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1 The Real Number System

1.1 A Concise Characterization of the Real Number
System

The set R of real numbers, with its usual ordering algebraic operations, con-
stitutes a Dedekind-complete ordered field.

We describe below what a field is, what an ordered field is, and what is
meant by saying that an ordered field is Dedekind-complete.

1.2 Fields

Definition A field is a set F on which are defined operations of addition
and multiplication, associating elements x+ y and xy of F to each pair x, y
of elements of F, for which the following axioms are satisfied:

(i) x + y = y + x for all x, y ∈ F (i.e., the operation of addition on F is
commutative);

(ii) (x+y)+z = x+(y+z) for all x, y, z ∈ F (i.e., the operation of addition
on F is associative);

(iii) there exists an element 0 of F with the property that 0 + x = x for all
x ∈ F (i.e., there exists a zero element for the operation of addition on
F);

(iv) given any x ∈ F, there exists an element −x of F satisfying x+(−x) = 0
(i.e., negatives of elements of F always exist);

(v) xy = yx for all x, y ∈ F (i.e., the operation of multiplication on F is
commutative);

(vi) (xy)z = x(yz) for all x, y, z ∈ F (i.e., the operation of multiplication
on F is associative);

(vii) there exists an element 1 of F with the property that 1x = x for all
x ∈ F (i.e., there exists an identity element for the operation of multi-
plication on F);

(viii) given any x ∈ F satisfying x 6= 0, there exists an element x−1 of F
satisfying xx−1 = 1;

(ix) x(y + z) = xy + xz for all x, y, z ∈ F (i.e., multiplication is distributive
over addition).
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The operations of subtraction and division are defined on a field F in
terms of the operations of addition and multiplication on that field in the
obvious fashion: x−y = x+(−y) for all elements x and y of F, and moreover
x/y = xy−1 provided that y 6= 0.

1.3 Ordered Fields

Definition An ordered field consists of a field F together with an ordering <
on that field that satisfies the following axioms:—

(x) if x and y are elements of F then one and only one of the three state-
ments x < y, x = y and y < x is true (i.e., the ordering satisfies the
Trichotomy Law);

(xi) if x, y and z are elements of F and if x < y and y < z then x < z (i.e.,
the ordering is transitive);

(xii) if x, y and z are elements of F and if x < y then x+ z < y + z;

(xiii) if x and y are elements of F which satisfy 0 < x and 0 < y then 0 < xy.

We can write x > y in cases where y < x. we can write x ≤ y in cases
where either x = y or x < y. We can write x ≥ y in cases where either x = y
or y < x.

The absolute value |x| of an element number x of an ordered field F is
defined by

|x| =
{
x if x ≥ 0;
−x if x < 0.

Note that |x| ≥ 0 for all x and that |x| = 0 if and only if x = 0. Also
|x + y| ≤ |x| + |y| and |xy| = |x||y| for all elements x and y of the ordered
field F.

Example The rational numbers, with the standard ordering, and the stan-
dard operations of addition, subtraction, multiplication, and division consti-
tute an ordered field.

Example Let Q(
√

2) denote the set of all numbers that can be represented in
the form b+c

√
2, where b and c are rational numbers. The sum and difference

of any two numbers belonging to Q(
√

2) themselves belong to Q(
√

2). Also
the product of any two numbers Q(

√
2) itself belongs to Q(

√
2) because, for

any rational numbers b, c, e and f ,

(b+ c
√

2)(e+ f
√

2) = (be+ 2cf) + (bf + ce)
√

2,
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and both be + 2cf and bf + ce are rational numbers. The reciprocal of any
non-zero element of Q(

√
2) itself belongs to Q(

√
2), because

1

b+ c
√

2
=
b− c

√
2

b2 − 2c2
.

for all rational numbers b and c. It is then a straightforward exercise to verify
that Q(

√
2) is an ordered field.

1.4 Least Upper Bounds

Let S be a subset of an ordered field F. An element u of F is said to be an
upper bound of the set S if x ≤ u for all x ∈ S. The set S is said to be
bounded above if such an upper bound exists.

Definition Let F be an ordered field, and let S be some subset of F which
is bounded above. An element s of F is said to be the least upper bound (or
supremum) of S (denoted by supS) if s is an upper bound of S and s ≤ u
for all upper bounds u of S.

Example The rational number 2 is the least upper bound, in the ordered
field of rational numbers, of the sets {x ∈ Q : x ≤ 2} and {x ∈ Q : x < 2}.
Note that the first of these sets contains its least upper bound, whereas the
second set does not.

The following property is satisfied in some ordered fields but not in others.

Least Upper Bound Property: given any non-empty subset
S of F that is bounded above, there exists an element supS of F
that is the least upper bound for the set S.

Definition A Dedekind-complete ordered field F is an ordered field which
has the Least Upper Bound Property.

1.5 Greatest Lower Bounds

Let S be a subset of an ordered field F. A lower bound of S is an element l of
F with the property that l ≤ x for all x ∈ S. The set S is said to be bounded
below if such a lower bound exists. A greatest lower bound (or infimum) for
a set S is a lower bound for that set that is greater than every other lower
bound for that set. The greatest lower bound of the set S (if it exists) is
denoted by inf S.

Let F be a Dedekind-complete ordered field. Then, given any non-empty
subset S of F that is bounded below, there exists a greatest lower bound (or
infimum) inf S for the set S. Indeed inf S = − sup{x ∈ R : −x ∈ S}.
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Remark It can be proved that any two Dedekind-complete ordered fields are
isomorphic via an isomorphism that respects the ordering and the algebraic
operations on the fields. The theory of Dedekind cuts provides a construction
that yields a Dedekind-complete ordered field that can represent the system
of real numbers. For an account of this construction, and for a proof that
these axioms are sufficient to characterize the real number system, see chap-
ters 27–29 of Calculus, by M. Spivak. The construction of the real number
system using Dedekind cuts is also described in detail in the Appendix to
Chapter 1 of Principles of Real Analysis by W. Rudin.

1.6 Bounded Sets of Real Numbers

The set R of real numbers, with its usual ordering algebraic operations, con-
stitutes a Dedekind-complete ordered field. Thus every non-empty subset S
of R that is bounded above has a least upper bound (or supremum) supS,
and every non-empty subset S of R that is bounded below has a greatest
lower bound (or infimum) inf S.

Let S be a non-empty subset of the real numbers that is bounded (both
above and below). Then the closed interval [inf S, supS] is the smallest
closed interval in the set R of real numbers that contains the set S. Indeed if
S ⊂ [a, b], where a and b are real numbers satisfying a ≤ b, then a ≤ inf S ≤
supS ≤ b, and therefore

S ⊂ [inf S, supS] ⊂ [a, b].

1.7 Convergence of Infinite Sequences of Real Num-
bers

An infinite sequence of real numbers is a sequence of the form x1, x2, x3, . . .,
where xj is a real number for each positive integer j. (More formally, one can
view an infinite sequence of real numbers as a function from N to R which
sends each positive integer j to some real number xj.)

Definition An infinite sequence x1, x2, x3, . . . of real numbers is said to con-
verge to some real number l if and only if the following criterion is satisfied:

given any strictly positive real number ε, there exists some pos-
itive integer N such that |xj − l| < ε for all positive integers j
satisfying j ≥ N .

If the sequence x1, x2, x3, . . . converges to the limit l then we denote this
fact by writing ‘xj → l as j → +∞’, or by writing ‘ lim

j→+∞
xj = l’.
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Let x and l be real numbers, and let ε be a strictly positive real number.
Then |x − l| < ε if and only if both x − l < ε and l − x < ε. It follows
that |x − l| < ε if and only if l − ε < x < l + ε. The condition |x − l| < ε
essentially requires that the value of the real number x should agree with l
to within an error of at most ε. An infinite sequence x1, x2, x3, . . . of real
numbers converges to some real number l if and only if, given any positive
real number ε, there exists some positive integer N such that l−ε < xj < l+ε
for all positive integers j satisfying j ≥ N .

Lemma 1.1 Let S be a subset of the set R of real numbers which is non-
empty and bounded above, and let supS denote the least upper bound of the
set S. Then there exists an infinite sequence x1, x2, x3, . . . such that xj ∈ S
for all positive integers j and lim

j→+∞
xj = supS.

Proof Let s = supS. For each positive integer j, the real number s − 1/j
is not an upper bound for the set S (because s is the least upper bound of
S), and therefore there exists some element xj of S satisfying xj > s− 1/j.
Moreover xj ≤ s for all positive integers j, because s is an upper bound
for the set S. It follows that s − 1/j < xj ≤ s for all positive integers j.
Given any positive real number ε, let N be a positive integer chosen so that
N > 1/ε. Then |xj − s| < ε whenever j ≥ N . It follows that lim

j→+∞
xj = s,

as required.

1.8 Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be strictly increas-
ing if xj+1 > xj for all positive integers j, strictly decreasing if xj+1 < xj for
all positive integers j, non-decreasing if xj+1 ≥ xj for all positive integers j,
non-increasing if xj+1 ≤ xj for all positive integers j. A sequence satisfy-
ing any one of these conditions is said to be monotonic; thus a monotonic
sequence is either non-decreasing or non-increasing.

Theorem 1.2 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.

Proof Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Axiom that there
exists a least upper bound l for the set {xj : j ∈ N}. We claim that the
sequence converges to l.
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Let some strictly positive real number ε be given. We must show that
there exists some positive integer N such that |xj − l| < ε whenever j ≥ N .
Now l− ε is not an upper bound for the set {xj : j ∈ N} (since l is the least
upper bound), and therefore there must exist some positive integer N such
that xN > l− ε. But then l− ε < xj ≤ l whenever j ≥ N , since the sequence
is non-decreasing and bounded above by l. Thus |xj−l| < ε whenever j ≥ N .
Therefore xj → l as j → +∞, as required.

If the sequence x1, x2, x3, . . . is non-increasing and bounded below then
the sequence −x1,−x2,−x3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence x1, x2, x3, . . . is also
convergent.

1.9 Subsequences of Sequences of Real Numbers

Definition Let x1, x2, x3, . . . be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form xj1 , xj2 , xj3 , . . .
where j1, j2, j3, . . . is an infinite sequence of positive integers with

j1 < j2 < j3 < · · · .

Let x1, x2, x3, . . . be an infinite sequence of real numbers. The following
sequences are examples of subsequences of the above sequence:—

x1, x3, x5, x7, . . .

x1, x4, x9, x16, . . .

1.10 The Bolzano-Weierstrass Theorem

Theorem 1.3 (Bolzano-Weierstrass) Every bounded sequence of real num-
bers has a convergent subsequence.

Proof Let a1, a2, a3, . . . be a bounded sequence of real numbers. We define
a peak index to be a positive integer j with the property that aj ≥ ak for all
positive integers k satisfying k ≥ j. Thus a positive integer j is a peak index
if and only if the jth member of the infinite sequence a1, a2, a3, . . . is greater
than or equal to all succeeding members of the sequence. Let S be the set of
all peak indices. Then

S = {j ∈ N : aj ≥ ak for all k ≥ j}.

First let us suppose that the set S of peak indices is infinite. Arrange the
elements of S in increasing order so that S = {j1, j2, j3, j4, . . .}, where j1 <
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j2 < j3 < j4 < · · ·. It follows from the definition of peak indices that aj1 ≥
aj2 ≥ aj3 ≥ aj4 ≥ · · · . Thus aj1 , aj2 , aj3 , . . . is a non-increasing subsequence
of the original sequence a1, a2, a3, . . .. This subsequence is bounded below
(since the original sequence is bounded). It follows from Theorem 1.2 that
aj1 , aj2 , aj3 , . . . is a convergent subsequence of the original sequence.

Now suppose that the set S of peak indices is finite. Choose a positive
integer j1 which is greater than every peak index. Then j1 is not a peak
index. Therefore there must exist some positive integer j2 satisfying j2 > j1
such that aj2 > aj1 . Moreover j2 is not a peak index (because j2 is greater
than j1 and j1 in turn is greater than every peak index). Therefore there
must exist some positive integer j3 satisfying j3 > j2 such that aj3 > aj2 . We
can continue in this way to construct (by induction on j) a strictly increasing
subsequence aj1 , aj2 , aj3 , . . . of our original sequence. This increasing subse-
quence is bounded above (since the original sequence is bounded) and thus
is convergent, by Theorem 1.2. This completes the proof of the Bolzano-
Weierstrass Theorem.

1.11 The Definition of Continuity for Functions of a
Real Variable

Definition Let D be a subset of R, and let f :D → R be a real-valued
function on D. Let s be a point of D. The function f is said to be continuous
at s if, given any positive real number ε, there exists some positive real
number δ such that |f(x)− f(s)| < ε for all x ∈ D satisfying |x− s| < δ. If
f is continuous at every point of D then we say that f is continuous on D.

Lemma 1.4 Let f :D → R be a function defined on some subset D of R,
and let x1, x2, x3, . . . be a sequence of real numbers belonging to D. Suppose
that xj → s as j → +∞, where s ∈ D, and that f is continuous at s. Then
f(xj)→ f(s) as j → +∞.

Proof Let some positive real number ε be given. Then there exists some
positive real number δ such that |f(x) − f(s)| < ε for all x ∈ D satisfying
|x−s| < δ. But then there exists some positive integerN such that |xj−s| < δ
for all j satisfying j ≥ N . Thus |f(xj)− f(s)| < ε whenever j ≥ N . Hence
f(xj)→ f(s) as j → +∞.

1.12 The Intermediate Value Theorem

Theorem 1.5 (The Intermediate Value Theorem) Let a and b be real
numbers satisfying a < b, and let f : [a, b] → R be a continuous function
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defined on the interval [a, b]. Let c be a real number which lies between f(a)
and f(b) (so that either f(a) ≤ c ≤ f(b) or else f(a) ≥ c ≥ f(b).) Then
there exists some s ∈ [a, b] for which f(s) = c.

Proof If f(a) = c then we may take s = a, and if f(b) = c then we may
take s = b.

It remains to consider cases where f(a) < c < f(b) or f(a) > c > f(b).
In the case where f(a) < c < f(b) let g: [a, b] → R be defined such that
g(x) = f(x) − c. In the case where f(a) > c > f(b) let g: [a, b] → R
be defined such that g(x) = c − f(x). In both cases the function g is a
continuous function on [a, b] defined so that g(a) < 0 and g(b) > 0, and in
both cases we must prove the existence of a real number s belonging to the
interval [a, b] for which g(s) = 0.

Let
S = {x ∈ [a, b] : g(x) ≤ 0}.

Then a ∈ S, and x ≤ b for all x ∈ S. The set S is thus non-empty and
bounded above, and therefore there exists a least upper bound supS for the
set S. Let s = supS.

Now it follows from Lemma 1.1 that there exists an infinite sequence
x1, x2, x3, . . . such that xj ∈ S for all positive integers j and lim

j→+∞
xj = s.

Now g(xj) ≤ 0 for all positive integers j (because xj ∈ S). Moreover the
continuity of the function g ensures that g(s) = lim

j→+∞
g(xj). It follows that

g(s) ≤ 0. Moreover s < b (because g(b) > 0), and therefore there exists an
infinite sequence y1, y2, y3, . . . such that s < yj ≤ b for all positive integers j
and lim

j→+∞
yj = s. (Indeed we could take yj = s + (b − s)/j for all positive

integers j.) Now g(yj) > 0 for all positive integers j (because yj 6∈ S), and
g(s) = lim

j→+∞
g(yj), and therefore g(s) ≥ 0. We have now shown that both

g(s) ≤ 0 and g(s) ≥ 0. It follows that g(s) = 0, and thus f(s) = c, as
required.

1.13 The Extreme Value Theorem

Proposition 1.6 Let a and b be real numbers satisfying a < b, and let
f : [a, b] → R be a continuous real-valued function defined on the closed in-
terval [a, b]. Then there exists a positive constant M with the property that
|f(x)| ≤M for all x ∈ [a, b].

Proof Let S be the set consisting of those real numbers t satisfying a ≤ t ≤ b
for which the function f is bounded on [a, t]. A real number t therefore
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belongs to the set S if and only if a ≤ t ≤ b and also there exists some
positive real number Kt with the property that |f(x)| ≤ Kt for all x ∈ [a, t].
Now a ∈ S and t ≤ b for all t ∈ S. Thus set S is non-empty and bounded
above. It follows from the Least Upper Bound Principle that the set S has
a least upper bound supS. Let s = supS. Then s ∈ [a, b].

Now the function f is continuous at s. Therefore there exists some pos-
itive real number δ such that |f(x)| ≤ |f(s)| + 1 for all whenever x ∈ [a, b]
and s − δ < x < s + δ. Also s − δ is not an upper bound for the set S and
therefore there exists some element t of S satisfying s − δ < t ≤ s. There
then exists some positive real number Kt with the property that |f(x)| ≤ Kt

for all x ∈ [a, t].
Let M = max(Kt, |f(s)|+1). Then |f(x)| ≤M for all x ∈ [a, b] satisfying

x < s + δ, and therefore x ∈ S for all x ∈ [a, b] satisfying x < s + δ. If it
were the case that s < b then s would not be an upper bound for the set S,
contradicting the definition of s as the least upper bound of S. Therefore
s = b. It follows that |f(x)| ≤ M for all x ∈ [a, b]. Thus the function f is
bounded on [a, b], as required.

Theorem 1.7 (The Extreme Value Theorem) Let a and b be real num-
bers satisfying a < b, and let f : [a, b]→ R be a continuous real-valued function
defined on the closed interval [a, b]. Then there exist real numbers u and v
belonging to the interval [a, b] such that f(u) ≤ f(x) ≤ f(v) for all x ∈ [a, b].

Proof It follows from Proposition 1.6 that the set

{f(x) : x ∈ [a, b]}

is bounded above and below. This set is also non-empty. It follows that there
exist real numbers M and m such that

M = sup{f(x) : x ∈ [a, b]} and m = inf{f(x) : x ∈ [a, b]}.

If it were the case that f(x) < M for all x ∈ [a, b] then there would exist
a well-defined function g: [a, b]→ R satisfying

g(x) =
1

M − f(x)

for all x ∈ [a, b]. This function would not be bounded, because, given any
positive constant K, there would exist x ∈ [a, b] for which f(x) > M − 1/K
and g(x) > K. The existence of such a function g would contradict the result
of Proposition 1.6. Therefore there must exist v ∈ [a, b] with the property
that f(x) ≤ f(v) for all x ∈ [a, b].
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Similarly there cannot exist any continuous function h: [a, b] → R with
the property that

h(x) =
1

f(x)−m
for all x ∈ [a, b], and therefore there must exist u ∈ [a, b] with the property
that f(u) ≤ f(x) for all x ∈ [a, b]. This completes the proof.

1.14 Uniform Continuity

Definition A function f :D → R is said to be uniformly continuous over a
subset D of R if, given any strictly positive real number ε, there exists some
strictly positive real number δ such that |f(u)− f(v)| < ε for all u, v ∈ [a, b]
satisfying |u− v| < δ. (where δ does not depend on u or v).

A continuous function defined over a subset D of R is not necessarily
uniformly continuous on D. (One can verify for example that the function
sending a non-zero real number x to 1/x is not uniformly continuous on the
set of all non-zero real numbers.) However we show that continuity does
imply uniform continuity when D = [a, b] for some real numbers a and b
satisfying a < b.

Theorem 1.8 Let f : [a, b] → R be a continuous real-valued function on a
closed bounded interval [a, b]. Then the function f is uniformly continuous
on [a, b].

Proof Let some strictly positive real number ε be given. Suppose that there
did not exist any strictly positive real number δ such that |f(u) − f(v)| <
ε whenever |u − v| < δ. Then, for each positive integer j, there would
exist values uj and vj in the interval [a, b] such that |uj − vj| < 1/j and
|f(uj)− f(vj)| ≥ ε. But the sequence u1, u2, u3, . . . would be bounded (since
a ≤ uj ≤ b for all j) and thus would possess a convergent subsequence
uk1 , uk2 , uk3 , . . ., by the Bolzano-Weierstrass Theorem (Theorem 1.3).

Let l = lim
j→+∞

ukj . Then l = lim
j→+∞

vkj also, since lim
j→+∞

(vkj − ukj) = 0.

Moreover a ≤ l ≤ b. It follows from the continuity of f that lim
j→+∞

f(ukj) =

lim
j→+∞

f(vkj) = f(l) (see Lemma 1.4). Thus lim
j→+∞

(
f(ukj)− f(vkj)

)
= 0. But

this is impossible, since uj and vj have been chosen so that |f(uj)−f(vj)| ≥ ε
for all positive integers j. We conclude therefore that there must exist some
strictly positive real number δ with the required property.
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1.15 Historical Note on the Real Number System

From the time of the ancient Greeks to the present day, mathematicians
have recognized the necessity of establishing rigorous foundations for the
discipline. This led mathematicians such as Bolzano, Cauchy and Weierstrass
to establish in the nineteenth century the definitions of continuity, limits
and convergence that are required in order to establish a secure foundation
upon which to build theories of real and complex analysis that underpin the
application of standard techniques of the differential calculus in one or more
variables.

But mathematicians in the nineteenth century realised that, in order to
obtain satisfactory proofs of basic theorems underlying the applications of
calculus, they needed a deeper understanding of the nature of the real num-
ber system. Accordingly Dedekind developed a theory in which real numbers
were represented by Dedekind sections, in which each real number was char-
acterized by means of a partition of the set of rational numbers into two
subsets, where every rational number belonging to the first subset is less
than every rational number belonging to the second. Dedekind published his
construction of the real number system in 1872, in the work Stetigkeit und ir-
rationale Zahlen. In the same year, Georg Cantor published a construction of
the real number system in which real numbers are represented by sequences
of rational numbers satisfying an appropriate convergence criterion.

It has since been shown that the system of real numbers is completely
characterized by the statement that the real numbers constitute an ordered
field which satisfies the Least Upper Bound Axiom.
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2 The Mean Value Theorem

2.1 Interior Points and Open Sets in the Real Line

Definition Let D be a subset of the set R of real numbers, and let s be a
real number belonging to D. We say that s is an interior point of D if there
exists some strictly positive number δ such that x ∈ D for all real numbers x
satisfying s − δ < x < s + δ. The interior of D is then the subset of D
consisting of all real numbers belonging to D that are interior points of D.

Definition Let D be a subset of the set R of real numbers. We say that D
is an open set in R if every point of D is an interior point of D.

Let s be a real number. We say that a function f :D → R is defined
around s if the real number s is an interior point of the domain D of the
function f . It follows that the function f is defined around s if and only if
there exists some strictly positive real number δ such that f(x) is defined for
all real numbers x satisfying s− δ < x < s+ δ.

2.2 Differentiable Functions of a Single Real Variable

We recall basic results of the theory of differentiable functions.

Definition Let s be some real number, and let f be a real-valued function
defined around s. The function f is said to be differentiable at s, with
derivative f ′(s), if and only if the limit

f ′(s) = lim
h→0

f(s+ h)− f(s)

h

is well-defined. We denote by f ′, or by
df

dx
the function whose value at s is

the derivative f ′(s) of f at s.

Let s be some real number, and let f and g be real-valued functions
defined around s that are differentiable at s. The basic rules of differential
calculus then ensure that the functions f+g, f−g and f ·g are differentiable
at s (where

(f+g)(x) = f(x)+g(x), (f−g)(x) = f(x)−g(x) and (f.g)(x) = f(x)g(x)

for all real numbers x at which both f(x) and g(x) are defined), and

(f + g)′(s) = f ′(s) + g′(s), (f − g)′(s) = f ′(s)− g′(s).

12



(f · g)′(s) = f ′(s)g(s) + f(s)g′(s) (Product Rule).

If moreover g(s) 6= 0 then the function f/g is differentiable at s (where
(f/g)(x) = f(x)/g(x) where both f(x) and g(x) are defined), and

(f/g)′(s) =
f ′(s)g(s)− f(s)g′(s)

g(s)2
(Quotient Rule).

Moreover if h is a real-valued function defined around f(s) which is differ-
entiable at f(s) then the composition function h ◦ f is differentiable at f(s)
and

(h ◦ f)′(s) = h′(f(s))f ′(s) (Chain Rule).

Derivatives of some standard functions are as follows:—

d

dx
(xm) = mxm−1,

d

dx
(sinx) = cos x,

d

dx
(cosx) = − sinx,

d

dx
(expx) = exp x,

d

dx
(log x) =

1

x
(x > 0).

2.3 Rolle’s Theorem

Theorem 2.1 (Rolle’s Theorem) Let f : [a, b]→ R be a real-valued function
defined on some interval [a, b]. Suppose that f is continuous on [a, b] and
is differentiable on (a, b). Suppose also that f(a) = f(b). Then there exists
some real number s satisfying a < s < b which has the property that f ′(s) = 0.

Proof First we show that if the function f attains its minimum value at u,
and if a < u < b, then f ′(u) = 0. Now the difference quotient

f(u+ h)− f(u)

h

is non-negative for all sufficiently small positive values of h; therefore f ′(u) ≥
0. On the other hand, this difference quotient is non-positive for all suffi-
ciently small negative values of h; therefore f ′(u) ≤ 0. We deduce therefore
that f ′(u) = 0.

Similarly if the function f attains its maximum value at v, and if a < v <
b, then f ′(v) = 0. (Indeed the result for local maxima can be deduced from
the corresponding result for local minima simply by replacing the function f
by −f .)

Now the function f is continuous on the closed bounded interval [a, b].
It therefore follows from the Extreme Value Theorem that there must exist
real numbers u and v in the interval [a, b] with the property that f(u) ≤

13



f(x) ≤ f(v) for all real numbers x satisfying a ≤ x ≤ b (see Theorem 1.7).
If a < u < b then f ′(u) = 0 and we can take s = u. Similarly if a < v < b
then f ′(v) = 0 and we can take s = v. The only remaining case to consider
is when both u and v are endpoints of the interval [a, b]. In that case the
function f is constant on [a, b], since f(a) = f(b), and we can choose s to be
any real number satisfying a < s < b.

2.4 The Mean Value Theorem

Rolle’s Theorem can be generalized to yield the following important theorem.

Theorem 2.2 (The Mean Value Theorem) Let f : [a, b]→ R be a real-valued
function defined on some interval [a, b]. Suppose that f is continuous on [a, b]
and is differentiable on (a, b). Then there exists some real number s satisfying
a < s < b which has the property that

f(b)− f(a) = f ′(s)(b− a).

Proof Let g: [a, b] → R be the real-valued function on the closed inter-
val [a, b] defined by

g(x) = f(x)− b− x
b− a

f(a)− x− a
b− a

f(b).

Then the function g is continuous on [a, b] and differentiable on (a, b). More-
over g(a) = 0 and g(b) = 0. It follows from Rolle’s Theorem (Theorem 2.1)
that g′(s) = 0 for some real number s satisfying a < s < b. But

g′(s) = f ′(s)− f(b)− f(a)

b− a
.

Therefore f(b)− f(a) = f ′(s)(b− a), as required.

2.5 Concavity and the Second Derivative

Proposition 2.3 Let s and h be real numbers, and let f be a twice dif-
ferentiable real-valued function defined on some open interval containing s
and s+ h. Then there exists a real number θ satisfying 0 < θ < 1 for which

f(s+ h) = f(s) + hf ′(s) + 1
2
h2f ′′(s+ θh).
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Proof Let I be an open interval, containing the real numbers 0 and 1, chosen
to ensure that f(s + th) is defined for all t ∈ I, and let q: I → R be defined
so that

q(t) = f(s+ th)− f(s)− thf ′(s)− t2(f(s+ h)− f(s)− hf ′(s)).

for all t ∈ I. Differentiating, we find that

q′(t) = hf ′(s+ th)− hf ′(s)− 2t(f(s+ h)− f(s)− hf ′(s))

and
q′′(t) = h2f ′′(s+ th)− 2(f(s+ h)− f(s)− hf ′(s)).

Now q(0) = q(1) = 0. It follows from Rolle’s Theorem, applied to the
function q on the interval [0, 1], that there exists some real number ϕ satis-
fying 0 < ϕ < 1 for which q′(ϕ) = 0.

Then q′(0) = q′(ϕ) = 0, and therefore Rolle’s Theorem can be applied
to the function q′ on the interval [0, ϕ] to prove the existence of some real
number θ satisfying 0 < θ < ϕ for which q′′(θ) = 0. Then

0 = q′′(θ) = h2f ′′(s+ θh)− 2(f(s+ h)− f(s)− hf ′(s)).

Rearranging, we find that

f(s+ h) = f(s) + hf ′(s) + 1
2
h2f ′′(s+ θh),

as required.

Corollary 2.4 Let f : (s−δ0, s+δ0) be a twice-differentiable function through-
out some open interval (s − δ0, s + δ0) centred on a real number s. Suppose
that f ′′(s+ h) > 0 for all real numbers h satisfying |h| < δ0. Then

f(s+ h) ≥ f(s) + hf ′(s)

for all real numbers h satisfying |h| < δ0.

It follows from Corollary 2.4 that if a twice-differentiable function has
positive second derivative throughout some open interval, then it is concave
upwards throughout that interval. In particular the function has a local
minimum at any point of that open interval where the first derivative is zero
and the second derivative is positive.

Corollary 2.5 Let f :D → R be a twice-differentiable function defined over
a subset D of R, and let s be a point in the interior of D. Suppose that
f ′(s) = 0 and that f ′′(x) > 0 for all real numbers x belonging to some
sufficiently small neighbourhood of x. Then s is a local minimum for the
function f .
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3 The Riemann Integral in One Real Variable

3.1 Darboux Sums and the Riemann Integral

The approach to the theory of integration discussed below was developed
by Jean-Gaston Darboux (1842–1917). The integral defined using lower and
upper sums in the manner described below is sometimes referred to as the
Darboux integral of a function on a given interval. However the class of func-
tions that are integrable according to the definitions introduced by Darboux
is the class of Riemann-integrable functions. Thus the approach using Dar-
boux sums provides a convenient approach to define and establish the basic
properties of the Riemann integral.

A partition P of an interval [a, b] is a set {x0, x1, x2, . . . , xn} of real num-
bers satisfying a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Given any bounded real-valued function f on [a, b], the lower sum (or
lower Darboux sum) L(P, f) and the upper sum (or upper Darboux sum)
U(P, f) of f for the partition P of [a, b] are defined by

L(P, f) =
n∑
i=1

mi(xi − xi−1), U(P, f) =
n∑
i=1

Mi(xi − xi−1),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Clearly L(P, f) ≤ U(P, f). Moreover

n∑
i=1

(xi−xi−1) = b−a, and therefore

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a),

for any real numbers m and M satisfying m ≤ f(x) ≤M for all x ∈ [a, b].

Definition Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b
a
f(x) dx (or upper Darboux

integral) and the lower Riemann integral L
∫ b
a
f(x) dx (or lower Darboux

integral) of the function f on [a, b] are defined by

U
∫ b

a

f(x) dx = inf {U(P, f) : P is a partition of [a, b]} ,

L
∫ b

a

f(x) dx = sup {L(P, f) : P is a partition of [a, b]} .

The definition of upper and lower integrals thus requires that U
∫ b
a
f(x) dx

be the infimum of the values of U(P, f) and that L
∫ b
a
f(x) dx be the supre-

mum of the values of L(P, f) as P ranges over all possible partitions of the
interval [a, b].
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a x1 x2 x3x4 x5 x6 b
x

f(x)

The upper sum U(P, f)

a x1 x2 x3x4 x5 x6 b
x

f(x)

The lower sum L(P, f)
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Definition A bounded function f : [a, b] → R on a closed bounded interval
[a, b] is said to be Riemann-integrable (or Darboux-integrable) on [a, b] if

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

in which case the Riemann integral
∫ b
a
f(x) dx (or Darboux integral) of f on

[a, b] is defined to be the common value of U
∫ b
a
f(x) dx and L

∫ b
a
f(x) dx.

When a > b we define∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

for all Riemann-integrable functions f on [b, a]. We set
∫ b
a
f(x) dx = 0 when

b = a.
If f and g are bounded Riemann-integrable functions on the interval

[a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx, since

L(P, f) ≤ L(P, g) and U(P, f) ≤ U(P, g) for all partitions P of [a, b].

Definition Let P and R be partitions of [a, b], given by P = {x0, x1, . . . , xn}
and R = {u0, u1, . . . , um}. We say that the partition R is a refinement of P
if P ⊂ R, so that, for each xi in P , there is some uj in R with xi = uj.

Lemma 3.1 Let R be a refinement of some partition P of [a, b]. Then

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f)

for any bounded function f : [a, b]→ R.

Proof Let P = {x0, x1, . . . , xn} and R = {u0, u1, . . . , um}, where a = x0 <
x1 < · · · < xn = b and a = u0 < u1 < · · · < um = b. Now for each
integer i between 0 and n there exists some integer j(i) between 0 and m
such that xi = uj(i) for each i, since R is a refinement of P . Moreover 0 =
j(0) < j(1) < · · · < j(n) = n. For each i, let Ri be the partition of [xi−1, xi]

given by Ri = {uj : j(i − 1) ≤ j ≤ j(i)}. Then L(R, f) =
n∑
i=1

L(Ri, f) and

U(R, f) =
n∑
i=1

U(Ri, f). Moreover

mi(xi − xi−1) ≤ L(Ri, f) ≤ U(Ri, f) ≤Mi(xi − xi−1),

since mi ≤ f(x) ≤ Mi for all x ∈ [xi−1, xi]. On summing these inequal-
ities over i, we deduce that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(P, f), as
required.
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Given any two partitions P and Q of [a, b] there exists a partition R of
[a, b] which is a refinement of both P and Q. For example, we can take
R = P ∪ Q. Such a partition is said to be a common refinement of the
partitions P and Q.

Lemma 3.2 Let f be a bounded real-valued function on the interval [a, b].
Then

L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx.

Proof Let P and Q be partitions of [a, b], and let R be a common refinement
of P and Q. It follows from Lemma 3.1 that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤
U(Q, f). Thus, on taking the supremum of the left hand side of the inequality
L(P, f) ≤ U(Q, f) as P ranges over all possible partitions of the interval [a, b],

we see that L
∫ b
a
f(x) dx ≤ U(Q, f) for all partitions Q of [a, b]. But then,

taking the infimum of the right hand side of this inequality as Q ranges over
all possible partitions of [a, b], we see that L

∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx, as

required.

Example Let f(x) = cx+d, where c ≥ 0. We shall show that f is Riemann-

integrable on [0, 1] and evaluate
∫ 1

0
f(x) dx from first principles.

For each positive integer n, let Pn denote the partition of [0, 1] into n
subintervals of equal length. Thus Pn = {x0, x1, . . . , xn}, where xi = i/n.
Now the function f takes values between (i− 1)c/n+ d and ic/n+ d on the
interval [xi−1, xi], and therefore

mi =
(i− 1)c

n
+ d, Mi =

ic

n
+ d

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Thus

L(Pn, f) =
n∑
i=1

mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d− c

n

)
=

c(n+ 1)

2n
+ d− c

n
=
c

2
+ d− c

2n
,

U(Pn, f) =
n∑
i=1

Mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d

)
=

c(n+ 1)

2n
+ d =

c

2
+ d+

c

2n
.
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It follows that
lim

n→+∞
L(Pn, f) =

c

2
+ d

and
lim

n→+∞
U(Pn, f) =

c

2
+ d

Now L(Pn, f) ≤ L
∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx ≤ U(Pn, f) for all positive

integers n. It follows that L
∫ b
a
f(x) dx = 1

2
c + d = U

∫ b
a
f(x) dx. Thus f is

Riemann-integrable on the interval [0, 1], and
∫ 1

0
f(x) dx = 1

2
c+ d.

Example Let f : [0, 1]→ R be the function defined by

f(x) =

{
1 if x is rational;
0 if x is irrational.

Let P be a partition of the interval [0, 1] given by P = {x0, x1, x2, . . . , xn},
where 0 = x0 < x1 < x2 < · · · < xn = 1. Then

inf{f(x) : xi−1 ≤ x ≤ xi} = 0, sup{f(x) : xi−1 ≤ x ≤ xi} = 1,

for i = 1, 2, . . . , n, and thus L(P, f) = 0 and U(P, f) = 1 for all partitions P

of the interval [0, 1]. It follows that L
∫ 1

0
f(x) dx = 0 and U

∫ 1

0
f(x) dx = 1,

and therefore the function f is not Riemann-integrable on the interval [0, 1].

3.2 Basic Properties of the Riemann Integral

Lemma 3.3 Let f : [a, b] → R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a ≤ b. Then the
lower and upper Riemann integrals of f and −f are related by the identities

U
∫ b

a

(−f(x)) dx = −L
∫ b

a

f(x) dx,

L
∫ b

a

(−f(x)) dx = −U
∫ b

a

f(x) dx.

Proof Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b,

and let

mi = inf{f(x) : xi−1 ≤ x ≤ xi},
Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
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Then the lower and upper sums of f for the partition P are given by the
formulae

L(P, f) =
n∑
i=1

mi(xi − xi−1), U(P, f) =
n∑
i=1

Mi(xi − xi−1).

Now

sup{−f(x) : xi−1 ≤ x ≤ xi}
= − inf{f(x) : xi−1 ≤ x ≤ xi} = −mi,

inf{−f(x) : xi−1 ≤ x ≤ xi}
= − sup{f(x) : xi−1 ≤ x ≤ xi} = −Mi

It follows that

U(P,−f) =
n∑
i=1

(−mi)(xi − xi−1) = −L(P, f),

L(P,−f) =
n∑
i=1

(−Mi)(xi − xi−1) = −U(P, f).

We have now shown that

U(P,−f) = −L(P, f) and L(P,−f) = −U(P, f)

for all partitions P of the interval [a, b]. Applying the definition of the upper
and lower integrals, we see that

U
∫ b

a

(−f(x)) dx = inf {U(P,−f) : P is a partition of [a, b]}

= inf {−L(P, f) : P is a partition of [a, b]}
= − sup {L(P, f) : P is a partition of [a, b]}

= −L
∫ b

a

f(x) dx

Similarly

L
∫ b

a

(−f(x)) dx = sup {L(P,−f) : P is a partition of [a, b]}

= sup {−U(P, f) : P is a partition of [a, b]}
= − inf {U(P, f) : P is a partition of [a, b]}

= −U
∫ b

a

f(x) dx.

This completes the proof.
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Lemma 3.4 Let f : [a, b] → R and g: [a, b] → R be bounded functions on
a closed bounded interval [a, b], where a and b are real numbers satisfying
a ≤ b, and let P be a partition of the interval [a, b]. Then the lower sums of
the functions f , g and f + g satisfy

L(P, f + g) ≥ L(P, f) + L(P, g),

and the upper sums of these functions satisfy

U(P, f + g) ≤ U(P, f) + U(P, g).

Proof Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b.

Then

L(P, f) =
n∑
i=1

mi(f)(xi − xi−1),

L(P, g) =
n∑
i=1

mi(g)(xi − xi−1),

L(P, f + g) =
n∑
i=1

mi(f + g)(xi − xi−1),

where

mi(f) = inf{f(x) : xi−1 ≤ x ≤ xi},
mi(g) = inf{g(x) : xi−1 ≤ x ≤ xi},

mi(f + g) = inf{f(x) + g(x) : xi−1 ≤ x ≤ xi}

for i = 1, 2, . . . , n.
Now

f(x) ≥ mi(f) and g(x) ≥ mi(g).

for all x ∈ [xi−1, xi]. Adding, we see that

f(x) + g(x) ≥ mi(f) +mi(g)

for all x ∈ [xi−1, xi], and therefore mi(f) +mi(g) is a lower bound for the set

{f(x) + g(x) : xi−1 ≤ x ≤ xi}.
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The greatest lower bound for this set is mi(f + g). Therefore

mi(f + g) ≥ mi(f) +mi(g).

It follows that

L(P, f + g) =
n∑
i=1

mi(f + g)(xi − xi−1)

≥
n∑
i=1

(mi(f) +mi(g))(xi − xi−1)

=
n∑
i=1

mi(f)(xi − xi−1) +
n∑
i=1

mi(g)(xi − xi−1)

= L(P, f) + L(P, g).

An analogous argument applies to upper sums. Now

U(P, f) =
n∑
i=1

Mi(f)(xi − xi−1),

U(P, g) =
n∑
i=1

Mi(g)(xi − xi−1),

U(P, f + g) =
n∑
i=1

Mi(f + g)(xi − xi−1),

where

Mi(f) = sup{f(x) : xi−1 ≤ x ≤ xi},
Mi(g) = sup{g(x) : xi−1 ≤ x ≤ xi},

Mi(f + g) = sup{f(x) + g(x) : xi−1 ≤ x ≤ xi}

for i = 1, 2, . . . , n.
Now

f(x) ≤Mi(f) and g(x) ≤Mi(g).

for all x ∈ [xi−1, xi]. Adding, we see that

f(x) + g(x) ≤Mi(f) +Mi(g)

for all x ∈ [xi−1, xi], and therefore Mi(f) +Mi(g) is an upper bound for the
set

{f(x) + g(x) : xi−1 ≤ x ≤ xi}.
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The least upper bound for this set is Mi(f + g). Therefore

Mi(f + g) ≤Mi(f) +Mi(g).

It follows that

U(P, f + g) =
n∑
i=1

Mi(f + g)(xi − xi−1)

≤
n∑
i=1

(Mi(f) +Mi(g))(xi − xi−1)

=
n∑
i=1

Mi(f)(xi − xi−1) +
n∑
i=1

Mi(g)(xi − xi−1)

= U(P, f) + U(P, g).

This completes the proof that

L(P, f + g) ≥ L(P, f) + L(P, g)

and
U(P, f + g) ≤ U(P, f) + U(P, g).

Proposition 3.5 Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-
integrable functions on a closed bounded interval [a, b], where a and b are
real numbers satisfying a ≤ b. Then the functions f + g and f − g are
Riemann-integrable on [a, b], and moreover∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

and ∫ b

a

(f(x)− g(x)) dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx.

Proof Let some strictly positive real number ε be given. The definition
of Riemann-integrability and the Riemann integral ensures that there exist
partitions P and Q of [a, b] for which

L(P, f) >

∫ b

a

f(x) dx− 1
2
ε

and

L(Q, g) >

∫ b

a

g(x) dx− 1
2
ε.
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Let the partition R be a common refinement of the partitions P and Q. Then

L(R, f) ≥ L(P, f) and L(R, g) ≥ L(P, g).

Applying Lemma 3.4, and the definition of the lower Riemann integral, we
see that

L
∫ b

a

(f(x) + g(x)) dx

≥ L(R, f + g) ≥ L(R, f) + L(R, g)

≥ L(P, f) + L(Q, g)

>

(∫ b

a

f(x) dx− 1
2
ε

)
+

(∫ b

a

g(x) dx− 1
2
ε

)
>

∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε

We have now shown that

L
∫ b

a

(f(x) + g(x)) dx >

∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε

for all strictly positive real numbers ε. However the quantities of

L
∫ b

a

(f(x) + g(x)) dx,

∫ b

a

f(x) dx and

∫ b

a

g(x) dx

have values that have no dependence whatsoever on the value of ε. It follows
that

L
∫ b

a

(f(x) + g(x)) dx ≥
∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

We can deduce a corresponding inequality involving the upper integral of
f +g by replacing f and g by −f and −g respectively (Lemma 3.3). We find
that

L
∫ b

a

(−f(x)− g(x)) dx ≥
∫ b

a

(−f(x)) dx+

∫ b

a

(−g(x)) dx

= −
∫ b

a

f(x) dx−
∫ b

a

g(x) dx

and therefore

U
∫ b

a

(f(x) + g(x)) dx = −L
∫ b

a

(−f(x)− g(x)) dx

≤
∫ b

a

f(x) dx+

∫ b

a

g(x) dx.
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Combining the inequalities obtained above, we find that∫ b

a

f(x) dx+

∫ b

a

g(x) dx

≤ L
∫ b

a

(f(x) + g(x)) dx

≤ U
∫ b

a

(f(x) + g(x)) dx

≤
∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

The quantities at the left and right hand ends of this chain of inequalities
are equal to each other. It follows that

L
∫ b

a

(f(x) + g(x)) dx = U
∫ b

a

(f(x) + g(x)) dx

=

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Thus the function f + g is Riemann-integrable on [a, b], and∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Then, replacing g by −g, we find that∫ b

a

(f(x)− g(x)) dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx.

as required.

Proposition 3.6 Let f : [a, b]→ R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a ≤ b. Then the
function f is Riemann-integrable on [a, b] if and only if, given any positive
real number ε, there exists a partition P of [a, b] with the property that

U(P, f)− L(P, f) < ε.

Proof First suppose that f : [a, b] → R is Riemann-integrable on [a, b]. Let
some positive real number ε be given. Then∫ b

a

f(x) dx
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is equal to the common value of the lower and upper integrals of the func-
tion f on [a, b], and therefore there exist partitions Q and R of [a, b] for
which

L(Q, f) >

∫ b

a

f(x) dx− 1
2
ε

and

U(R, f) <

∫ b

a

f(x) dx+ 1
2
ε.

Let P be a common refinement of the partitions Q and R. Now

L(Q, f) ≤ L(P, f) ≤ U(P, f) ≤ U(R, f).

(see Lemma 3.1). It follows that

U(P, f)− L(P, f) ≤ U(R, f)− L(Q, f) < ε.

Now suppose that f : [a, b] → R is a bounded function on [a, b] with the
property that, given any positive real number ε, there exists a partition P of
[a, b] for which U(P, f)− L(P, f) < ε. Let ε > 0 be given. Then there exists
a partition P of [a, b] for which U(P, f) − L(P, f) < ε. Now it follows from
the definitions of the upper and lower integrals that

L(P, f) ≤ L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx ≤ U(P, f),

and therefore

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < U(P, f)− L(P, f) < ε.

Thus the difference between the values of the upper and lower integrals of f
on [a, b] must be less than every strictly positive real number ε, and therefore

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx.

This completes the proof.

Let u and v be real numbers. Then

|u| ≤ |u− v|+ |v| and |v| ≤ |u− v|+ |u|,

and therefore |u|−|v| ≤ |u−v|. Interchanging u and v, and using the identity
|u− v| = |v − u|, we see that |v| − |u| ≤ |u− v|. It follows from this that∣∣∣|u| − |v|∣∣∣ ≤ |u− v|
for all real numbers u and v.
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Lemma 3.7 Let f :X → R be a bounded real-valued function defined on a
non-empty set X, and let

MX(f) = sup{f(x) : x ∈ X},
mX(f) = inf{f(x) : x ∈ X}.

Then
|f(v)− f(u)| ≤MX(f)−mX(f)

for all u, v ∈ X.

Proof Let u, v ∈ X. Then either f(v) ≥ f(u) or f(u) ≥ f(v). In the case
where f(v) ≥ f(u) the inequalities mX(f) ≤ f(u) ≤ f(v) ≤ MX(f) ensure
that |f(v) − f(u)| ≤ MX(f) − mX(f). In the case where f(u) ≥ f(v) the
inequalities mX(f) ≤ f(v) ≤ f(u) ≤ MX(f) ensure that |f(v) − f(u)| ≤
MX(f)−mX(f). The result follows.

Lemma 3.8 Let f :X → R be a bounded real-valued function defined on a
non-empty set X, and let

MX(f) = sup{f(x) : x ∈ X},
MX(|f |) = sup{|f(x)| : x ∈ X},
mX(f) = inf{f(x) : x ∈ X},
mX(|f |) = inf{|f(x)| : x ∈ X}.

Then
MX(|f |)−mX(|f |) ≤MX(f)−mX(f).

Proof Let δ be a positive real number. Then there exist u, v ∈ X such that

mX(|f |) ≤ |f(u)| < mX(|f |) + δ

and
MX(|f |)− δ < |f(v)| ≤MX(|f |).

Then
|f(v)| − |f(u)| > MX(|f |)−mX(|f |)− 2δ.

But
|f(v)| − |f(u)| ≤ |f(v)− f(u)|,
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and
|f(v)− f(u)| ≤MX(f)−mX(f)

(see Lemma 3.7). It follows that

MX(|f |)−mX(|f |)− 2δ < |f(v)| − |f(u)| ≤ |f(v)− f(u)|
≤ MX(f)−mX(f).

But the values of MX(|f |)−mX(|f |) and MX(f)−mX(f) are independent
of δ, where δ > 0. It follows that

MX(|f |)−mX(|f |) ≤MX(f)−mX(f),

as required.

Lemma 3.9 Let f : [a, b]→ R be a bounded Riemann-integrable function on
a closed interval [a, b], where a and b are real numbers satisfying a ≤ b,
let |f |: [a, b] → R be the function defined such that |f |(x) = |f(x)| for all
x ∈ [a, b], and let P be a partition of the interval [a, b]. Then the Darboux
sums U(P, f) and L(P, f) of the function f on [a, b] and the Darboux sums
U(P, |f |) and L(P, |f |) of the function |f | on [a, b] satisfy the inequality

U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f).

Proof Let P be a partition of [a, b], and let

P = {x0, x1, x2, . . . , xn},

where
a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

and let

Mi(f) = sup{f(x) : xi−1 ≤ x ≤ xi},
Mi(|f |) = sup{|f(x)| : xi−1 ≤ x ≤ xi},
mi(f) = inf{f(x) : xi−1 ≤ x ≤ xi},
mi(|f |) = inf{|f(x)| : xi−1 ≤ x ≤ xi}

for i = 1, 2, . . . , n. It follows from Lemma 3.8 that

Mi(|f |)−mi(|f |) ≤Mi(f)−mi(f)
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for i = 1, 2, . . . , n. Now the Darboux sums of the functions f and |f | for the
partition P are defined by the identities

L(P, f) =
n∑
i=1

mi(f)(xi − xi−1),

L(P, |f |) =
n∑
i=1

mi(|f |)(xi − xi−1),

U(P, f) =
n∑
i=1

Mi(f)(xi − xi−1),

U(P, |f |) =
n∑
i=1

Mi(|f |)(xi − xi−1).

It follows that

U(P, |f |)− L(P, |f |) =
n∑
i=1

(Mi(|f |)−mi(|f |))(xi − xi−1)

≤
n∑
i=1

(Mi(f)−mi(f))(xi − xi−1)

= U(P, f)− L(P, f),

as required.

Proposition 3.10 Let f : [a, b] → R be a bounded Riemann-integrable func-
tion on a closed interval [a, b], where a and b are real numbers satisfying
a ≤ b, and let |f |: [a, b]→ R be the function defined such that |f |(x) = |f(x)|
for all x ∈ [a, b]. Then the function |f | is Riemann-integrable on [a, b], and∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

Proof Let some positive real number ε be given. It follows from Proposi-
tion 3.6 that there exists a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.

It then follows from Lemma 3.9 that

U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f) < ε.
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Proposition 3.6 then ensures that the function |f | is Riemann-integrable on
[a, b].

Now −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ [a, b]. It follows that

−
∫ b

a

|f(x)| dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx.

It follows that ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx,

as required.

Let X be a non-empty set, and let f :X → R and g:X → R be real-valued
functions on X. We denote by f · g:XR the product function defined such
that We denote by (f · g)(x) = f(x)g(x) for all x ∈ X.

Lemma 3.11 Let f :X → R and g:X → R be bounded real-valued functions
defined on a non-empty set X, let K be a positive real number with the
property that |f(x)| ≤ K and |g(x)| ≤ K for all x ∈ X, and let

MX(f) = sup{f(x) : x ∈ X},
MX(g) = sup{g(x) : x ∈ X},

MX(f · g) = sup{f(x)g(x) : x ∈ X},
mX(f) = inf{f(x) : x ∈ X},
mX(g) = inf{g(x) : x ∈ X},

mX(f · g) = inf{f(x)g(x) : x ∈ X}.

Then

MX(f · g)−mX(f · g) ≤ K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
.

Proof Let u and v be elements of the set X. Then

f(v)g(v)− f(u)g(u) = (f(v)− f(u))g(v) + f(u)(g(v)− g(u)),

and therefore

|f(v)g(v)− f(u)g(u)|
≤ |f(v)− f(u)| |g(v)|+ |f(u)| |g(v)− g(u)|,

≤ K
(
|f(v)− f(u)|+ |g(v)− g(u)|

)
.
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Now |f(v) − f(u)| ≤ MX(f) −mX(f) and |g(v) − g(u)| ≤ MX(g) −mX(g)
and (see Lemma 3.7). Therefore

|f(v)g(v)− f(u)g(u)| ≤ K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
.

Now, given any positive real number δ, elements u and v of X can be
chosen so that

mX(f · g) ≤ f(u)g(u) < mX(f · g) + δ

and
MX(f · g)− δ < f(v)g(v) ≤MX(f · g).

Then
f(v)g(v)− f(u)g(u) > MX(f · g)−mX(f · g)− 2δ.

It follows that

MX(f · g)−mX(f · g)− 2δ < K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
for all positive real numbers δ, and therefore

MX(f · g)−mX(f · g) ≤ K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
,

as required.

Lemma 3.12 Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-
integrable functions on a closed interval [a, b], where a and b are real num-
bers satisfying a ≤ b, let K be a positive real number with the property that
|f(x)| ≤ K and |g(x)| ≤ K for all x ∈ [a, b], and let P be a partition of the
interval [a, b]. Then the Darboux sums U(P, f), U(P, g), U(P, f · g), L(P, f),
L(P, g) and L(P, f · g) of the functions f , g and f · g on [a, b] satisfy the
inequality

U(P, f · g)− L(P, f · g)

≤ K
(
U(P, f)− L(P, f) + U(P, g)− L(P, g)

)
.

Proof Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b.
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Then

U(P, f) =
n∑
i=1

Mi(f)(xi − xi−1),

U(P, g) =
n∑
i=1

Mi(g)(xi − xi−1),

U(P, f · g) =
n∑
i=1

Mi(f · g)(xi − xi−1),

L(P, f) =
n∑
i=1

mi(f)(xi − xi−1),

L(P, g) =
n∑
i=1

mi(g)(xi − xi−1),

L(P, f · g) =
n∑
i=1

mi(f · g)(xi − xi−1),

where

Mi(f) = sup{f(x) : xi−1 ≤ x ≤ xi},
Mi(g) = sup{g(x) : xi−1 ≤ x ≤ xi},

Mi(f · g) = sup{f(x)g(x) : xi−1 ≤ x ≤ xi}
mi(f) = inf{f(x) : xi−1 ≤ x ≤ xi},
mi(g) = inf{g(x) : xi−1 ≤ x ≤ xi},

mi(f · g) = inf{f(x)g(x) : xi−1 ≤ x ≤ xi}.

for i = 1, 2, . . . , n.
Now it follows from Lemma 3.11 that

Mi(f · g)−mi(f · g) ≤ K
(
Mi(f)−mi(f) +Mi(g)−mi(g)

)
.

for i = 1, 2, . . . , n. The required inequality therefore holds on multiplying
both sides of the inequality above by xi−xi−1 and summing over all integers
between 1 and n.

Proposition 3.13 Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-
integrable functions on a closed bounded interval [a, b], where a and b are real
numbers satisfying a ≤ b. Then the function f · g is Riemann-integrable on
[a, b], where (f · g)(x) = f(x)g(x) for all x ∈ [a, b].
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Proof The functions f and g are bounded on [a, b], and therefore there
exists some positive real number K with the property that |f(x)| ≤ K and
|g(x)| ≤ K for all x ∈ [a, b].

Let some positive real number ε be given. It follows from Proposition 3.6
that there exist partitions Q and R of the closed interval [a, b] for which

U(Q, f)− L(Q, f) <
ε

2K

and
U(R, g)− L(R, g) <

ε

2K
.

Let P be a common refinement of the partitions Q and R. It follows from
Lemma 3.1 that

U(P, f)− L(P, f) ≤ U(Q, f)− L(Q, f) <
ε

2K

and
U(P, g)− L(P, g) ≤ U(R, g)− L(R, g) <

ε

2K
.

It then follows from Proposition 3.12 that

U(P, f · g)− L(P, f · g)

≤ K
(
U(P, f)− L(P, f) + U(P, g)− L(P, g)

)
< ε

We have thus shown that, given any positive real number ε, there exists a
partition P of the closed bounded interval [a, b] with the property that

U(P, f · g)− L(P, f · g) < ε.

It follows from Proposition 3.6 that the product function f · g is Riemann-
integrable, as required.

Proposition 3.14 Let f be a bounded real-valued function on the interval
[a, c]. Suppose that f is Riemann-integrable on the intervals [a, b] and [b, c],
where a < b < c. Then f is Riemann-integrable on [a, c], and∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Proof Let some positive real number ε be given. The function f is Riemann-
integrable on the interval [a, b] and therefore there exists a partition Q of [a, b]
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such that the lower Darboux sum L(Q, f) of f on [a, b] with respect to the
partition Q of [a, b] satisfies

L(Q, f) >

∫ b

a

f(x) dx− 1
2
ε.

Similarly there exists a partition R of [b, c] of [a, b] such that the lower Dar-
boux sum L(Q, f) of f on [b, c] with respect to the partition R of [b, c] satisfies

L(R, f) >

∫ c

b

f(x) dx− 1
2
ε.

Now the partitions Q and R combine to give a partition P of the interval
[a, c], where P = Q ∪ R. Indeed Q = {u0, u1, . . . , um}, where u0, u1, . . . , um
are real numbers satisfying

a = u0 < u1 < u2 < · · ·um−1 < um = b,

and R = {v0, v1, . . . , vn}, where v0, v1, . . . , vn are real numbers satisfying

b = v0 < v1 < v2 < · · · vn−1 < vn = c.

Then
P = {a, u1, u2, . . . , um−1, b, v1, v2, . . . , vn−1, c}.

It follows directly from the definition of Darboux lower sums that

L(P, f) = L(Q, f) + L(R, f).

The choice of the partitions Q and R then ensures that

L(P, f) >

∫ b

a

f(x) dx+

∫ c

b

f(x) dx− ε.

The lower Riemann integral L
∫ c

a

f(x) dx is by definition the least upper

bound of the lower Darboux sums of f on the interval [a, c]. It follows that

L
∫ c

a

f(x) dx >

∫ b

a

f(x) dx+

∫ c

b

f(x) dx− ε.

Moreover this inequality holds for all values of the positive real number ε. It
follows that

L
∫ c

a

f(x) dx ≥
∫ b

a

f(x) dx+

∫ c

b

f(x) dx.
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Applying this result with the function f replaced by −f yields the in-
equality

L
∫ c

a

(−f(x)) dx ≥ −
∫ b

a

f(x) dx−
∫ c

b

f(x) dx.

But

L
∫ c

a

(−f(x)) dx = −U
∫ c

a

f(x) dx

(see Lemma 3.3). It follows that

U
∫ c

a

f(x) dx ≤
∫ b

a

f(x) dx+

∫ c

b

f(x) dx ≤ L
∫ c

a

f(x) dx.

But

L
∫ c

a

f(x) dx ≤ U
∫ c

a

f(x) dx.

It follows that

L
∫ c

a

f(x) dx = U
∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

The result follows.

3.3 Integrability of Monotonic Functions

Let a and b be real numbers satisfying a < b. A real-valued function
f : [a, b] → R defined on the closed bounded interval [a, b] is said to be non-
decreasing if f(u) ≤ f(v) for all real numbers u and v satisfying a ≤ u ≤ v ≤
b. Similarly f : [a, b] → R is said to be non-increasing if f(u) ≥ f(v) for all
real numbers u and v satisfying a ≤ u ≤ v ≤ b. The function f : [a, b]→ R is
said to be monotonic on [a, b] if either it is non-decreasing on [a, b] or else it
is non-increasing on [a, b].

Proposition 3.15 Let a and b be real numbers satisfying a < b. Then every
monotonic function on the interval [a, b] is Riemann-integrable on [a, b].

Proof Let f : [a, b]→ R be a non-decreasing function on the closed bounded
interval [a, b]. Then f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b], and therefore the
function f is bounded on [a, b]. Let some positive real number ε be given.
Let δ be some strictly positive real number for which (f(b)−f(a))δ < ε, and
let P be a partition of [a, b] of the form P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b
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and xi − xi−1 < δ for i = 1, 2, . . . , n.
The maximum and minimum values of f(x) on the interval [xi−1, xi] are

attained at xi and xi−1 respectively, and therefore the upper sum U(P, f)
and L(P, f) of f for the partition P satisfy

U(P, f) =
n∑
i=1

f(xi)(xi − xi−1)

and

L(P, f) =
n∑
i=1

f(xi−1)(xi − xi−1).

Now f(xi)− f(xi−1) ≥ 0 for i = 1, 2, . . . , n. It follows that

U(P, f)− L(P, f)

=
n∑
i=1

(f(xi)− f(xi−1))(xi − xi−1)

< δ
n∑
i=1

(f(xi)− f(xi−1)) = δ(f(b)− f(a)) < ε.

We have thus shown that

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < ε

for all strictly positive numbers ε. But

U
∫ b

a

f(x) dx ≥ L
∫ b

a

f(x) dx.

It follows that

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].
Now let f : [a, b]→ R be a non-increasing function on [a, b]. Then −f is a

non-decreasing function on [a, b] and it follows from what we have just shown
that −f is Riemann-integrable on [a, b]. It follows that the function f itself
must be Riemann-integrable on [a, b], as required.

Corollary 3.16 Let a and b be real numbers satisfying a < b, and let f : [a, b]→
R be a real-valued function on the interval [a, b]. Suppose that there exist real
numbers x0, x1, . . . , xn, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,
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such that the function f restricted to the interval [xi−1, xi] is monotonic on
[xi−1, xi] for i = 1, 2, . . . , n. Then f is Riemann-integrable on [a, b].

Proof The result follows immediately on applying the results of Proposi-
tion 3.14 and Proposition 3.15.

Remark The result and proof of Proposition 3.15 are to be found in their es-
sentials, though expressed in different language, in Isaac Newton, Philosophiae
naturalis principia mathematica (1686), Book 1, Section 1, Lemmas 2 and 3.

3.4 Integrability of Continuous functions

Theorem 3.17 Let a and b be real numbers satisfying a < b. Then any
continuous real-valued function on the interval [a, b] is Riemann-integrable.

Proof Let f be a continuous real-valued function on [a, b]. Then f is
bounded above and below on the interval [a, b], and moreover f : [a, b]→ R is
uniformly continuous on [a, b]. (These results follow from Theorem 1.7 and
Theorem 1.8.) Therefore there exists some strictly positive real number δ
such that |f(x)− f(y)| < ε whenever x, y ∈ [a, b] satisfy |x− y| < δ.

Choose a partition P of the interval [a, b] such that each subinterval in
the partition has length less than δ. Write P = {x0, x1, . . . , xn}, where
a = x0 < x1 < · · · < xn = b. Now if xi−1 ≤ x ≤ xi then |x − xi| < δ, and
hence f(xi)− ε < f(x) < f(xi) + ε. It follows that

f(xi)− ε ≤ mi ≤Mi ≤ f(xi) + ε (i = 1, 2, . . . , n),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Therefore

n∑
i=1

f(xi)(xi − xi−1)− ε(b− a)

≤ L(P, f) ≤ U(P, f)

≤
n∑
i=1

f(xi)(xi − xi−1) + ε(b− a),

where L(P, f) and U(P, f) denote the lower and upper sums of the function f
for the partition P .

We have now shown that

0 ≤ U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx ≤ U(P, f)− L(P, f) ≤ 2ε(b− a).
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But this inequality must be satisfied for any strictly positive real number ε.
Therefore

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].

3.5 The Fundamental Theorem of Calculus

Let a and b be real numbers satisfying a < b. One can show that all con-
tinuous functions on the interval [a, b] are Riemann-integrable (see Theo-
rem 3.17). However the task of calculating the Riemann integral of a contin-
uous function directly from the definition is difficult if not impossible for all
but the simplest functions. Thus to calculate such integrals one makes use
of the Fundamental Theorem of Calculus.

Theorem 3.18 (The Fundamental Theorem of Calculus) Let f be a
continuous real-valued function on the interval [a, b], where a < b. Then

d

dx

(∫ x

a

f(t) dt

)
= f(x)

for all x satisfying a < x < b.

Proof Let some strictly positive real number ε be given, and let ε0 be a real
number chosen so that 0 < ε0 < ε. (For example, one could choose ε0 = 1

2
ε.)

Now the function f is continuous at x, where a < x < b. It follows that there
exists some strictly positive real number δ such that

f(x)− ε0 ≤ f(t) ≤ f(x) + ε0

for all t ∈ [a, b] satisfying x− δ < t < x+ δ.
Let F (s) =

∫ s
a
f(t) dt for all s ∈ (a, b). Then

F (x+ h) =

∫ x+h

a

f(t) dt =

∫ x

a

f(t) dt+

∫ x+h

x

f(t) dt

= F (x) +

∫ x+h

x

f(t) dt

whenever x+ h ∈ [a, b]. Also

1

h

∫ x+h

x

f(x) dt =
f(x)

h

∫ x+h

x

dt = f(x),
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because f(x) is constant as t varies between x and x+ h. It follows that

F (x+ h)− F (x)

h
− f(x) =

1

h

∫ x+h

x

(f(t)− f(x)) dt

whenever x+ h ∈ [a, b]. But if 0 < |h| < δ and x+ h ∈ [a, b] then

−ε0 ≤ f(t)− f(x) ≤ ε0

for all real numbers t belonging to the closed interval with endpoints x and
x+ h, and therefore

−ε0|h| ≤
∫ x+h

x

(f(t)− f(x)) dt ≤ ε0|h|.

It follows that ∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ ≤ ε0 < ε

whenever x+ h ∈ [a, b] and 0 < |h| < δ. We conclude that

d

dx

(∫ x

a

f(t) dt

)
= lim

h→0

F (x+ h)− F (x)

h
= f(x),

as required.

Let f : [a, b] → R be a continuous function on a closed interval [a, b]. We
say that f is continuously differentiable on [a, b] if the derivative f ′(x) of f
exists for all x satisfying a < x < b, the one-sided derivatives

f ′(a) = lim
h→0+

f(a+ h)− f(a)

h
,

f ′(b) = lim
h→0−

f(b+ h)− f(b)

h

exist at the endpoints of [a, b], and the function f ′ is continuous on [a, b].
If f : [a, b] → R is continuous, and if F (x) =

∫ x
a
f(t) dt for all x ∈ [a, b]

then the one-sided derivatives of F at the endpoints of [a, b] exist, and

lim
h→0+

F (a+ h)− F (a)

h
= f(a), lim

h→0−

F (b+ h)− F (b)

h
= f(b).

One can verify these results by adapting the proof of the Fundamental The-
orem of Calculus.
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Corollary 3.19 Let f be a continuously differentiable real-valued function
on the interval [a, b]. Then∫ b

a

df(x)

dx
dx = f(b)− f(a)

Proof Define g: [a, b]→ R by

g(x) = f(x)− f(a)−
∫ x

a

df(t)

dt
dt.

Then g(a) = 0, and

dg(x)

dx
=
df(x)

dx
− d

dx

(∫ x

a

df(t)

dt
dt

)
= 0

for all x satisfying a < x < b, by the Fundamental Theorem of Calculus.
Now it follows from the Mean Value Theorem (Theorem 2.2) that there
exists some s satisfying a < s < b for which g(b) − g(a) = (b − a)g′(s). We
deduce therefore that g(b) = 0, which yields the required result.

Corollary 3.20 (Integration by Parts) Let f and g be continuously dif-
ferentiable real-valued functions on the interval [a, b]. Then∫ b

a

f(x)
dg(x)

dx
dx = f(b)g(b)− f(a)g(a)−

∫ b

a

g(x)
df(x)

dx
dx.

Proof This result follows from Corollary 3.19 on integrating the identity

f(x)
dg(x)

dx
=

d

dx
(f(x)g(x))− g(x)

df(x)

dx
.

Corollary 3.21 (Integration by Substitution) Let u: [a, b]→ R be a con-
tinuously differentiable monotonically increasing function on the interval [a, b],
and let c = u(a) and d = u(b). Then∫ d

c

f(x) dx =

∫ b

a

f(u(t))
du(t)

dt
dt.

for all continuous real-valued functions f on [c, d].

Proof Let F and G be the functions on [a, b] defined by

F (x) =

∫ u(x)

c

f(y)dy, G(x) =

∫ x

a

f(u(t))
du(t)

dt
dt.
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Then F (a) = 0 = G(a). Moreover F (x) = H(u(x)), where

H(s) =

∫ s

c

f(y) dy,

and H ′(s) = f(s) for all s ∈ [a, b]. Using the Chain Rule and the Fundamen-
tal Theorem of Calculus, we deduce that

F ′(x) = H ′(u(x))u′(x) = f(u(x))u′(x) = G′(x)

for all x ∈ (a, b). On applying the Mean Value Theorem (Theorem 2.2) to the
function F−G on the interval [a, b], we see that F (b)−G(b) = F (a)−G(a) =
0. Thus H(d) = F (b) = G(b), which yields the required identity.

3.6 Interchanging Limits and Integrals

Let f1, f2, f3, . . . be a sequence of Riemann-integrable functions defined over
the interval [a, b], where a and b are real numbers satisfying a ≤ b. Suppose
that the sequence f1(x), f2(x), f3(x) converges for all x ∈ [a, b]. We wish to
determine whether or not

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

(
lim

j→+∞
fj(x)

)
dx.

The following example demonstrates that this identity can fail to hold, even
when the functions involved are well-behaved polynomial functions.

Example Let f1, f2, f3, . . . be the sequence of continuous functions on the
interval [0, 1] defined by fj(x) = j(xj − x2j). Now

lim
j→+∞

∫ 1

0

fj(x) dx = lim
j→+∞

(
j

j + 1
− j

2j + 1

)
=

1

2
.

On the other hand, we shall show that lim
j→+∞

fj(x) = 0 for all x ∈ [0, 1]. Thus

one cannot interchange limits and integrals in this case.
Suppose that 0 ≤ x < 1. We claim that jxj → 0 as j → +∞. Now

lim
j→+∞

j + 1

j
= 1.

It follows that

lim
j→+∞

(j + 1)x

j
= x < 1,
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Let r be chosen so that x < r < 1. Then there exists some positive integer N
such that

(j + 1)xj+1

jxj
=

(j + 1)x

j
≤ r

whenever j ≥ N . Then 0 ≤ (j + 1)xj+1 ≤ rjxj whenever j ≥ N . Let
B = NxN . Then 0 ≤ jxj ≤ Brj−N whenever j ≥ N , and therefore jxj → 0
as j → +∞. It follows that

lim
j→+∞

fj(x) =

(
lim

j→+∞
jxj
)(

lim
j→+∞

(1− xj)
)

= 0

for all x satisfying 0 ≤ x < 1. Also fj(1) = 0 for all positive integers j. We
conclude that lim

j→+∞
fj(x) = 0 for all x ∈ [0, 1], which is what we set out to

show.

3.7 Uniform Convergence

We now introduce the concept of uniform convergence. Later shall show
that, given a sequence f1, f2, f3, . . . of Riemann-integrable functions on some
interval [a, b], the identity

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

(
lim

j→+∞
fj(x)

)
dx.

is valid, provided that the sequence f1, f2, f3, . . . of functions converges uni-
formly on the interval [a, b].

Definition Let f1, f2, f3, . . . be a sequence of real-valued functions defined
on some subset D of R. The sequence (fj) is said to converge uniformly to a
function f on D as j → +∞ if and only if the following criterion is satisfied:

given any strictly positive real number ε, there exists some posi-
tive integer N such that |fj(x)− f(x)| < ε for all x ∈ D and for
all positive integers j satisfying j ≥ N (where the value of N is
independent of x).

Let f1, f2, f3, . . . be a sequence of bounded real-valued functions on some
subset D of R which converges uniformly on D to the zero function. For each
positive integer j, let Mj = sup{fj(x) : x ∈ D}. We claim that Mj → 0 as
j → +∞.

To prove this, let some strictly positive real number ε be given. Then
there exists some positive integer N such that |fj(x)| < 1

2
ε for all x ∈ D and

j ≥ N . Thus if j ≥ N then Mj ≤ 1
2
ε < ε. This shows that Mj → 0 as

j → +∞, as claimed.
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Example Let (fj : n ∈ N) be the sequence of continuous functions on
the interval [0, 1] defined by fj(x) = j(xj − x2j). We have already shown
(in an earlier example) that lim

j→+∞
fj(x) = 0 for all x ∈ [0, 1]. However a

straightforward exercise in calculus shows that the maximum value attained

by the function fj is j/4 (which is attained at x = 1/2
1
j ), and j/4 → +∞

as j → +∞. It follows from this that the sequence f1, f2, f3, . . . does not
converge uniformly to the zero function on the interval [0, 1].

Proposition 3.22 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions defined on some subset D of R. Suppose that this sequence con-
verges uniformly on D to some real-valued function f . Then f is continuous
on D.

Proof Let s be an element of D, and let some strictly positive real number ε
be given. If j is chosen sufficiently large then |f(x) − fj(x)| < 1

3
ε for all

x ∈ D, since fj → f uniformly on D as j → +∞. It then follows from the
continuity of fj that there exists some strictly positive real number δ such
that |fj(x)− fj(s)| < 1

3
ε for all x ∈ D satisfying |x− s| < δ. But then

|f(x)− f(s)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(s)|+ |fj(s)− f(s)|
< 1

3
ε+ 1

3
ε+ 1

3
ε = ε

whenever |x−s| < δ. Thus the function f is continuous at s, as required.

Theorem 3.23 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions which converges uniformly on the interval [a, b] to some continuous
real-valued function f . Then

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

f(x) dx.

Proof Let some strictly positive real number ε. Choose ε0 small enough to
ensure that 0 < ε0(b − a) < ε. Then there exists some positive integer N
such that |fj(x)− f(x)| < ε0 for all x ∈ [a, b] and j ≥ N , since the sequence
f1, f2, f3, . . . of functions converges uniformly to f on [a, b]. Now∣∣∣∣∫ b

a

(fj(x)− f(x)) dx

∣∣∣∣ ≤ ∫ b

a

|fj(x)− f(x)| dx

for all positive integers j (see Proposition 3.10). It follows that∣∣∣∣∫ b

a

fj(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|fj(x)− f(x)| dx ≤ ε0(b− a) < ε

whenever j ≥ N . The result follows.
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3.8 Integrals over Unbounded Intervals

We define integrals over unbounded intervals by appropriate limiting pro-
cesses. Given any function f that is bounded and Riemann-integrable over
each closed bounded subinterval of [a,+∞), we define∫ +∞

a

f(x) dx = lim
b→+∞

∫ b

a

f(x) dx,

provided that this limit is well-defined. Similarly, given any function f that
is bounded and Riemann-integrable over each closed bounded subinterval of
(−∞, b], we define ∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx,

provided that this limit is well-defined.
If f is bounded and Riemann integrable over each closed bounded interval

in R then we define ∫ +∞

−∞
f(x) dx = lim

a→−∞

b→+∞

∫ b

a

f(x) dx,

provided that this limit exists.

Remark Using techniques of complex analysis, it can be shown that

lim
b→+∞

∫ b

0

sinx

x
dx =

π

2
.

However it can also be shown that∫ b

0

| sinx|
x

dx→ +∞ as b→ +∞.

Therefore, in the standard theory of the Riemann integral, the integral of the

function (sinx)/x on the interval [0,+∞) is defined, and

∫ +∞

0

sinx

x
dx =

π

2
.

There is an alternative theory of integration, due to Lebesgue, which is
generally more powerful. All bounded Riemann-integrable functions on a
closed bounded interval are Lebesgue-integrable on that interval. But a real-
valued function f on a “measure space” is Lebesgue-integrable if and only if
|f | is Lebesgue-integrable on that measure space. Let f : [0,+∞)→ R be the
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real-valued function defined such that f(0) = 1 and f(x) = (sinx)/x for all
positive real numbers x. Then the function |f | is neither Riemann-integrable
nor Lebesgue-integrable on [0,+∞). It follows that the function f itself is
not Lebesgue-integrable on [0,+∞). But, as we have remarked, the theory
of the Riemann integral assigns a value of π

2
to
∫ +∞
0

f(x) dx.
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