

lim
t→0+

1

t
(ϕ(p + tu)− ϕ(p)− t(Dϕ)pu) = 0,

lim
t→0−

1

t
(ϕ(p + tu)− ϕ(p)− t(Dϕ)pu) = 0,

It follows that

lim
t→0

1

t
(ϕ(p + tu)− ϕ(p)) = (Dϕ)pu,

as required.
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We now show that given two differentiable functions mapping X into R,
where X is an open set in Rm, the sum, difference and product of these
functions are also differentiable.

Proposition 8.10 Let X be an open set in Rm, and let f :X → R and
g:X → R be functions mapping X into R. Let p be a point of X. Suppose
that f and g are differentiable at p. Then the functions f + g and f − g are
differentiable at p, and

D(f + g)p = (Df)p + (Dg)p

and
D(f − g)p = (Df)p − (Dg)p.

Proof The limit of a sum of functions is the sum of the limits of those
functions, provided that these limits exist. Applying the definition of differ-
entiability, it therefore follows that

lim
x→p

1

|x− p|

(
f(x) + g(x)− (f(p) + g(p))− ((Df)p + (Dg)p)(x− p)

)
= lim

x→p

1

|x− p|

(
f(x)− f(p)− (Df)p(x− p)

)
+ lim

x→p

1

|x− p|

(
g(x)− g(p)− (Dg)p(x− p)

)
= 0.

Therefore
D(f + g)p = (Df)p + (Dg)p.

Also the function −g is differentiable, with derivative −(Dg)p. It follows
that f − g is differentiable, with derivative (Df)p − (Dg)p. This completes
the proof.

8.5 The Multidimensional Product Rule

Proposition 8.11 (Product Rule) Let X be an open set in Rm, and let
f :X → R and g:X → R be functions mapping X into R. Let p be a point
of X. Suppose that f and g are differentiable at p. Then the function f · g
is differentiable at p, and

D(f · g)p = g(p)(Df)p + f(p)(Dg)p.
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Proof The functions f and g are differentiable at p, and therefore there are
well-defined functions Q1:X → R and Q2:X → R, where

lim
x→p

Q1(x) = 0 = Q1(p) and lim
x→p

Q2(x) = 0 = Q2(p),

that are defined throughout X so as to ensure that

f(x) = f(p) + (Df)p (x− p) + |x− p|Q1(x)

and
g(x) = g(p) + (Dg)p (x− p) + |x− p|Q2(x)

for all x ∈ X (see Lemma 8.3).
Then

f(x)g(x) = f(p)g(p) +
(
g(p) (Df)p + f(p) (Dg)p

)
(x− p)

+ |x− p|Q(x)

where

Q(x) =
1

|x− p|
(Df)p(x− p)× (Dg)p(x− p)

+ (g(p) + (Dg)p(x− p))Q1(x)

+ (f(p) + (Df)p(x− p))Q2(x)

+ |x− p|Q1(x)Q2(x).

Now
|(Df)p(x− p)| ≤ ‖(Df)p‖op|x− p|

where ‖(Df)p‖op denotes the operator norm of (Df)p (see Lemma 7.5) Sim-
ilarly

|(Dg)p(x− p)| ≤ ‖(Dg)p‖op|x− p|.
It follows that∣∣∣∣ 1

|x− p|
(Df)p(x− p)× (Dg)p(x− p)

∣∣∣∣ ≤ ‖(Df)p‖op‖(Dg)p‖op|x− p|,

and therefore

lim
x→p

(
1

|x− p|
(Df)p(x− p)× (Dg)p(x− p)

)
= 0.

Next we note that

lim
x→p

(
(g(p) + (Dg)p(x− p))Q1(x)

)
= lim

x→p
(g(p) + (Dg)p(x− p))× lim

x→p
Q1(x) = 0,
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because lim
x→p

Q1(x) = 0.

Similarly

lim
x→p

(
(f(p) + (Df)p(x− p))Q2(x)

)
= lim

x→p
(f(p) + (Df)p(x− p))× lim

x→p
Q2(x) = 0,

because lim
x→p

Q2(x) = 0.

The quantities Q1(x) and Q2(x) converge to zero and therefore remain
bounded as x tends to p. It follows that

lim
x→p
|x− p|Q1(x)Q2(x) = 0.

Putting these results together, we see that

lim
x→p

Q(x) = 0.

It follows from this that the function f · g is differentiable at p, and

D(f · g)p = g(p)(Df)p + f(p)(Dg)p

(see Lemma 8.3). This completes the proof.

8.6 The Multidimensional Chain Rule

Proposition 8.12 (Chain Rule) Let X be an open set in Rm, and let
ϕ:X → Rn be a function mapping X into Rn. Let Y be an open set in
Rn which contains ϕ(X), and let ψ:Y → Rk be a function mapping Y into
Rk. Let p be a point of X. Suppose that ϕ is differentiable at p and that
ψ is differentiable at ϕ(p). Then the composition ψ ◦ ϕ:Rm → Rk (i.e., ϕ
followed by ψ) is differentiable at p. Moreover

D(ψ ◦ ϕ)p = (Dψ)ϕ(p) ◦ (Dϕ)p.

Thus the derivative of the composition ψ◦ϕ of the functions at the given point
is the composition of the derivatives of those functions at the appropriate
points.

Proof Let q = ϕ(p). The functions ϕ:X → Rn and ψ:Y → Rk are differen-
tiable at p and q respectively, and therefore there are well-defined functions
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Ω1:X → Rn and Ω2:Y → Rk that are defined throughout X and Y respec-
tively so as to ensure that

lim
x→p

Ω1(x) = 0 = Ω1(p), lim
y→q

Ω2(y) = 0 = Ω2(q)

for all x ∈ X, and

ϕ(x) = ϕ(p) + (Dϕ)p (x− p) + |x− p|Ω1(x)

and
ψ(y) = ψ(q) + (Dψ)q (y − q) + |y − q|Ω2(y)

for all y ∈ Y (see Lemma 8.3).
Substituting ϕ(x) and ϕ(p) for y and q respectively, we find that

ψ(ϕ(x)) = ψ(ϕ(p)) + (Dψ)q(ϕ(x)− ϕ(p)) + |ϕ(x)− ϕ(p)|Ω2(ϕ(x))

= ψ(ϕ(p)) + (Dψ)ϕ(p)((Dϕ)p(x− p)) + |x− p|Ω(x),

where

Ω(x) = (Dψ)ϕ(p)(Ω1(x)) +

∣∣∣∣ 1

|x− p|
(Dϕ)p(x− p) + Ω1(x)

∣∣∣∣ Ω2(ϕ(x)).

Let

M(x) =

∣∣∣∣ 1

|x− p|
(Dϕ)p(x− p) + Ω1(x)

∣∣∣∣
for all x ∈ X satisfying x 6= p. Then

0 ≤M(x) ≤ |(Dϕ)p(x− p)|
|x− p|

+ |Ω1(x)|

for all x ∈ X satisfying x 6= p. Moreover

|(Dϕ)p(x− p)| ≤ ‖(Dϕ)p‖op|x− p|,

where ‖(Dϕ)p‖op denotes the operator norm of the linear operator (Dϕ)p
(see Lemma 7.5). It follows that

0 ≤M(x) ≤ ‖(Dϕ)p‖op + |Ω1(x)|

for all x ∈ X satisfying x 6= p. It follows from the continuity of the function
Ω1 at p that M(x) remains bounded as x tends to p in X. Now

Ω(x) = (Dψ)ϕ(p)(Ω1(x)) +M(x)Ω2(ϕ(x))
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Also the function ϕ:X → Rn is continuous at p and the function Ω2:Y → Rk

is continuous at ϕ(p). It follows that the composition function Ω2 ◦ ϕ is
continuous at p (see Lemma 4.4), and therefore

lim
x→p

Ω2(ϕ(x)) = Ω2(ϕ(p)) = 0.

We have already shown that M(x) remains bounded as x tends to p in X.
It follows that

lim
x→p

(M(x)Ω2(ϕ(x)) = 0

(see Proposition 4.22).
Linear operators on finite-dimensional vector spaces are continuous. There-

fore

lim
x→p

(Dψ)ϕ(p)(Ω1(x)) = (Dψ)ϕ(p)

(
lim
x→p

Ω1(x)

)
= 0.

It follows that

lim
x→p

Ω(x) = lim
x→p

(Dψ)ϕ(p)(Ω1(x)) + lim
x→p

(M(x)Ω2(ϕ(x)))

= 0 = Ω(p).

This result ensures that the composition function ψ ◦ϕ is differentiable at p,
and that

D(ψ ◦ ϕ)p = (Dψ)ϕ(p) ◦ (Dϕ)p

(see Lemma 8.3). The result follows.

Example Consider the function ϕ:R2 → R defined by

ϕ(x, y) =

{
x2y3 sin

1

x
if x 6= 0;

0 if x = 0.

Now one can verify from the definition of differentiability that the function
h:R→ R defined by

h(t) =

{
t2 sin

1

t
if t 6= 0,

0 if t = 0

is differentiable everywhere on R, though its derivative h′:R → R is not
continuous at 0. Also the functions (x, y) 7→ x and (x, y) 7→ y are differ-
entiable everywhere on R (by Lemma 8.2). Now ϕ(x, y) = y3h(x). Using
Proposition 8.10 and Proposition 8.12, we conclude that ϕ is differentiable
everywhere on R2.
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Let (e1, e2, . . . , em) denote the standard basis of Rm, where

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , em = (0, 0, . . . , 1).

Let us denote by fi:X → R the ith component of the map ϕ:X → Rn, where
X is an open subset of Rm. Thus

ϕ(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X. The jth partial derivative of fi at p ∈ X is then given by

∂fi
∂xj

∣∣∣∣
x=p

= lim
t→0

fi(p + tej)− fi(p)

t
.

We see therefore that if ϕ is differentiable at p then

(Dϕ)pej =

(
∂f1
∂xj

,
∂f2
∂xj

, . . . ,
∂fm
∂xj

)
.

Thus the linear transformation (Dϕ)p:Rm → Rn is represented by the n×m
matrix 

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

...
∂fn
∂x1

∂fn
∂x2

. . .
∂fn
∂xm


This matrix is known as the Jacobian matrix of ϕ at p.

Example Consider the function f :R2 → R defined by

f(x, y) =

{ xy

(x2 + y2)2
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

Note that this function is not continuous at (0, 0). Indeed f(t, t) = 1/(4t2)
if t 6= 0 so that f(t, t) → +∞ as t → 0, yet f(x, 0) = f(0, y) = 0 for all
x, y ∈ R, thus showing that

lim
(x,y)→(0,0)

f(x, y)
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cannot possibly exist. Because f is not continuous at (0, 0) we conclude from
Lemma 8.8 that f cannot be differentiable at (0, 0). However it is easy to
show that the partial derivatives

∂f(x, y)

∂x
and

∂f(x, y)

∂y

exist everywhere on R2, even at (0, 0). Indeed

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(0,0)

= 0,
∂f(x, y)

∂y

∣∣∣∣
(x,y)=(0,0)

= 0

on account of the fact that f(x, 0) = f(0, y) = 0 for all x, y ∈ R.

Example Consider the function g:R2 → R defined by

g(x, y) =


xy2

x2 + y4
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

Given real numbers b and c, let ub,c:R → R be defined so that ub,c(t) =
g(bt, ct) for all t ∈ R. If b = 0 or c = 0 then ub,c(t) = 0 for all t ∈ R. If b 6= 0
and c 6= 0 then

ub,c(t) =
bc2t3

b2t2 + c4t4
=

bc2t

b2 + c2t2
.

We now show that the function ub,c:R→ R has derivatives of all orders.
This is obvious when b = 0, and when c = 0. If b and c are both non-zero, and
if the function ub,c has a derivative u

(k)
b,c (t) of order k that can be represented

in the form
u
(k)
b,c (t) = pk(t)(b2 + c2t2)−k−1,

where pk(t) is a polynomial of degree at most k+1, then it follows from stan-

dard single-variable calculus that the function ub,c has a derivative u
(k+1)
b,c (t)

of order k + 1 that can be represented in the form

u
(k+1)
b,c (t) = pk+1(t)(b

2 + c2t2)−k−2,

where pk+1(t) is the polynomial of degree at most k + 2 determined by the
formula

pk+1(t) = p′k(t)(b2 + c2t2)− 2(k + 1)c2tpk(t).

Thus the function ub,c:R→ R has derivatives of all orders.
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Moreover the first derivative u′b,c(0) of ub,c(t) at t = 0 is given by the
formula

u′b,c(0) =


c2

b
if b 6= 0;

0 if b = 0.

We have shown that the restriction of the function g:R2 → R to any line
passing through the origin determines a function that may be differentiated
any number of times with respect to distance along the line. Analogous
arguments show that the restriction of the function g to any other line in the
plane also determines a function that may be differentiated any number of
times with respect to distance along the line.

Now g(x, y) = 1
2

for all (x, y) ∈ R2 satisfying x > 0 and y = ±
√
x, and

similarly g(x, y) = −1
2

for all (x, y) ∈ R2 satisfying x < 0 and y = ±
√
−x.

It follows that every open disk about the origin (0, 0) contains some points
at which the function g takes the value 1

2
, and other points at which the

function takes the value −1
2
, and indeed the function g will take on all real

values between −1
2

and 1
2

on any open disk about the origin, no matter how
small the disk. Therefore the function g:R2 → R is not continuous at zero,
even though the partial derivatives of the function g with respect to x and y
exist at each point of R2.

Remark These last two examples exhibits an important point. They show
that even if all the partial derivatives of a function exist at some point, this
does not necessarily imply that the function is differentiable at that point.
However we shall show that if the first order partial derivatives of the compo-
nents of a function exist and are continuous throughout some neighbourhood
of a given point then the function is differentiable at that point.

8.7 Partial Derivatives and Continuous Differentiabil-
ity

Let e1, e2, . . . , em denote the standard basis of Rm, defined so that

(z1, z2, . . . , zm) =
m∑
j=1

zjej

for all (z1, z2, . . . , zm) ∈ Rm. Similarly let e1, e2, . . . , en denote the standard
basis of Rn, defined so that

(w1, w2, . . . , wn) =
n∑

j=1

wjej
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for all (w1, w2, . . . , wn) ∈ Rn. Then the partial derivative of the ith compo-
nent fi of the function ϕ with respect to the jth coordinate function xj at a
point p of X is determined by the formula

∂fi
∂xj

∣∣∣∣
p

= ei.(Dϕ)pej.

Definition Let X be an open set in Rm. A function ϕ:X → Rn is continu-
ously differentiable if the function sending each point x of X to the derivative
(Dϕ) of ϕ at the point x is a continuous function from X to the vector space
L(Rm,Rn) of linear transformations from Rm to Rn.

A function of several real variables is said to be “C1” if and only if it is
continuously differentiable.

Lemma 8.13 Let X be an open set in Rm. and let ϕ:X → Rn be a contin-
uously differentiable function on X. Then the first order partial derivatives
of the components of ϕ exist and are continuous throughout X.

Proof Let e1, e2, . . . , em be the basis vectors that determine the standard
basis of Rm and let e1, e2, . . . , en be the basis vectors that determine the
standard basis of Rn. Then the partial derivative of the ith component fi of
the function ϕ with respect to the jth coordinate function xj at a point p of
X is determined by the formula

∂fi
∂xj

∣∣∣∣
p

= ei.(Dϕ)pej.

It follows that if (Dϕ)p is a continuous function of p then so are the partial
derivatives of ϕ.

8.8 Functions with Continuous Partial Derivatives

Proposition 8.14 Let X be an open set in Rm, let ϕ:X → Rn be a function
mapping X into Rn, and let p be a point of X, where p = (p1, p2, . . . , pm).
Suppose that the partial derivatives of the components of ϕ with respect to
the Cartesian coordinates exist and are continuous throughout X. Suppose
also that the partial derivatives of the components of ϕ are all equal to zero
at the point p. Then, given any positive real number ε, there exists a positive
real number δ such that u ∈ X, v ∈ X and

|ϕ(u)− ϕ(v)| ≤ ε|u− v|

for all points u and v of H(p, δ), where

H(p, δ) = {(x1, x2, . . . , xm) ∈ Rm : |xj − pj| < δ for j = 1, 2, . . . ,m}.
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Proof Let us denote the jth partial derivative
∂fi
∂xj

of the ith component fi

of ϕ by ∂jfi for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Then ∂jfi is a continuous
function on f .

Let some positive real number ε be given. Then there exists a positive
real number δ that is small enough to ensure that x ∈ X and

|(∂jfi)(x1, x2, . . . , xm)| ≤ ε/
√
mn

for all points x of H(p, δ).
Let e1, e2, . . . , em denote the standard basis of Rm, defined so that

(z1, z2, . . . , zm) =
m∑
j=1

zjej

for all (z1, z2, . . . , zm) ∈ Rm. Let u and v be points of H(p, δ), and let points
qj be defined for j = 0, 1, 2, . . . ,m so that q0 = v and

qj = qj−1 + (uj − vj)ej

for j = 1, 2, . . . , n. Then qm = u and qj ∈ H(p, δ) for j = 1, 2, . . . ,m.
Now, for each integer j between 1 and m, the points qj and qj−1 differ only
in the jth coordinate. Applying the Mean Value Theorem of single-variable
calculus (Theorem 2.2), we find that, given any pair of integers i and j,
where 1 ≤ i ≤ n and 1 ≤ j ≤ m, there exists some real number θ satisfying
0 < θ < 1 such that

fi(qj)− fi(qj−1) = (uj − vj)(∂jfi)
(

(1− θ)qj−1 + θqj

)
.

It follows that
|fi(qj)− fi(qj−1)| ≤

ε√
mn
|uj − vj|

for j = 1, 2, . . . ,m. It then follows that

|fi(u)− fi(v)| ≤
m∑
j=1

|fi(qj)− fi(qj−1)| ≤
ε√
mn

m∑
j=1

|uj − vj|.

On applying Schwarz’s Inequality (Lemma 4.1), we find that(
m∑
j=1

|uj − vj|

)2

≤ m
m∑
j=1

(uj − vj)2 = m |u− v|2.
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It follows that
m∑
j=1

|uj − vj| ≤
√
m |u− v|

and therefore
|fi(u)− fi(v)| ≤ ε√

n
|u− v|.

It follows that

|ϕ(u)− ϕ(v)|2 =
n∑

i=1

(fi(u)− fi(v))2 ≤ ε2|u− v|2

for all points u and v of H(p, δ). The result follows.

Remark The essential strategy underlying the proof of Proposition 8.14
can be presented, in the two-dimensional case, as follows. Consider a city
laid out on a gridiron pattern, where all streets run either from north to
south, or from east to west. To get from one street intersection to another,
it is always possible to find a route that does not involve both northward
and southward legs, and does not involve both eastward and westward legs.
(Thus to get from one street intersection to another that lies to the northeast,
one can choose a route that involves only travelling northwards or travelling
eastwards along city streets.) Suppose that all streets have a maximum
gradient equal tom. Then the height difference between any two intersections
is bounded above by

√
2md, where d is the direct distance between those

street intersections.

Corollary 8.15 Let ϕ:X → Rn be a continuously differentiable function
defined over an open set X in Rm, and let p be a point of X. Let M be a
positive real number satisfying M > ‖(Dϕ)p‖op, where ‖(Dϕ)p‖op denotes
the operator norm of the derivative of ϕ at p. Then there exists a positive
real number δ such that

|ϕ(u)− ϕ(v)| ≤M |u− v|

for all points u and v of X that satisfy |u− p| < δ and |v − p| < δ.

Proof Let M0 = ‖(Dϕ)p‖op and let ε = M−M0. Let ψ:X → Rn be defined
such that

ψ(u) = ϕ(u)− (Dϕ)pu

for all u ∈ X. Then (Dψ)p = (Dϕ)p − (Dϕ)p = 0. It follows from Proposi-
tion 8.14 that there exists a positive real number δ such that

|ψ(u)− ψ(v)| ≤ ε|u− v|
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for all points u and v of X that satisfy |u− p| < δ and |v − p| < δ. Then

|ϕ(u)− ϕ(v)| = |ψ(u)− ψ(v) + (Dϕ)p(u− v)|
≤ |ψ(u)− ψ(v)|+ |(Dϕ)p(u− v)|
≤ ε|u− v|+M0|u− v| = M |u− v|

for all points u and v of X that satisfy |u − p| < δ and |v − p| < δ, as
required.

Corollary 8.15 ensures that continuously differentiable functions of sev-
eral real variables are locally Lipschitz continuous. This means that they
satisfy a Lipschitz condition in some sufficiently small neighbourhood of any
given point. This in turn ensures that standard theorems concerning the
existence and uniqueness of ordinary differential equations can be applied to
systems of ordinary differential equations specified in terms of continuously
differentiable functions.

Theorem 8.16 Let X be an open subset of Rm and let ϕ:X → Rn be a
function mapping X into Rn. Suppose that the Jacobian matrix

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

...
∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xm


exists at every point of X, where fi denotes the ith component of ϕ for
i = 1, 2, . . . , n. Suppose also that the coefficients of this Jacobian matrix are
continuous functions on X. Then ϕ is differentiable at every point of X, and
the derivative of ϕ at each point is represented by the Jacobian matrix.

Proof Let p ∈ X, and, for each integer i between 1 and n, let gi:X → R be
defined such that

gi(x) = fi(x)−
m∑
j=1

Ji,j(xj − pj)

for all x ∈ X, where x = (x1, x2, . . . , xm) and

Ji,j = (∂jfi)(p) =
∂fi
∂xj

∣∣∣∣
p
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for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. The partial derivatives ∂jgi of the
function gi are then determined by those of fi so that

(∂jgi)(x) = (∂jfi)(x)− Ji,j

for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. It follows that (∂jgi)(p) = 0 for
j = 1, 2, . . . ,m.

Let ψ:X → Rn be defined so that ψ(x) = (g1(x), g2(x), . . . , gn(x)) for all
x ∈ X. Then the partial derivatives of the function ψ:X → Rn are all equal
to zero at the point p.

Let some positive real number ε be given. It follows from Proposition 8.14
that there exists some positive real number δ such that

|ψ(x)− ψ(p)| ≤ ε|x− p|

for all x ∈ X satisfying |x− p| < δ. But then

|ϕ(x)− ϕ(p)− J(x− p)| ≤ ε|x− p|

for all x ∈ X satisfying |x − p| < δ, where J denotes the Jacobian matrix
of ϕ at the point p (i.e., the matrix whose coefficient in the ith row and jth
column of the matrix is equal to the value of the partial derivative

∂fi
∂xj

at the point p).
It follows from this that

lim
x→p

1

|x− p|
|ϕ(x)− ϕ(p)− J(x− p)| = 0,

and thus the function ϕ is differentiable at p. Moreover the matrix repre-
senting the derivative (Dϕ)p of ϕ at the point p is the Jacobian matrix at
that point, as required.

Corollary 8.17 Let X be an open set in Rm. A function ϕ:X → Rn is
continuously differentiable if and only if the first order partial derivatives of
the components of ϕ exist and are continuous throughout X.

Proof The result follows directly on combining the results of Lemma 8.13
and Theorem 8.16.
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8.9 Summary of Differentiability Results

We now summarize the main conclusions regarding differentiability of func-
tions of several real variables. They are as follows.

(i) A function ϕ:X → Rn defined on an open subset X of Rm is said to
be differentiable at a point p of X if and only if there exists a linear
transformation (Dϕ)p:Rm → Rn with the property that

lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− (Dϕ)p (x− p)) = 0.

The linear transformation (Dϕ)p (if it exists) is unique and is known
as the derivative (or total derivative) of ϕ at p.

(ii) If the function ϕ:X → Rn is differentiable at a point p of X then the
derivative (Dϕ)p of ϕ at p is represented by the Jacobian matrix of
the function ϕ at p whose entries are the first order partial derivatives
of the components of ϕ.

(iii) There exist functions ϕ:X → Rn whose first order partial derivatives
are well-defined at a particular point of X but which are not differen-
tiable at that point. Indeed there exist such functions whose first order
partial derivatives exist throughout their domain, though the functions
themselves are not even continuous. Thus in order to show that a func-
tion is differentiable at a particular point, it is not sufficient to show
that the first order partial derivatives of the function exist at that point.

(iv) However if the first order partial derivatives of the components of a
function ϕ:X → Rn exist and are continuous throughout some neigh-
bourhood of a given point then the function is differentiable at that
point. (However the converse does not hold: there exist functions
which are differentiable whose first order partial derivatives are not
continuous.)

(v) Linear transformations are everywhere differentiable.

(vi) A function ϕ:X → Rn is differentiable if and only if its components
are differentiable functions on X (where X is an open set in Rm).

(vii) Given two differentiable functions from X to R, where X is an open
set in Rm, the sum, difference and product of these functions are also
differentiable.
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(viii) (The Chain Rule). The composition of two differentiable functions is
differentiable, and the derivative of the composition of the functions at
any point is the composition of the derivatives of the functions.
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9 The Inverse and Implicit Function Theo-

rems

9.1 Local Invertibility of Differentiable Functions

Definition Let ϕ:X → Rn be a continuous function defined over an open
set X in Rn and mapping that open set into Rn, and let p be a point of X.
A local inverse of the map ϕ:X → Rn around the point p is a continuous
function µ:W → X defined over an open set W in Rn that satisfies the
following conditions:

(i) µ(W ) is an open set in Rn contained in X, and p ∈ µ(W );

(ii) ϕ(µ(y)) = y for all y ∈ W .

If there exists a function µ:W → X satisfying these conditions, then the
function ϕ is said to be locally invertible around the point p.

Lemma 9.1 Let ϕ:X → Rn be a continuous function defined over an open
set X in Rn and mapping that open set into Rn, let p be a point of X. and
let µ:W → X be a local inverse for the map φ around the point p. Then
ϕ(x) ∈ W and µ(ϕ(x)) = x for all x ∈ µ(W ).

Proof The definition of local inverses ensures that µ(W ) is an open subset
of X, p ∈ µ(W ) and ϕ(µ(y)) = y for all y ∈ W . Let x ∈ µ(W ). Then
x = µ(y) for some y ∈ W . But then ϕ(x) = ϕ(µ(y)) = y, and therefore
ϕ(x) ∈ W . Moreover µ(ϕ(x)) = µ(y) = x, as required.

Let ϕ:X → Rn be a continuous function defined over an open set X in Rn

and mapping that open set into Rn, let p be a point of X. and let µ:W → X
be a local inverse for the map φ around the point p. Then the function from
the open set µ(W ) to the open set W that sends each point x of µ(W ) to
ϕ(x) is invertible, and its inverse is the continuous function from W to ϕ(W )
that sends each point y of W to µ(y). A function between sets is bijective if
it has a well-defined inverse. A continuous bijective function whose inverse
is also continuous is said to be a homeomorphism. We see therefore that the
restriction of the map ϕ to the image µ(W ) of the local inverse µ:W → X
determines a homeomorphism from the open set µ(W ) to the open set W .

Example The function ϕ:R2 → R2 \ {(0, 0)} defined such that

ϕ(u, v) = (eu cos v, eu sin v)
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for all u, v ∈ R2 is locally invertible, though it is not bijective. Indeed, given
(u0, v0) ∈ R, let

W = {(r cos(v0 + θ), r sin(v0 + θ)) : r, θ ∈ R, r > 0 and − π < θ < π},

and let
µ(r cos(v0 + θ), r sin(v0 + θ)) = (log r, v0 + θ)

whenever r > 0 and −π < θ < 1. Then W is an open set in R2, the function
µ:W → R2 is continuous,

µ(W ) = {(u, v) ∈ R2 : v0 − π < v < v0 + π},

and µ(ϕ(u, v)) = (u, v) for all (u, v) ∈ µ(W ).

A continuously differentiable function may have a continuous inverse, but
that inverse is not guaranteed to be differentiable, as the following example
demonstrates.

Example Let f :R→ R be defined so that f(x) = x3 for all real numbers x.
The function f is continuously differentiable and has a continuous inverse
f−1:R → R, where f−1(x) = 3

√
x when x ≥ 0 and f−1(x) = − 3

√
−x when

x < 0. This inverse function is not differentiable at zero.

Lemma 9.2 Let ϕ:X → Rn be a continuously differentiable function defined
over an open set X in Rn. Suppose that ϕ is locally invertible around some
point p of X. Suppose also that a local inverse to ϕ around p is differentiable
at the point ϕ(p). Then the derivative (Dϕ)p:Rn → Rn of ϕ at the point p
is an invertible linear operator on Rn. Thus if

ϕ(x1, x2, . . . , xn) = (y1, y2, . . . , yn),

for all (x1, x2, . . . , xn) ∈ X, where y1, y2, . . . , yn are differentiable functions of
x1, x2, . . . , xn, and if ϕ has a differentiable local inverse around the point p,
then the Jacobian matrix

∂y1
∂x1

∂y1
∂x2

. . .
∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

. . .
∂y2
∂xn

...
...

...
∂yn
∂x1

∂yn
∂x2

. . .
∂yn
∂xn


is invertible at the point p.
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Proof Let µ:W → X be a local inverse of ϕ around p, where W is an open
set in Rn, p ∈ µ(W ), µ(W ) ⊂ X and µ(ϕ(x)) = x for all x ∈ µ(W ). Suppose
that µ:W → X is differentiable at ϕ(p). The identity µ(ϕ(x)) = x holds
throughout the open neighbourhood µ(W ) of point p. Applying the Chain
Rule (Proposition 8.12), we find that (Dµ)ϕ(p)(Dϕ)p is the identity operator
on Rn. It follows that the linear operators (Dµ)ϕ(p) and (Dϕ)p on Rn are
inverses of one another, and therefore (Dϕ)p is an invertible linear operator
on Rn. The result follows.

Definition LetW andX be subsets of Euclidean spaces. A function µ:W →
X is said to be Lipschitz continuous if there exists a positive constant C such
that

|µ(u)− µ(v)| ≤ C|u− v|

for all u,v ∈ W .

It follows from Corollary 8.15 that a continuously differentiable function is
Lipschitz continuous throughout some sufficiently small open neighbourhood
of any given point in its domain.

Lemma 9.3 Let ϕ:X → Rn be a continuously differentiable function defined
over an open set X in Rn that is locally invertible around some point of X
and let µ:W → X be a local inverse for ϕ. Suppose that ϕ:X → Rn is
continuously differentiable and that the local inverse µ:W → X is Lipschitz
continuous throughout W . Then µ:W → X is continuously differentiable
throughout W .

Proof The function µ:W → X is Lipschitz continuous, and therefore there
exists a positive constant C such that

|µ(y)− µ(w)| ≤ C |y −w|

for all y,w ∈ W . Let q ∈ W , let p = µ(q), and let S be the derivative of ϕ
at p. Then

Sv = lim
t→0

1

t
(ϕ(p + tv)− ϕ(p))

for all v ∈ Rn (see Lemma 8.9). If |t| is sufficiently small then p+tv ∈ µ(W ).
It then follows from Lemma 9.1 that

tv = µ(ϕ(p + tv))− µ(ϕ(p)),

and therefore
|t||v| ≤ C |ϕ(p + tv)− ϕ(p)|.
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It follows that

|Sv| = lim
t→0

1

|t|
|ϕ(p + tv)− ϕ(p)| ≥ 1

C
|v|

for all v ∈ Rn, and therefore Sv 6= 0 for all non-zero vectors v. It then
follows from basic linear algebra that the linear operator S on Rn is invertible.
Moreover |S−1v| ≤ C|v| for all v ∈ Rn.

Now

lim
x→p

1

|x− p|
|ϕ(x)− ϕ(p)− S(x− p)| = 0,

because the function ϕ is differentiable at p. Also µ(y) 6= p when y 6= q,
because q = ϕ(p) and y = ϕ(µ(y)). The continuity of µ ensures that µ(y)
tends to p as y tends to q. It follows that

lim
y→q

1

|µ(y)− p|
|y − q− S(µ(y)− p)| = 0

(see Proposition 4.28). Now

|S−1(y − q)− (µ(y)− p)| ≤ C|y − q− S(µ(y)− p)|

for all y ∈ W . Also
1

|y − q|
≤ C

|p− µ(y)|
for all y ∈ W satisfying y 6= q. It follows that

1

|y − q|
|µ(y)− p− S−1(y − q)| ≤ C2

|µ(y)− p|
|y − q− S(µ(y)− p)|.

It follows that

lim
y→q

1

|y − q|
|µ(y)− p− S−1(y − q)| = 0

(see Proposition 4.22), and therefore the function µ is differentiable at q with
derivative S−1. Thus (Dµ)q = (Dϕ)−1p for all q ∈ W . It follows from this that
(Dµ)q depends continuously on q, and thus the function µ is continuously
differentiable on W , as required.

9.2 Convergence of Contractive Sequences

Proposition 9.4 Let x1,x2,x3, . . . be an infinite sequence of points in n-
dimensional Euclidean space Rn, and let λ be a real number satisfying 0 <
λ < 1. Suppose that

|xj+1 − xj| ≤ λ|xj − xj−1|
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for all integers j satisfying j > 1. Then the infinite sequence x1,x2,x3, . . . is
convergent.

Proof We show that an infinite sequence of points in Euclidean space satis-
fying the stated criterion is a Cauchy sequence and is therefore convergent.
Now the infinite sequence satisfies

|xj+1 − xj| ≤ Cλj

for all positive integers j, where C = |x2 − x1|/λ. Let j and k be positive
integers satisfying j < k. Then

|xk − xj| =

∣∣∣∣∣
k−1∑
s=j

(xs+1 − xs)

∣∣∣∣∣ ≤
k−1∑
s=j

|xs+1 − xs|

≤ C
k−1∑
s=j

λs = Cλj
1− λk−j

1− λ
<

Cλj

1− λ
.

We now show that the infinite sequence x1,x2,x3, . . . is a Cauchy se-
quence. Let some positive real number ε be given. Then a positive inte-
ger N can be chosen large enough to ensure that CλN < (1 − λ)ε. Then
|xk − xj| < ε whenever j ≥ N and k ≥ N . Therefore the given infinite
sequence is a Cauchy sequence. Now all Cauchy sequences in Rn are conver-
gent (see Theorem 5.3). Therefore the given infinite sequence is convergent,
as required.

9.3 The Inverse Function Theorem

The Inverse Function Theorem ensures that, for a continuously differentiable
function of several real variables, mapping an open set in one Euclidean
space into a Euclidean space of the same dimension, the invertibility of the
derivative of the function at a given point is sufficient to ensure the local
invertibility of that function around the given point, and moreover ensures
that the inverse function is also locally a continuously differentiable function.

The proof uses the method of successive approximations, using a conver-
gence criterion for infinite sequences of points in Euclidean space that we
established in Proposition 9.4.

Theorem 9.5 (Inverse Function Theorem) Let ϕ:X → Rn be a contin-
uously differentiable function defined over an open set X in n-dimensional
Euclidean space Rn and mapping X into Rn, and let p be a point of X. Sup-
pose that the derivative (Dϕ)p:Rn → Rn of the map ϕ at the point p is an

143



invertible linear transformation. Then there exists an open set W in Rn and
a continuously differentiable function µ:W → X that satisfies the following
conditions:—

(i) µ(W ) is an open set in Rn contained in X, and p ∈ µ(W );

(ii) ϕ(µ(y)) = y for all y ∈ W .

Proof We may assume, without loss of generality, that p = 0 and ϕ(p) = 0.
Indeed the result in the general case can then be deduced by applying the
result in this special case to the function that sends z to ϕ(p + z)−ϕ(p) for
all z ∈ Rn for which p + z ∈ X.

Now (Dϕ)0:Rn → Rn is an invertible linear transformation, by assump-
tion. Let T = (Dϕ)−10 , and let ψ:X → Rn be defined such that

ψ(x) = x− T (ϕ(x))

for all x ∈ X. Now the derivative of any linear transformation at any point
is equal to that linear transformation (see Lemma 8.2). It follows from the
Chain Rule (Proposition 8.12) that the derivative of the composition function
T ◦ ϕ at any point x of X is equal to T (Dϕ)x. It follows that (Dψ)x =
I − T (Dϕ)x for all x ∈ X, where I denotes the identity operator on Rn. In
particular (Dψ)0 = I − T (Dϕ)0 = 0. It then follows from Proposition 8.14
that there exists a positive real number δ such that

|ψ(u)− ψ(v)| ≤ 1
2
|u− v|

whenever |u| < δ and |v| < δ.
Now ψ(0) = 0. It follows from the inequality just proved that |ψ(x)| ≤

1
2
|x| whenever |x| < δ.

Let W be the open set in Rn defined so that

W = {y ∈ Rn : |T (y)| < 1
2
δ},

and let µ0, µ1, µ2, . . . be the infinite sequence of functions from W to Rn

defined so that µ0(y) = 0 for all y ∈ W and

µj(y) = µj−1(y) + T (y − ϕ(µj−1(y)))

for all positive integers j. Now ϕ(0) = 0. It follows that if µj−1(0) = 0 for
some positive integer j then µj(0) = 0. It then follows by induction on j
that µj(0) = 0 for all non-negative integers j.
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We shall prove that there is a well-defined function µ:W → Rn defined
such that µ(y) = lim

j→+∞
µj(y) and that this function µ is a local inverse for

ϕ defined on the open set W that satisfies the required properties.
Let y ∈ W and let xj = µj(y) for all non-negative integers j. Then

x0 = 0 and

xj = xj−1 + T (y − ϕ(xj−1))

= ψ(xj−1) + Ty

for all positive integers j. Now we have already shown that |ψ(x)| ≤ 1
2
|x|

whenever |x| < δ. Also the definition of the open set W ensures that |Ty| <
1
2
δ. It follows that if |xj−1| < δ then

|xj| ≤ |ψ(xj−1)|+ |Ty| ≤ 1
2
|xj−1|+ |Ty| < 1

2
δ + |Ty| < δ.

It follows by induction on j that |xj| < 1
2
δ + |Ty| for all non-negative inte-

gers j. Also

xj+1 − xj = xj − xj−1 − T (ϕ(xj)− ϕ(xj−1))

= ψ(xj)− ψ(xj−1)

for all positive integers j. But |xj| < δ and |xj−1| < δ and therefore

|xj+1 − xj| = |ψ(xj)− ψ(xj−1)| ≤ 1
2
|xj − xj−1|

for all positive integers j. It then follows from Lemma 9.4 that the infinite
sequence x0,x1,x2,x3, . . . is convergent. Now xj = µj(y) for all non-negative
integers j, where y is an arbitrary element of the open set W . The conver-
gence result just obtained therefore guarantees that there is a well-defined
function µ:W → Rn which satisfies

µ(y) = lim
j→+∞

µj(y)

for all y ∈ W . Moreover |µj(y)| < 1
2
δ + |Ty| for all positive integers j and

for all y ∈ W , and therefore

|µ(y)| ≤ 1
2
δ + |Ty| < δ

for all y ∈ W .
Next we prove that ϕ(µ(y)) = y for all y ∈ W . Now

µ(y) = lim
j→+∞

µj(y) = lim
j→+∞

(µj−1(y) + T (y − ϕ(µj−1(y))))

= µ(y) + T (y − ϕ(µ(y)))
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It follows that T (y − ϕ(µ(y))) = 0. But T = (Dϕ)−10 . It follows that

y − ϕ(µ(y)) = (Dϕ)0(T (y − ϕ(µ(y)))) = (Dϕ)0(0) = 0.

Thus y = ϕ(µ(y)) for all y ∈ W . Also µj(0) = 0 for all non-negative
integers j, and therefore µ(0) = 0.

Next we show that if x ∈ Rn satisfies |x| < δ and if ϕ(x) ∈ W then
x = µ(ϕ(x)). Now x = ψ(x) + Tϕ(x) for all x ∈ X. Also

|Tϕ(x)| ≤ ‖T‖op |ϕ(x)|

for all x ∈ X, where ‖T‖op denotes the operator norm of T (see Lemma 7.5).
It follows that

|x− z| = |ψ(x)− ψ(z) + T (ϕ(x)− ϕ(z))|
≤ |ψ(x)− ψ(z)|+ |T (ϕ(x)− ϕ(z))|
≤ 1

2
|x− z|+ ‖T‖op |ϕ(x)− ϕ(z)|

for all x, z ∈ Rn satisfying |x| < δ and |z| < δ. Subtracting 1
2
|x − z| from

both sides of the above inequality, and then multiplying by two, we find that

|x− z| ≤ 2‖T‖op |ϕ(x)− ϕ(z)|.

whenever |x| < δ and |z| < δ. Substituting z = µ(y), we find that

|x− µ(y)| ≤ 2‖T‖op |ϕ(x)− y|

for all x ∈ X satisfying |x| < δ and for all y ∈ W . It follows that if x ∈ X
satisfies |x| < δ and if ϕ(x) = y for some y ∈ W then x = µ(y). The
inequality also ensures that

|µ(y)− µ(w)| ≤ 2‖T‖op |y −w|

for all y,w ∈ W . Thus the function µ:W → X is Lipschitz continuous. It
then follows from Lemma 9.3 that the function µ is continuously differen-
tiable.

Next we prove that µ(W ) is an open subset of X. Now µ(W ) ⊂ ϕ−1(W )
because y = ϕ(µ(y)) for all y ∈ W . We have also proved that |µ(y)| < δ for
all y ∈ W . It follows that

µ(W ) ⊂ ϕ−1(W ) ∩ {x ∈ Rn : |x| < δ}.

But we have also shown that if x ∈ X satisfies |x| < δ, and if ϕ(x) ∈ W then
x = µ(ϕ(x)), and therefore x ∈ µ(W ). It follows that

µ(W ) = ϕ−1(W ) ∩ {x ∈ Rn : |x| < δ}.
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Now ϕ−1(W ) is an open subset in X, because ϕ:X → Rn is continuous
and W is an open set in Rn (see Proposition 4.17). It follows that µ(W ) is
an intersection of two open sets, and is thus itself an open set. Moreover
0 ∈ µ(W ), because µ(0) = 0. We can now conclude that µ:W → X is a
local inverse for ϕ:X → Rn.

We have shown that the function µ:W → X is Lipschitz continuous. It
therefore follows from Lemma 9.3 that the function µ:W → X is continuously
differentiable. This completes the proof of the Inverse Function Theorem for
continuously differentiable functions whose derivative at a given point is an
invertible linear transformation.

9.4 The Implicit Function Theorem

Theorem 9.6 Let X be an open set in Rn, let f1, f2, . . . , fm be a continu-
ously differentiable real-valued functions on X, where m < n, let

M = {x ∈ X : fi(x) = 0 for i = 1, 2, . . . ,m},

and let p be a point of M . Suppose that f1, f2, . . . , fm are zero at p and that
the matrix 

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

...
∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xm


is invertible at the point p. Then there exists an open neighbourhood U
of p and continuously differentiable functions h1, h2, . . . , hm of n − m real
variables, defined around (pm+1, . . . , pn) in Rn−m, such that

M ∩ U = {(x1, x2, . . . , xn) ∈ U : xi = hi(xm+1, . . . , xn) for i = 1, 2, . . . ,m}.

Proof Let ϕ:X → Rn be the continuously differentiable function defined
such that

ϕ(x) =
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
for all x ∈ X. (Thus the ith Cartesian component of the function ϕ is equal
to fi for i ≤ m, but is equal to xi for m < i ≤ n.) Let J be the Jacobian
matrix of ϕ at the point p, and let Ji,j denote the coefficient in the ith row
and jth column of J . Then

Ji,j =
∂fi
∂xj
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for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Also Ji,i = 1 if i > m, and Ji,j = 0 if
i > m and j 6= i. The matrix J can therefore be represented in block form
as

J =

(
J0 0
0 In−m

)
,

where J0 is the leading m×m minor of the matrix J and In−m is the identity
(n−m)×(n−m) matrix. It follows from standard properties of determinants
that det J = det J0. Moreover the hypotheses of the theorem require that
det J0 6= 0. Therefore det J 6= 0. The derivative (Dϕ)p of ϕ at the point p
is represented by the Jacobian matrix J . It follows that (Dϕ)p:Rn → Rn is
an invertible linear transformation.

The Inverse Function Theorem (Theorem 9.5) now ensures the existence
of a local inverse µ:W → X for the function ϕ around p. The range µ(W )
of this local inverse is then an open set in X containing the point p, and
ϕ(µ(y)) = y for all y ∈ W .

Let y be a point of W , and let y = (y1, y2, . . . , yn). Then y = ϕ(µ(y)),
and therefore yi = fi(µ(y)) for i = 1, 2, . . . ,m, and yi is equal to the ith
component of µ(y) when m < i ≤ n.

Now p ∈ µ(W ). Therefore there exists some point q of W satisfying
µ(q) = p. Now p ∈ M , and therefore fi(p) = 0 for i = 1, 2, . . . ,m. But
qi = fi(µ(q)) = fi(p) when 1 ≤ i ≤ m. It follows that qi = 0 when
1 ≤ i ≤ m. Also qi = pi when i > m.

Let gi denote the ith Cartesian component of the continuously differ-
entiable map µ:W → Rn for i = 1, 2, . . . , n. Then gi:W → R is a con-
tinuously differentiable real-valued function on W for i = 1, 2, . . . , n. If
(y1, y2, . . . , yn) ∈ W then

(y1, y2, . . . , yn) = ϕ(µ(y1, y2, . . . , yn)).

It then follows from the definition of the map ϕ that yi is the ith Cartesian
component of µ(y1, y2, . . . , yn) when i > m, and thus

yi = gi(y1, y2, . . . , yn) when i > m.

Now µ(W ) is an open set, and p ∈ µ(W ). It follows that there exists
some positive real number δ such that H(p, δ) ⊂ µ(W ). where

H = {(x1, x2, . . . , xn) ∈ Rn : pi − δ < xi < pi + δ for i = 1, 2, . . . , n}.

Let

D = {(z1, z2, . . . , zn−m) ∈ Rn−m :

pm+j − δ < zj < pm+j + δ for j = 1, 2, . . . , n−m},
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and let hi:D → R be defined so that

hi(z1, z2, . . . , zn−m) = gi(0, 0, . . . , 0, z1, z2, . . . , zn−m)

for i = 1, 2, . . . ,m.
Let x ∈ H(p, δ), where x = (x1, x2, . . . , xn). Then x ∈ µ(W ). It follows

from Lemma 9.1 that

(x1, x2, . . . , xn) = µ(ϕ(x))

= µ
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
.

On equating Cartesian components we find that

xi = gi

(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
.

for i = 1, 2, . . . , n.
In particular, if x ∈ H(p, δ) ∩M then

f1(x) = f2(x) = · · · = fm(x) = 0,

and therefore

xi = gi

(
0, 0, . . . , 0, xm+1, . . . , xn

)
= hi

(
xm+1, . . . , xn

)
.

for i = 1, 2, . . . ,m. It follows that

M ∩H(p, δ) ⊂ {(x1, x2, . . . , xn) ∈ H(p, δ) :

xi = hi(xm+1, . . . , xn) for i = 1, 2, . . . ,m}.

Now let x be a point of H(x, δ) whose Cartesian components x1, x2, . . . , xn
satisfy the equations

xi = hi(xm+1, . . . , xn)

for i = 1, 2, . . . ,m. Then

xi = gi(0, 0, . . . , 0, xm+1, . . . , xn)

for i = 1, 2, . . . ,m. Now it was shown earlier that

yi = gi(y1, y2, . . . , yn)
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for all (y1, y2, . . . , yn) ∈ W when i > m. It follows from this that

xi = gi(0, 0, . . . , 0, xm+1, . . . , xn)

when m < i ≤ n. The functions g1, g2, . . . , gn are the Cartesian components
of the map µ:W → X. We conclude therefore that

(x1, x2, . . . , xn) = µ(0, 0, . . . , 0, xm+1, . . . , xn),

Applying the function ϕ to both sides of this equation we see that

ϕ(x1, x2, . . . , xn) = ϕ(µ(0, 0, . . . , 0, xm+1, . . . , xn))

= (0, 0, . . . , 0, xm+1, . . . , xn).

It then follows from the definition of the map ϕ that

fi(x1, x2, . . . , xn) = 0,

for i = 1, 2, . . . , n. We have thus shown that if x is a point of H(x, δ) whose
Cartesian components x1, x2, . . . , xn satisfy the equations

xi = hi(xm+1, . . . , xn)

for i = 1, 2, . . . ,m then x ∈M . The converse of this result was proved earlier.
The proof of the theorem is therefore completed on taking U = H(p, δ).
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