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Module MA2321—Analysis in Several Real Variables.
Michaelmas Term 2016.
Assignment II

1. (a) Let f :R2 → R be defined such that f(x, y) = min(|x|, |y|) for all
(x, y) ∈ R2. Is f :R2 → R continuous at (0, 0)? Is f :R2 → R
differentiable at (0, 0)?

(b) Let f :R2 → R be defined such that f(x, y) = min(x2, y2) for all
(x, y) ∈ R2. Is f :R2 → R continuous at (0, 0)? Is f :R2 → R
differentiable at (0, 0)?

2. In this problem let S2 denote the 2-dimensional sphere in R3, defined
so that

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

Given a point r on S2 with components (x, y, z), where x2+y2+z2 = 1,
we denote by TrS

2 the tangent space to S2 at r, defined so that

TrS
2 = {b ∈ R3 : b . r = 0}

= {(u, v, w) ∈ R3 : ux+ vy + wz = 0}.

Let
X = {(x, y, z) ∈ R3 : −1 < z < 1}

and let ϕ+:X → R2 and ϕ−:X → R2 be defined so that

ϕ+(x, y, z) =

(
x

1− z
,

y

1− z

)
and

ϕ−(x, y, z) =

(
x

1 + z
,

y

1 + z

)
= ϕ+(x, y,−z).

(a) Let r be a point of X, where r = (x, y, z), and let b be a vector in
R3, where b = (u, v, w). Determine the components of the vector
(Dϕ+)rb and (Dϕ−)rb, where (Dϕ+)r and (Dϕ−)r denote the
derivatives of the maps ϕ∗ and ϕ− at the point r.

(b) Let (s, t) be a point of R2, where (s, t) 6= (0, 0). Determine the
Cartesian coordinates of the unique point r of X ∩ S2 for which
ϕ+(r) = (s, t), and determine the Cartesian coordinates of ϕ−(r).
Hence determine a formula for the unique map

ψ:R2 \ {(0, 0)} → R2 \ {(0, 0)}
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characterized by the property that

ψ(ϕ+(r)) = ϕ−(r)

for all r ∈ X ∩ S2. [Hint: express s2 + t2 as a function of the
components of r.]

(c) Let (s, t) = ϕ+(r), where r = (x, y, z), and let (p, q) ∈ R2. De-
termine the unique element (u, v, w) of the tangent space TrS

2 to
S2 at r for which (Dϕ+)r(u, v, w) = (p, q). (Note that (u, v, w) ∈
TrS

2 if and only if ux+ vy + wz = 0.)

(d) Determine the 2×2 matrix that represents the derivative (Dψ)(s,t)
of ψ at a point (s, t) of R2 \ {(0, 0)}.
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