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1 Explorations and Examples in Real Analy-

sis

1.1 Countable Sets

Definition A set X is said to be countable if there exists an injection f :X →
N mapping X into the set N of natural numbers.

Example The set Z of integers is countable. For there is a well-defined
bijection f :Z→ N defined such that f(n) = 2n+ 1 when n ≥ 0 and f(n) =
−2n when n < 0. This bijection maps the set of non-negative integers onto
the set of odd natural numbers, and maps the set of negative integers onto
the set of even natural numbers.

Lemma 1.1 Any subset of a countable set is countable.

Proof Let Y be a subset of a countable set X. Then there exists an injection
f :X → N from X to the set N of natural numbers. The restriction of this
injection to the set Y gives an injection from Y to N.

Proposition 1.2 A non-empty set X is countable if and only if there exists
a surjective function g:N → X mapping the set N of natural numbers onto
X.

Proof Suppose that X is a countable non-empty set. Then there exists an
injection f :X → N from X to N. Let x0 be some chosen element of the set X.
Then there is a well-defined function g:N→ X defined such that g(f(x)) = x
for all x ∈ X, and g(n) = x0 for natural numbers n that do not belong to
the range f(X) of the function f . (The definition of the function g relies
on the fact that, given an element n of the range f(X) of the injection f ,
there exists exactly one element x of the set X for which f(x) = n.) The
function g is clearly a surjection, in view of the fact that x = g(f(x)) for all
x ∈ X.

Conversely let X be a non-empty set, and let g:N → X be a surjection
from N to X. Given an element x, there exists at least one natural number n
for which g(n) = x. It follows that there is a well-defined function f :X → N
such that, given any element x of X, f(x) is the smallest natural number n
for which g(n) = x. Then g(f(x)) = x for all x ∈ X. It follows from
this that if x1 and x2 are elements of X (not necessarily distinct), and if
f(x1) = f(x2), then x1 = g(f(x1)) = g(f(x2)) = x2. We conclude that
distinct elements of the set X get mapped to distinct natural numbers. Thus
the function f :X → N is an injection, and therefore the set X is countable,
as required.

1



Corollary 1.3 Let h:X → Y be a surjection. Suppose that the set X is
countable. Then the set Y is countable.

Proof There is nothing to prove if the set X is the empty set, since in that
case the set Y must also be the empty set. Suppose therefore that the set X
is non-empty and countable. It follows from Proposition 1.2 that there exists
a surjection g:N→ X from N to X. The composition h ◦ g:N→ Y of g and
h is then a surjection from N to Y (since the composition of two surjections
is always a surjection). It then follows from Proposition 1.2 that the set Y
is countable, as required.

1.2 Cartesian Products and Unions of Countable Sets

Lemma 1.4 There exists a bijection between the sets N× N and N.

Proof Let f :N× N→ N be the function defined such that

f(j, k) = 1
2
(j + k − 1)(j + k − 2) + k.

One can check that this function f is a bijection.
Note that, for each natural number m greater than one, this function f

maps the set Dm into the set Im, where Dm = {(j, k) ∈ N× N : j + k = m}
and

Im = {n ∈ N : 1
2
(m− 1)(m− 2) < n ≤ 1

2
m(m− 1)}.

Now, given any natural number n, there exists a unique natural number m
greater than one such that 1

2
(m−1)(m−2) < n ≤ 1

2
m(m−1). It follows that

each natural number belongs to exactly one of the sets I2, I3, I4 . . . . Moreover
if n is a natural number, and if n ∈ Im, where m is a natural number greater
than one, then n = f(m − k, k) where k = n − 1

2
(m − 1)(m − 2). Moreover

(m−k, k) is the unique element of Dn satisfying f(n−k, k) = n. These facts
ensure that, given any natural number n, there exists exactly one pair (j, k)
of natural numbers satisfying f(j, k) = n. (These natural numbers j and k
satisfy j + k = m, where m is the unique natural number greater than one
that satisfies the inequalities 1

2
(m− 1)(m− 2) < n ≤ 1

2
m(m− 1).) Therefore

the function f is both injective and surjective, and is thus a bijection, as
required.

Remark The function f :N × N → N used in the proof of Lemma 1.4 is
constructed so that

f(1, 1) = 1,

f(2, 1) = 2, f(1, 2) = 3,
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f(3, 1) = 4, f(2, 2) = 5, f(1, 3) = 6,

f(4, 1) = 7, f(3, 2) = 8, f(2, 3) = 9, f(1, 4) = 10, etc.

These examples giving the value of (j, k) for small values of j and k should
convey the basic scheme used to construct this function f .

Proposition 1.5 Let X and Y be countable sets. Then the Cartesian prod-
uct X × Y of X and Y is a countable set.

Proof There exist injective functions g:X → N and h:Y → N, because the
sets X and Y are countable. Also there exists a bijection f :N×N→ N from
N × N to N (Lemma 1.4). Let p:X × Y → N be the function defined such
that p(x, y) = f(g(x), h(y)) for all x ∈ X and y ∈ Y . We claim that the
function p is an injection.

Let x1 and x2 be elements of X (not necessarily distinct), and let y1 and y2
be elements of Y . Suppose that p(x1, y1) = p(x2, y2). Then (g(x1), h(y1)) =
(g(x2), h(y2)), because the function f :N → N is an injection, and therefore
g(x1) = g(x2) and h(y1) = h(y2). But the functions g and h are injections.
It follows that x1 = x2 and y1 = y2, and thus (x1, y1) = (x2, y2). We
have therefore shown that if the elements (x1, y1) and (x2, y2) of X × Y are
such that p(x1, y1) = p(x2, y2) then (x1, y1) = (x2, y2). This shows that the
function p:X × Y → N is an injection. The existence of such an injection
guarantees that the set X × Y is countable, as required.

Corollary 1.6 Let X1, X2, . . . , Xn be countable sets. Then the Cartesian
product X1 ×X2 × · · · ×Xn of these sets is a countable set.

Proof The result follows by induction on the number of sets forming the
Cartesian product, because the set X1 ×X2 × · · · ×Xn may be regarded as
the Cartesian product of the sets X1 × X2 × · · · × Xn−1 and Xn whenever
n > 1, and the Cartesian product of any two countable sets is countable
(Proposition 1.5).

Lemma 1.7 The set Q of rational numbers is countable.

Proof The set Z of integers and the set N of natural numbers are countable
sets, and therefore the Cartesian product Z×N is a countable set (Proposi-
tion 1.5). There is an obvious surjection g:Z×N→ Q, where g(z, n) = z/n
for all integers z and natural numbers n. The result therefore follows imme-
diately on applying Corollary 1.3.

Proposition 1.8 Let X1, X2, X3, . . . be a sequence of countable sets Then

the union
∞⋃
n=1

Xn of these countable sets is itself a countable set.
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Proof For each natural number n let gn:Xn → N be an injective function
from Xn to the set N of natural numbers. (Such injective functions exist
because each set Xn is countable.) We shall construct an injective function

h:X → N× N from X to N, where X =
∞⋃
n=1

Xn.

Given any element x of X, let h(x) = (n(x), gn(x)(x)), where n(x) is
the smallest natural number with the property that x ∈ Xn(x). (Note that x
belongs to at least one of the sets Xn, and therefore this natural number n(x)
is well-defined.)

Let x and y be elements of X satisfying h(x) = h(y). We claim that
x = y. Now if h(x) = h(y) then n(x) = n(y). It follows that x ∈ Xn and
y ∈ Xn, where n = n(x) = n(y). Moreover gn(x) = gn(y). But g:Xn → N is
an injective function. It follows that x = y. We conclude therefore that the
function h:X → N× N is injective.

Now Lemma 1.4 ensures that there exists a bijective function f :N×N→
N from N × N to N. The composition function f ◦ h:X → N is then an
injective function from X to N. We conclude therefore that the set X is
countable, as required.

Corollary 1.9 Let (Xi : i ∈ I) be a collection of countable sets, indexed
by a countable set I. Then the union

⋃
i∈I Xi of the sets in this countable

collection is a countable set.

Proof The indexing set I is a countable set. Therefore there exists an in-
jective function g: I → N. It follows that, for each natural number n, there
exists at most one element i of the indexing set such that g(i) = n. If
there exists some element i of I such that g(i) = n, let Yn = Xi; otherwise
let Yn = ∅. Then Y1, Y2, Y3, . . . is an infinite sequence of countable sets, and

clearly
⋃
i∈I Xi =

∞⋃
n=1

Yn. It follows immediately from Proposition 1.8
⋃
i∈I Xi

is a countable set, as required.

We define a countable union of sets to be a union of sets where the sets
making up the collection can be indexed by some countable sets. Thus the
union of a finite number of sets is a countable union of sets. Also the union of
an infinite sequence X1, X2, X3, . . . of sets is a countable union. The result of
Corollary 1.9 may be summed up in the statement that any countable union
of countable sets is itself a countable sets.

1.3 Uncountable Sets

A set that is not countable is said to be uncountable. Many sets occurring
in mathematics are uncountable. These include the set of real numbers.

4



It follows directly from Lemma 1.1 that if a set X has an uncountable
subset, then X must itself be uncountable.

It also follows directly from Corollary 1.3 that if h:X → Y is a surjection
from a set X to a set Y , and if the set Y is uncountable, then the set X is
uncountable.

1.4 Least Upper Bounds and Greatest Lower Bounds

Definition Let S be a set of real numbers which is bounded above. The
least upper bound, or supremum, of the set S is the smallest real number that
is greater than or equal to elements of the set S, and is denoted by supS.

Thus if S is a set of real numbers that is bounded above, then the least
upper bound supS of the set S is characterized by the following two prop-
erties:

• for all x ∈ S, x ≤ supS;

• if u is a real number, and if, for all x ∈ S, x ≤ u then supS ≤ u.

The Least Upper Bound Property of the real number system guarantees
that, given any non-empty set S of real numbers that is bounded above, there
exists a least upper bound supS for the set S.

Definition Let S be a set of real numbers which is bounded below. The
greatest lower bound, or infimum, of the set S is the largest real number that
is less than or equal to elements of the set S, and is denoted by inf S.

Thus if S is a set of real numbers that is bounded below, then the greatest
lower bound inf S of the set S is characterized by the following two properties:

• for all x ∈ S, x ≥ inf S;

• if l is a real number, and if, for all x ∈ S, x ≥ l then inf S ≥ l.

Given any non-empty set S of real numbers that is bounded below, there
exists a greatest lower bound inf S for the set S.

1.5 Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be strictly increas-
ing if xj+1 > xj for all positive integers j, strictly decreasing if xj+1 < xj for
all positive integers j, non-decreasing if xj+1 ≥ xj for all positive integers j,
non-increasing if xj+1 ≤ xj for all positive integers j. A sequence satisfy-
ing any one of these conditions is said to be monotonic; thus a monotonic
sequence is either non-decreasing or non-increasing.
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Theorem 1.10 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.

Proof Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Axiom that there
exists a least upper bound p for the set {xj : j ∈ N}. We claim that the
sequence converges to p.

Let some strictly positive real number ε be given. We must show that
there exists some positive integer N such that |xj − p| < ε whenever j ≥ N .
Now p − ε is not an upper bound for the set {xj : j ∈ N} (since p is the
least upper bound), and therefore there must exist some positive integer N
such that xN > p − ε. But then p − ε < xj ≤ p whenever j ≥ N , since
the sequence is non-decreasing and bounded above by p. Thus |xj − p| < ε
whenever j ≥ N . Therefore xj → p as j → +∞, as required.

If the sequence x1, x2, x3, . . . is non-increasing and bounded below then
the sequence −x1,−x2,−x3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence x1, x2, x3, . . . is also
convergent.

1.6 The Uncountability of the Real Numbers

Theorem 1.11 The set R of real numbers is uncountable.

Proof Let x1, x2, x3, . . . be an infinite sequence of real numbers. We prove
the existence of a real number that does not occur as a member of this
sequence.

Let a0 and b0 be real numbers satisfying a0 < b0. We construct infinite
sequences of real numbers a1, a2, a3, . . . and b1, b2, b3, . . . in accordance with
the prescription that follows.

Suppose that real numbers aj−1 and bj−1 have been determined for some
positive integer j, where aj−1 < bj−1. Let the closed interval [aj−1, bj−1] be
divided into three subintervals of equal length, with division points between
the subintervals at gj−1 and hj−1, where

gj−1 = 2
3
aj−1 + 1

3
bj−1 and hj−1 = 1

3
aj−1 + 2

3
bj−1.

Note that aj−1 ≤ gj−1 ≤ hj−1 ≤ bj−1, and

gj−1 − aj−1 = hj−1 − gj−1 = bj−1 − hj−1 = 1
3
(bj−1 − aj−1).

Let aj = aj−1 and bj = gj−1, provided that xj 6∈ [aj−1, gj−1]. Otherwise
let aj = gj−1 and bj = hj−1, provided that xj 6∈ [gj−1, hj−1]. Otherwise let
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aj = hj−1 and bj = bj−1. (Note that xj cannot belong to all three of the
closed intervals [aj−1, gj−1], [gj−1, hj−1] and [hj−1, bj−1].) This ensures that
aj and bj have been determined so as to ensure that aj−1 ≤ aj ≤ bj ≤ bj−1,
bj − aj = 1

3
(bj−1 − aj−1) and xj 6∈ [aj, bj].

The infinite sequence a1, a2, a3, . . . is a non-decreasing sequence of real
numbers that is bounded above by b1. This infinite sequence therefore con-
verges to some real number s, and indeed

s = sup{aj : j ∈ N}.

Moreover
lim

j→+∞
bj = lim

j→+∞
(bj − aj) + lim

j→+∞
aj = 0 + s = s.

Also aj ≤ s ≤ bj for all positive integers j, and thus s ∈ [aj, bj] for all positive
integers j. But xj 6∈ [aj, bj] for each positive integer j. It follows therefore
that s 6= xj for all positive integers j, and thus s is a real number that is not
a member of the infinite sequence x1, x2, x3, . . ..

If there were to exist a surjective function g:N → R then, on setting
xj = g(j) for all positive integers j, we would obtain an infinite sequence
x1, x2, x3, . . . whose members would include every real number. This is not
possible. Therefore there cannot exist any surjective function g:N→ R from
N to R, and thus the set R of real numbers is uncountable (see Proposi-
tion 1.2).

1.7 Upper and Lower Limits

Let a1, a2, a3, . . . be a bounded infinite sequence of real numbers, and, for
each positive integer j, let

Sj = {aj, aj+1, aj+2, . . .} = {ak : k ≥ j}.

The sets S1, S2, S3, . . . are all bounded. It follows that there exist well-defined
infinite sequences u1, u2, u3, . . . and l1, l2, l3, . . . of real numbers, where uj =
supSj and lj = inf Sj for all positive integers j. Now Sj+1 is a subset of Sj for
each positive integer j, and therefore uj+1 ≤ uj and lj+1 ≥ lj for each positive
integer j. It follows that the bounded infinite sequence (uj : j ∈ N) is a non-
increasing sequence, and is therefore convergent (Theorem 1.10). Similarly
the bounded infinite sequence (lj : j ∈ N) is a non-decreasing sequence, and
is therefore convergent. We define

lim sup
j→+∞

aj = lim
j→+∞

uj = lim
j→+∞

sup{aj, aj+1, aj+2, . . .}
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and
lim inf
j→+∞

aj = lim
j→+∞

lj = lim
j→+∞

inf{aj, aj+1, aj+2, . . .}.

The quantity lim sup
j→+∞

aj is referred to as the upper limit of the sequence

a1, a2, a3, . . .. The quantity lim inf
j→+∞

aj is referred to as the lower limit of the

sequence a1, a2, a3, . . ..
Note that every bounded infinite sequence a1, a2, a3, . . .. of real num-

bers has a well-defined upper limit lim sup
j→+∞

aj and a well-defined lower limit

lim inf
j→+∞

aj.

Proposition 1.12 A bounded infinite sequence a1, a2, a3, . . .. of real num-
bers is convergent if and only if lim inf

j→+∞
aj = lim sup

j→+∞
aj, in which case the limit

of the sequence is equal to the common value of its upper and lower limits.

Proof For each positive integer j, let uj = supSj and lj = inf Sj, where

Sj = {aj, aj+1, aj+2, . . .} = {ak : k ≥ j}.

Then lim inf
j→+∞

aj = lim
j→+∞

lj and lim sup
j→+∞

aj = lim
j→+∞

uj.

Suppose that lim inf
j→+∞

aj = lim sup
j→+∞

aj = c for some real number c. Then,

given any positive real number ε, there exist natural numbers N1 and N2

such that c − ε < lj ≤ c whenever j ≥ N1, and c ≤ uj < c + ε whenever
j ≥ N2. Let N be the maximum of N1 and N2. If j ≥ N then aj ∈ SN , and
therefore

c− ε < lN ≤ aj ≤ uN < c+ ε.

Thus |aj − c| < ε whenever j ≥ N . This proves that the infinite sequence
a1, a2, a3, . . . converges to the limit c.

Conversely let a1, a2, a3, . . . be a bounded sequence of real numbers that
converges to some value c. Let ε > 0 be given. Then there exists some
natural number N such that c− 1

2
ε < aj < c+ 1

2
ε whenever j ≥ N . It follows

that Sj ⊂ (c− 1
2
ε, c+ 1

2
ε) whenever j ≥ N . But then

c− 1
2
ε ≤ lj ≤ uj ≤ c+ 1

2
ε

whenever j ≥ N , where uj = supSj and lj = inf Sj. We see from this that,
given any positive real number ε, there exists some natural number N such
that |lj − c| < ε and |uj − c| < ε whenever j ≥ N . It follows from this that

lim sup
j→+∞

aj = lim
j→+∞

uj = c and lim inf
j→+∞

aj = lim
j→+∞

lj = c,

as required.
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1.8 Rearrangement of Infinite Series

Example Consider the infinite series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .

For each positive integer k, let pk denote the kth partial sum of this infinite
series, defined so that

pk =
k∑
j=1

(−1)j−1
1

j
.

The absolute values of the summands constitute a decreasing sequence, and
accordingly examination of the form of the infinite series establishes that

p1 > p3 > p5 > p7 > · · ·

p2 < p4 < p6 < p8 < · · ·

Moreover p2m ≤ p2m+1 ≤ p1 and p2m+1 ≥ p2m ≥ p2 for all positive inte-
gers m. Thus p1, p3, p5, p7 is a decreasing sequence that is bounded below,
and p2, p4, p6, p8 is an increasing sequence that is bounded above. A standard
result of real analysis ensures that these bounded monotonic sequences are
convergent. Moreover

lim
m→+∞

p2m+1 = lim
m→∞

(
p2m +

1

2m+ 1

)
= lim

m→∞
p2m + lim

m→+∞

1

2m+ 1
= lim

m→∞
p2m.

It then follows easily from examination of the definition of convergence that
the infinite sequence p1, p2, p3, . . . converges, and

lim
j→+∞

pj = lim
m→+∞

p2m = lim
m→+∞

p2m+1.

Let α = lim
j→+∞

pj. Then p2 < α < p1, and thus 1
2
< α < 1.

Now consider the infinite series

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · · .

The individual summands are those of the infinite series previously consid-
ered, but they occur in a different order. This new infinite series is thus a
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rearrangement of the infinite series previously considered. Nevertheless the
sum of this new infinite series may be represented as(

1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · ·

and therefore the sum of the new infinite series is equal to that of the infinite
series

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · · ,

and is therefore equal to 1
2
α. This example demonstrates that when the terms

of an infinite series are rearranged, so that they are summed together in a
different order, the sum of the rearranged series is not necessarily equal to
that of the original series.

The example just discussed considers the behaviour of a particular infinite
series that is convergent but not absolutely convergent. An infinite series
+∞∑
j=1

aj is said to be absolutely convergent if
+∞∑
j=1

|aj| is convergent. The following

proposition and its corollaries ensure that any absolutely convergent infinite
series may be rearranged at will without affecting convergence, and without
changing the value of the sum of the series. In particular an infinite series
whose summands are non-negative may be rearranged without affecting the
value of the sum of that infinite series.

Proposition 1.13 Let
+∞∑
j=1

aj be a convergent infinite series, where aj is real

and aj ≥ 0 for all positive integers j. Let Q be the subset of the real numbers
consisting of the values of all sums of the form

∑
j∈F

aj obtained as F ranges

over all the non-empty finite subsets of N. Then

+∞∑
j=1

aj = supQ.

Proof For each positive integer k, let

pk =
k∑
j=1

aj.

This number pk is referred to as the kth partial sum of the infinite series
a1 + a2 + a3 + · · ·. The definition of the sum of this infinite series then
ensures that

+∞∑
j=1

aj = lim
k→+∞

pk.
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Moreover p1 ≤ p2 ≤ p3 ≤ · · ·, because aj ≥ 0 for all positive integers j, and
therefore

+∞∑
j=1

aj = sup{pk : k ∈ N}.

For each non-empty finite subset F of the set N of positive integers, let

qF =
∑
j∈F

aj.

If F and H are finite subsets of N, and if F ⊂ H then qF ≤ qH , because the
summand aj is non-negative for all positive integers j.

Now, given any non-empty finite subset F of N there exists some positive
integer k such that F ⊂ Jk, where Jk = {1, 2, . . . , k}. But then

qF ≤ qJk = pk ≤
+∞∑
j=1

aj.

Therefore the set Q consisting of the values of the sums qF as F ranges over
all the non-empty finite subsets F of N is bounded above. Moreover it is
non-empty. The Least Upper Bound Principle then ensures that the set Q
has a well-defined least upper bound supQ.

Let s = supQ. We have shown that qF ≤
+∞∑
j=1

aj for each non-empty

finite subset F of N. It follows that s ≤
+∞∑
j=1

aj. But pk ∈ Q for all positive

integers k, because pk = qJk , and therefore pk ≤ s. Taking limits as k → +∞,
we find that

+∞∑
j=1

aj = lim
k→+∞

pk ≤ s.

The inequalities just obtained together ensure that

+∞∑
j=1

aj = s = supQ,

as required.

A permutation of the set N of positive integers is a function σ:N → N
from the set N to itself that is bijective. A function σ:N → N is thus a
permutation if and only if it has a well-defined inverse σ−1:N → N. This
is the case if and only if, given any positive integer k, there exists a unique
positive integer j for which k = σ(j).
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Definition An infinite sequence b1, b2, b3, . . . of real numbers is said to be a
rearrangement of an infinite sequence a1, a2, a3, . . . if there exists a permuta-
tion σ of the set N of positive integers such that bk = aσ(k) for all positive

integers k. In this situation we also say that the infinite series
+∞∑
k=1

bk is a

rearrangement of the infinite series
+∞∑
j=1

aj.

Corollary 1.14 Let
+∞∑
j=1

aj be a convergent infinite series, and let
+∞∑
k=1

bk be

a rearrangement of infinite series
+∞∑
j=1

aj. Suppose that aj ≥ 0 for all positive

integers j. Then the infinite series
+∞∑
k=1

bk is convergent, and
+∞∑
k=1

bk =
+∞∑
j=1

aj.

Proof There exists a permutation σ:N→ N of the set N of positive integers
such that bk = aσ(k) for all positive integers k. Let qF =

∑
j∈F

aj for all non-

empty finite subsets F of N, and let rG =
∑
k∈G

bk for all non-empty finite

subsets G of N. Then

qσ(G) =
∑
j∈σ(G)

aj =
∑
k∈G

aσ(k) =
∑
k∈G

bk = rG

for all non-empty finite subsets G of N, and accordingly qF = rσ−1(F ) for all
non-empty finite subsets F of N. MoroeverG is a non-empty finite subset of N
if and only if σ(G) is a non-empty finite subset of N. It follows that the set Q
consisting of all sums of the form qF as F ranges over the non-empty finite
subsets of N is also the set consisting of all sums of the form rG as G ranges
over the non-empty finite subsets of N. It follows from Proposition 1.13 that

+∞∑
j=1

aj = supQ =
+∞∑
k=1

bk,

as required.

It follows from Corollary 1.14 that, given any collection (cα : α ∈ A) of
non-negative real numbers cα indexed by the members of a countable set A,
we can form the sum

∑
α∈A

cα. If the countable indexing set A is infinite then

12



there exists an infinite sequence α1, α2, α3, . . . in which each element of the
set A occurs exactly once. Then∑

α∈A

cα =
+∞∑
j=1

cαj
.

The requirement that cα ≥ 0 for all α ∈ A ensures that the value of
+∞∑
j=1

cαj

does not depend on the choice of infinite sequence α1, α2, α3, . . . enumerating
the elements of the indexing set A.

Let c1, c2, c3, . . . be an infinite sequence of real numbers that are not nec-
essarily all non-negative or all non-positive, and let c+j = max(cj, 0) and
c−j = min(0, cj) for all positive integers j. Then c+j ≥ 0, c−j ≤ 0, cj = c+j + c−j
and |cj| = c+j − c−j = c+j + |c−j | for all positive integers j. Moreover, for each
positive integer j, at most one of the numbers c+j asnd c−j is non-zero. Now
0 ≤ c+j ≤ |cj| and 0 ≤ |c−j | ≤ |cj| for all positive integers j. It follows from

this that
+∞∑
j=1

|cj| is convergent if and only if both
+∞∑
j=1

c+j and
+∞∑
j=1

c−j convergent.

In this case we say that the infinite series
∑+∞

j=1 cj is absolutely convergent.

Corollary 1.15 Let
+∞∑
j=1

aj be an absolutely convergent infinite series, and

let
+∞∑
k=1

bk be a rearrangement of infinite series
+∞∑
j=1

aj. Then the infinite series

+∞∑
k=1

bk is absolutely convergent, and
+∞∑
k=1

bk =
+∞∑
j=1

aj.

Proof There exists a permutation σ:N→ N of the set N of positive integers
with the property that bk = aσ(k) for all positive integers k. Let a+j =
max(aj, 0) and a−j = min(0, aj) for all positive integers j and b+k = max(bk, 0)
and b−k = min(0, bk) for all positive integers k. The absolute convergence of
∞∑
j=1

aj then ensures that the infinite series
∞∑
j=1

a+j and
∞∑
j=1

a−j both converge.

It then follows from Corollary 1.14 that

+∞∑
j=1

|aj| =
+∞∑
j=1

a+j −
+∞∑
j=1

a−j =
+∞∑
k=1

b+k −
+∞∑
k=1

b−k =
+∞∑
k=1

|bk|

and
+∞∑
j=1

aj =
+∞∑
j=1

a+j +
+∞∑
j=1

a−j =
+∞∑
k=1

b+k +
+∞∑
k=1

b−k =
+∞∑
k=1

bk.

The result follows.
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1.9 Darboux Sums and the Riemann Integral

The approach to the theory of integration discussed below was developed
by Jean-Gaston Darboux (1842–1917). The integral defined using lower and
upper sums in the manner described below is sometimes referred to as the
Darboux integral of a function on a given interval. However the class of func-
tions that are integrable according to the definitions introduced by Darboux
is the class of Riemann-integrable functions. Thus the approach using Dar-
boux sums provides a convenient approach to define and establish the basic
properties of the Riemann integral.

Definition A partition P of an interval [a, b] is a set {x0, x1, x2, . . . , xn} of
real numbers satisfying a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Given any bounded real-valued function f on [a, b], the upper sum (or
upper Darboux sum) U(P, f) of f for the partition P of [a, b] is defined so
that

U(P, f) =
n∑
i=1

Mi(xi − xi−1),

where Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Similarly the lower sum (or lower Darboux sum) L(P, f) of f for the

partition P of [a, b] is defined so that

L(P, f) =
n∑
i=1

mi(xi − xi−1),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi}.
Clearly L(P, f) ≤ U(P, f). Moreover

n∑
i=1

(xi−xi−1) = b−a, and therefore

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a),

for any real numbers m and M satisfying m ≤ f(x) ≤M for all x ∈ [a, b].

Definition Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b
a
f(x) dx (or upper Darboux

integral) and the lower Riemann integral L
∫ b
a
f(x) dx (or lower Darboux

integral) of the function f on [a, b] are defined by

U
∫ b

a

f(x) dx = inf {U(P, f) : P is a partition of [a, b]} ,

L
∫ b

a

f(x) dx = sup {L(P, f) : P is a partition of [a, b]} .
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The definition of upper and lower integrals thus requires that U
∫ b
a
f(x) dx

be the infimum of the values of U(P, f) and that L
∫ b
a
f(x) dx be the supre-

mum of the values of L(P, f) as P ranges over all possible partitions of the
interval [a, b].

Definition A bounded function f : [a, b] → R on a closed bounded interval
[a, b] is said to be Riemann-integrable (or Darboux-integrable) on [a, b] if

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

in which case the Riemann integral
∫ b
a
f(x) dx (or Darboux integral) of f on

[a, b] is defined to be the common value of U
∫ b
a
f(x) dx and L

∫ b
a
f(x) dx.

When a > b we define∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

for all Riemann-integrable functions f on [b, a]. We set
∫ b
a
f(x) dx = 0 when

b = a.
If f and g are bounded Riemann-integrable functions on the interval

[a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx, since

L(P, f) ≤ L(P, g) and U(P, f) ≤ U(P, g) for all partitions P of [a, b].

Definition Let P and R be partitions of [a, b], given by P = {x0, x1, . . . , xn}
and R = {u0, u1, . . . , um}. We say that the partition R is a refinement of P
if P ⊂ R, so that, for each xi in P , there is some uj in R with xi = uj.

Lemma 1.16 Let R be a refinement of some partition P of [a, b]. Then

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f)

for any bounded function f : [a, b]→ R.

Proof Let P = {x0, x1, . . . , xn} and R = {u0, u1, . . . , um}, where a = x0 <
x1 < · · · < xn = b and a = u0 < u1 < · · · < um = b. Now for each
integer i between 0 and n there exists some integer j(i) between 0 and m
such that xi = uj(i) for each i, since R is a refinement of P . Moreover 0 =
j(0) < j(1) < · · · < j(n) = n. For each i, let Ri be the partition of [xi−1, xi]
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given by Ri = {uj : j(i − 1) ≤ j ≤ j(i)}. Then L(R, f) =
n∑
i=1

L(Ri, f) and

U(R, f) =
n∑
i=1

U(Ri, f). Moreover

mi(xi − xi−1) ≤ L(Ri, f) ≤ U(Ri, f) ≤Mi(xi − xi−1),

since mi ≤ f(x) ≤ Mi for all x ∈ [xi−1, xi]. On summing these inequal-
ities over i, we deduce that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(P, f), as
required.

Given any two partitions P and Q of [a, b] there exists a partition R of
[a, b] which is a refinement of both P and Q. For example, we can take
R = P ∪ Q. Such a partition is said to be a common refinement of the
partitions P and Q.

Lemma 1.17 Let f be a bounded real-valued function on the interval [a, b].
Then

L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx.

Proof Let P and Q be partitions of [a, b], and let R be a common refinement
of P and Q. It follows from Lemma 1.16 that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤
U(Q, f). Thus, on taking the supremum of the left hand side of the inequality
L(P, f) ≤ U(Q, f) as P ranges over all possible partitions of the interval [a, b],

we see that L
∫ b
a
f(x) dx ≤ U(Q, f) for all partitions Q of [a, b]. But then,

taking the infimum of the right hand side of this inequality as Q ranges over
all possible partitions of [a, b], we see that L

∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx, as

required.

Example Let f(x) = cx+d, where c ≥ 0. We shall show that f is Riemann-

integrable on [0, 1] and evaluate
∫ 1

0
f(x) dx from first principles.

For each positive integer n, let Pn denote the partition of [0, 1] into n
subintervals of equal length. Thus Pn = {x0, x1, . . . , xn}, where xi = i/n.
Now the function f takes values between (i− 1)c/n+ d and ic/n+ d on the
interval [xi−1, xi], and therefore

mi =
(i− 1)c

n
+ d, Mi =

ic

n
+ d

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Thus
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L(Pn, f) =
n∑
i=1

mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d− c

n

)
=

c(n+ 1)

2n
+ d− c

n
=
c

2
+ d− c

2n
,

U(Pn, f) =
n∑
i=1

Mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d

)
=

c(n+ 1)

2n
+ d =

c

2
+ d+

c

2n
.

It follows that
lim

n→+∞
L(Pn, f) =

c

2
+ d

and
lim

n→+∞
U(Pn, f) =

c

2
+ d

Now L(Pn, f) ≤ L
∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx ≤ U(Pn, f) for all positive

integers n. It follows that L
∫ b
a
f(x) dx = 1

2
c + d = U

∫ b
a
f(x) dx. Thus f is

Riemann-integrable on the interval [0, 1], and
∫ 1

0
f(x) dx = 1

2
c+ d.

Example Let f : [0, 1]→ R be the function defined by

f(x) =

{
1 if x is rational;
0 if x is irrational.

Let P be a partition of the interval [0, 1] given by P = {x0, x1, x2, . . . , xn},
where 0 = x0 < x1 < x2 < · · · < xn = 1. Then

inf{f(x) : xi−1 ≤ x ≤ xi} = 0, sup{f(x) : xi−1 ≤ x ≤ xi} = 1,

for i = 1, 2, . . . , n, and thus L(P, f) = 0 and U(P, f) = 1 for all partitions P

of the interval [0, 1]. It follows that L
∫ 1

0
f(x) dx = 0 and U

∫ 1

0
f(x) dx = 1,

and therefore the function f is not Riemann-integrable on the interval [0, 1].

1.10 Interchanging Limits and Integrals

Let f1, f2, f3, . . . be a sequence of Riemann-integrable functions defined over
the interval [a, b], where a and b are real numbers satisfying a ≤ b. Suppose
that the sequence f1(x), f2(x), f3(x), . . . converges for all x ∈ [a, b]. We wish
to determine whether or not

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

(
lim

j→+∞
fj(x)

)
dx.
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The following example demonstrates that this identity can fail to hold, even
when the functions involved are well-behaved polynomial functions.

Example Let f1, f2, f3, . . . be the sequence of continuous functions on the
interval [0, 1] defined by fj(x) = j(xj − x2j). Now

lim
j→+∞

∫ 1

0

fj(x) dx = lim
j→+∞

(
j

j + 1
− j

2j + 1

)
=

1

2
.

On the other hand, we shall show that lim
j→+∞

fj(x) = 0 for all x ∈ [0, 1]. Thus

one cannot interchange limits and integrals in this case.
Suppose that 0 ≤ x < 1. We claim that jxj → 0 as j → +∞. Now

lim
j→+∞

j + 1

j
= 1.

It follows that

lim
j→+∞

(j + 1)x

j
= x < 1,

Let r be chosen so that x < r < 1. Then there exists some positive integer N
large enough to ensure that

1 +
1

N
<
r

x
.

if j ≥ N then
(j + 1)xj+1

jxj
=

(j + 1)x

j
< r.

It follows that
0 ≤ jxj ≤ B

whenever j ≥ N , where B = NxN , and therefore jxj → 0 as j → +∞. It
follows that

lim
j→+∞

fj(x) =

(
lim

j→+∞
jxj
)(

lim
j→+∞

(1− xj)
)

= 0

for all x satisfying 0 ≤ x < 1. Also fj(1) = 0 for all positive integers j. We
conclude that lim

j→+∞
fj(x) = 0 for all x ∈ [0, 1], which is what we set out to

show.
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1.11 Uniform Convergence

We now introduce the concept of uniform convergence. Later shall show
that, given a sequence f1, f2, f3, . . . of Riemann-integrable functions on some
interval [a, b], the identity

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

(
lim

j→+∞
fj(x)

)
dx.

is valid, provided that the sequence f1, f2, f3, . . . of functions converges uni-
formly on the interval [a, b].

Definition Let f1, f2, f3, . . . be a sequence of real-valued functions defined
on some subset D of R. The sequence (fj) is said to converge uniformly to a
function f on D as j → +∞ if and only if the following criterion is satisfied:

given any strictly positive real number ε, there exists some posi-
tive integer N such that |fj(x)− f(x)| < ε for all x ∈ D and for
all positive integers j satisfying j ≥ N (where the value of N is
independent of x).

Let f1, f2, f3, . . . be a sequence of bounded real-valued functions on some
subset D of R which converges uniformly on D to the zero function. For each
positive integer j, let Mj = sup{fj(x) : x ∈ D}. We claim that Mj → 0 as
j → +∞.

To prove this, let some strictly positive real number ε be given. Then
there exists some positive integer N such that |fj(x)| < 1

2
ε for all x ∈ D and

j ≥ N . Thus if j ≥ N then Mj ≤ 1
2
ε < ε. This shows that Mj → 0 as

j → +∞, as claimed.

Example Let (fj : n ∈ N) be the sequence of continuous functions on
the interval [0, 1] defined by fj(x) = j(xj − x2j). We have already shown
(in an earlier example) that lim

j→+∞
fj(x) = 0 for all x ∈ [0, 1]. However a

straightforward exercise in calculus shows that the maximum value attained

by the function fj is j/4 (which is attained at x = 1/2
1
j ), and j/4 → +∞

as j → +∞. It follows from this that the sequence f1, f2, f3, . . . does not
converge uniformly to the zero function on the interval [0, 1].

Proposition 1.18 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions defined on some subset D of R. Suppose that this sequence con-
verges uniformly on D to some real-valued function f . Then f is continuous
on D.
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Proof Let s be an element of D, and let some strictly positive real number ε
be given. If j is chosen sufficiently large then |f(x) − fj(x)| < 1

3
ε for all

x ∈ D, since fj → f uniformly on D as j → +∞. It then follows from the
continuity of fj that there exists some strictly positive real number δ such
that |fj(x)− fj(s)| < 1

3
ε for all x ∈ D satisfying |x− s| < δ. But then

|f(x)− f(s)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(s)|+ |fj(s)− f(s)|
< 1

3
ε+ 1

3
ε+ 1

3
ε = ε

whenever |x−s| < δ. Thus the function f is continuous at s, as required.

Theorem 1.19 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions which converges uniformly on the interval [a, b] to some continuous
real-valued function f . Then

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

f(x) dx.

Proof Let some strictly positive real number ε. Choose ε0 small enough to
ensure that 0 < ε0(b − a) < ε. Then there exists some positive integer N
such that |fj(x)− f(x)| < ε0 for all x ∈ [a, b] and j ≥ N , since the sequence
f1, f2, f3, . . . of functions converges uniformly to f on [a, b].

Now

fj(x)− f(x) ≤ |fj(x)− f(x)| and − (fj(x)− f(x)) ≤ |fj(x)− f(x)|

for all x ∈ [a, b]. It follows that∫ b

a

(fj(x)− f(x)) dx ≤
∫ b

a

|fj(x)− f(x)| dx

and

−
∫ b

a

(fj(x)− f(x)) dx ≤
∫ b

a

|fj(x)− f(x)| dx

and therefore ∣∣∣∣∫ b

a

(fj(x)− f(x)) dx

∣∣∣∣ ≤ ∫ b

a

|fj(x)− f(x)| dx

for all positive integers j. It follows that∣∣∣∣∫ b

a

fj(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|fj(x)− f(x)| dx ≤ ε0(b− a) < ε

whenever j ≥ N . The result follows.
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1.12 Compactness and the Heine-Borel Theorem

Definition Let K be a subset of n-dimensional Euclidean space Rn. A
collection C of open sets in Rn is said to cover K if

K =
⋃

V ∈C
V.

In other words, a collection C of open sets in Rn is said to cover K if
and only if each point of K belongs to at least one open set belonging to the
collection C.

Definition A subset K of Rn is said to be compact if, given any collection of
open sets in Rn which covers K, there exists some finite subcollection which
also covers K.

Remark The definition of compactness given above is formulated for subsets
of Euclidean spaces, but the given definition generalizes in the obvious fashion
to metric spaces and, even more generally, to topological spaces. Some of
the results below generalize so as to be applicable to compact subsets of
topological spaces, and others generalize so as to be applicable to compact
subsets of metric spaces. However, in what follows, we restrict the statements
and proofs of the results to the context of subsets of Euclidean spaces.

We now show that any closed bounded interval in the real line is compact.
This result is known as the Heine-Borel Theorem. The proof of this theorem
uses the least upper bound principle which states that, given any non-empty
set S of real numbers which is bounded above, there exists a least upper
bound (or supremum) supS for the set S.

Theorem 1.20 (Heine-Borel in One Dimension) Let a and b be real numbers
satisfying a < b. Then the closed bounded interval [a, b] is a compact subset
of R.

Proof Let C be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open sets. We must
show that [a, b] is covered by finitely many of these open sets.

Let S be the set of all τ ∈ [a, b] with the property that [a, τ ] is covered
by some finite collection of open sets belonging to C, and let s = supS. Now
s ∈ W for some open set W belonging to C. Moreover W is open in R, and
therefore there exists some δ > 0 such that (s − δ, s + δ) ⊂ W . Moreover
s − δ is not an upper bound for the set S, hence there exists some τ ∈ S
satisfying τ > s− δ. It follows from the definition of S that [a, τ ] is covered
by some finite collection V1, V2, . . . , Vr of open sets belonging to C.
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Let t ∈ [a, b] satisfy τ ≤ t < s+ δ. Then

[a, t] ⊂ [a, τ ] ∪ (s− δ, s+ δ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W,

and thus t ∈ S. In particular s ∈ S, and moreover s = b, since otherwise s
would not be an upper bound of the set S. Thus b ∈ S, and therefore [a, b]
is covered by a finite collection of open sets belonging to C, as required.

Lemma 1.21 Let F and K be subsets of Rn where F is closed, K is compact
and F ⊂ K. Then F is compact.

Proof Let C be any collection of open sets in Rn covering F . On adjoining
the open set Rn \F to C, we obtain a collection of open sets which covers the
compact set K. The compactness of K ensures that some finite subcollection
of this collection covers K. The open sets in this subcollection that belong
to C then constitute a finite subcollection of C that covers F . Thus F is
compact, as required.

Lemma 1.22 Let ϕ:Rm → Rn be a continuous function between Euclidean
spaces Rm and Rn, and let K be a compact subset of Rm. Then ϕ(K) is a
compact subset of Rn.

Proof Let C be a collection of open sets in Rn which covers ϕ(K). Then K is
covered by the collection of all open sets of the form ϕ−1(V ) for some V ∈ C.
It follows from the compactness of K that there exists a finite collection
V1, V2, . . . , Vk of open sets belonging to C such that

K ⊂ ϕ−1(V1) ∪ ϕ−1(V2) ∪ · · · ∪ ϕ−1(Vk).

But then ϕ(K) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. This shows that ϕ(K) is compact.

Lemma 1.23 Let f :K → R be a continuous real-valued function on a com-
pact subset K of Rn. Then f is bounded above and below on K.

Proof The range f(K) of the function f is covered by some finite collection
I1, I2, . . . , Ik of open intervals of the form (−m,m), where m ∈ N, since f(K)
is compact (Lemma 1.22) and R is covered by the collection of all intervals of
this form. It follows that f(K) ⊂ (−M,M), where (−M,M) is the largest of
the intervals I1, I2, . . . , Ik. Thus the function f is bounded above and below
on K, as required.

Proposition 1.24 Let f :K → R be a continuous real-valued function on a
compact subset K of Rn. Then there exist points u and v of K such that
f(u) ≤ f(x) ≤ f(v) for all x ∈ K.
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Proof Let m = inf{f(x) : x ∈ K} and M = sup{f(x) : x ∈ K}. There
must exist v ∈ K satisfying f(v) = M , for if f(x) < M for all x ∈ K then
the function x 7→ 1/(M − f(x)) would be a continuous real-valued function
on K that was not bounded above, contradicting Lemma 1.23. Similarly
there must exist u ∈ K satisfying f(u) = m, since otherwise the function
x 7→ 1/(f(x)−m) would be a continuous function on K that was not bounded
above, again contradicting Lemma 1.23. But then f(u) ≤ f(x) ≤ f(v) for
all x ∈ K, as required.

Proposition 1.25 Let K be a compact subset of a Euclidean space Rn. Then
K is closed in Rn.

Proof Let p be a point of Rn that does not belong to K, and let f(x) =
|x−p| for all x ∈ Rn. It follows from Proposition 1.24 that there is a point q
of K such that f(x) ≥ f(q) for all x ∈ K, because K is compact. Now
f(q) > 0, since q 6= p. Let δ satisfy 0 < δ ≤ f(q). Then the open ball of
radius δ about the point p is contained in the complement of K, because
f(x) < f(q) for all points x of this open ball. It follows that the complement
of K is an open set in Rn, and thus K itself is closed in Rn.

Let F be a subset of n-dimensional Euclidean space Rn. For each x ∈ Rn,
we denote by d(x, F ) the (Euclidean) distance from the point x to the set F .
This distance d(x, F ) is defined so that

d(x, F ) = inf{|x−w| : w ∈ F}.

Lemma 1.26 Let F be a subset of Rn. Then

|d(x, F )− d(y, F )| ≤ |x− y|

for all x,y ∈ F , and thus the function sending points x on Rn to their
distance d(x, F ) from the set F is a continuous real-valued function on Rn.

Proof Let ε be a real number satisfying ε > 0, and let x and y be points of
Rn. Then there exists z ∈ F for which |y− z| < d(y, F ) + ε. It follows from
the Triangle Inequality that

d(x, F ) ≤ |x− z| ≤ |x− y|+ |y − z| < |x− y|+ d(y, F ) + ε

and thus
d(x, F )− d(y, F ) < |x− y|+ ε.
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Now the inequality just obtained must hold for all positive real numbers ε,
and the left hand side of the inequality is independent of the value of ε. It
must therefore be the case that

d(x, F )− d(y, F ) ≤ |x− y|.

Interchanging the roles of x and y, we see also that

d(y, F )− d(x, F ) ≤ |x− y|.

It follows that
|d(x, F )− d(y, F )| ≤ |x− y|.

This inequality ensures that the function that sends points x of Rn to their
distance d(x, F ) from the set F is a continuous function on Rn, as re-
quired.

Given any subset F of Rn, we denote by B(F, δ) the δ-neighbourhood of
the set F in Rn, defined so that

B(F, δ) = {x ∈ Rn : d(x, F ) < δ}.

Proposition 1.27 Let K and V be subsets of Rn, where K is compact, V
is open and K ⊂ V . Then there exists some positive real number δ for which
B(K, δ) ⊂ V .

Proof Let F = Rn \V , and let f(x) = d(x, F ) for all x ∈ Rn, where d(x, F )
denotes the distance from the point x to the set F . Now the function f is
a continuous real-valued function on Rn. Moreover f(x) > 0 for all x ∈ V ,
and therefore f(x) > 0 for all x ∈ K. It then follows from Proposition 1.24
that there exists some point u of K with the property that f(u) ≤ f(x) for
all x ∈ K. Let δ = f(u). Then |x − z| ≥ δ for all x ∈ K and z ∈ F . It
follows that B(x, δ) ⊂ V for all x ∈ K, where B(x, δ) denotes the open ball
of radius δ centred on the point x. Therefore B(K, δ) ⊂ V , as required.

Alternative Proof For each point w of K there exists some positive real
number δw such that B(w, 2δw) ⊂ V where B(w, 2δw) denotes the open ball
of radius 2δw centred on the point w for each w ∈ K. Now the collection
(B(w, δw) : w ∈ K) of open balls constitutes an open cover of the compact
set K. The definition of compactness therefore ensures that there exist points
w1,w2, . . . ,wm (finite in number) such that

K ⊂
m⋃
j=1

B(wj, δwj
).
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Let δ be the minimum of the positive real numbers δwj
for j = 1, 2, . . . ,m.

Then δ > 0. Moreover the Triangle Inequality ensures that

B(z, δ) ⊂ B(wj, 2δwj
) ⊂ V

for all z ∈ B(wj, δwj
), and therefore

⋃
z∈K B(z, δ) ⊂ V . But

⋃
z∈K B(z, δ) =

B(K, δ), because a point x of Rn belongs to B(K, δ) if and only if |x−z| < δ
for some z ∈ K. Thus B(K, δ) ⊂ V , as required.

Definition We define a closed n-dimensional block in Rn to be a subset of
Rn that is a product of closed bounded intervals.

Thus a subset K of Rn is a closed n-dimensional block if and only if
there exist real numbers a1, a2, . . . , an and b1, b2, . . . , bn such that ai ≤ bi for
i = 1, 2, . . . , n and

K = [a1, b1]× [a2, b2]× · · · × [an, bn].

Proposition 1.28 A closed n-dimensional block is a compact set.

Proof We prove the result by induction on the dimension n of the Euclidean
space. The result when n = 1 is the one-dimensional Heine-Borel Theorem
(Theorem 1.20). Thus suppose as our induction hypothesis that n > 1 and
that that every closed (n − 1)-dimensional block in Rn−1 is a compact set.
Let K be an n-dimensional block in Rn, and let

K = [a1, b1]× [a2, b2]× · · · × [an, bn],

where a1, a2, . . . , an and b1, b2, . . . , bn are real numbers that satisfy ai ≤ bi for
i = 1, 2, . . . , n. Let p:Rn → R be the projection function defined such that

p(x1, x2, . . . , xn) = xn

for all (x1, x2, . . . , xn) ∈ Rn. The induction hypothesis then ensures that Kz

is a compact set for all z ∈ [an, bn], where

Kz = {x ∈ K : p(x) = z}.

Let C be a collection of open sets in Rn that covers K. The compactness
of Kz ensures that, for each real number z satisfying an ≤ z ≤ bn there
exists a finite subcollection Cz of C such that Kz ⊂

⋃
V ∈Cz V . Let Wz =⋃

V ∈Cz V . (The set Wz is thus the union of the open sets belonging to the
finite subcollection Cz of C.)
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Now Kz is compact, Wz is open, and Kz ⊂ Wz. It follows that there ex-
ists some positive real number δz such that B(K, δz) ⊂ Wz, where B(K, δz)
denotes the δ-neighbourhood of K in Rn i.e., the subset of Rn consisting of
those points of Rn that lie within a distance δz of the set Kz (see Proposi-
tion 1.27). But then

{x ∈ K : z − δz < p(x) < z + δz} ⊂ Wz

for all z ∈ [an, bn]. Now the collection of all open intervals in R that are
of the form (z − δz, z + δz) constitute an open cover of the closed bounded
interval [an, bn]. It follows from the one-dimensional Heine-Borel Theorem
(Theorem 1.20) that there exist z1, z2, . . . , zm ∈ [an, bn] such that

[an, bn] ⊂
m⋃
j=1

(zj − δzj , zj + δzj).

But then

K ⊂
n⋃
j=1

Wzj .

Moreover
n⋃
j=1

Wzj is the union of all the open sets that belong to the collection

D obtained by amalgamating the finite collections Cz1 , Cz2 , . . . , Czm . Then D
is a finite subcollection of C which covers the n-dimensional block K. The
result follows.

Theorem 1.29 (Multidimensional Heine-Borel Theorem) A subset
of a Euclidean space is compact if and only if it is both closed and bounded.

Proof Let K be a compact subset of n-dimensional Euclidean space. The
function that maps each point x of Rn to its Euclidean distance |x| from the
origin is then a bounded function on K (Lemma 1.23) and therefore K is a
bounded set. Moreover it follows from Proposition 1.25 that K is closed in
Rn.

Conversely let K be a subset of Rn that is both closed and bounded.
Then there exists some positive real number R large enough to ensure that
K ⊂ H, where

H = {(x1, x2, . . . , xn) ∈ Rn : −R ≤ xi ≤ R for i = 1, 2, . . . , n}.

Now H is a closed n-dimensional block in Rn. It follows from Proposition 1.28
that H is a compact subset of Rn. Thus K is a closed subset of a compact set.
It follows from Lemma 1.21 that K is a compact subset of Rn, as required.
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1.13 The Extended Real Number System

It is sometimes convenient to make use of the extended real line [−∞,+∞].
This is the set R ∪ {−∞,+∞} obtained on adjoining to the real line R two
extra elements +∞ and −∞ that represent points at ‘positive infinity’ and
‘negative infinity’ respectively. We define

c+ (+∞) = (+∞) + c = +∞

and
c+ (−∞) = (−∞) + c = −∞

for all real numbers c. We also define products of non-zero real numbers with
these extra elements ±∞ so that

c× (+∞) = (+∞)× c = +∞ when c > 0,

c× (−∞) = (−∞)× c = −∞ when c > 0,

c× (+∞) = (+∞)× c = −∞ when c < 0,

c× (−∞) = (−∞)× c = +∞ when c < 0,

We also define

0× (+∞) = (+∞)× 0 = 0× (−∞) = (−∞)× 0 = 0,

and
(+∞)× (+∞) = (−∞)× (−∞) = +∞,

(+∞)× (−∞) = (−∞)× (+∞) = −∞.

The sum of +∞ and −∞ is not defined. We define −(+∞) = −∞ and
−(−∞) = +∞. The difference p − q of two extended real numbers is then
defined by the formula p−q = p+(−q), unless p = q = +∞ or p = q = −∞,
in which cases the difference of the extended real numbers p and q is not
defined.

We extend the definition of inequalities to the extended real line in the
obvious fashion, so that c < +∞ and c > −∞ for all real numbers c, and
−∞ < +∞.

Given any real number c, we define

[c,+∞] = [c,+∞) ∪ {+∞} = {p ∈ [−∞,∞] : p ≥ c},
(c,+∞] = (c,+∞) ∪ {+∞} = {p ∈ [−∞,∞] : p > c},
[−∞, c] = (−∞, c] ∪ {−∞} = {p ∈ [−∞,∞] : p ≤ c},
[−∞, c) = (−∞, c) ∪ {−∞} = {p ∈ [−∞,∞] : p < c}.
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There is an order-preserving bijective function ϕ: [−∞,+∞] → [−1, 1]
from the extended real line [−∞,+∞] to the closed interval [−1, 1] which is

defined such that ϕ(+∞) = 1, ϕ(−∞) = −1, and ϕ(c) =
c

1 + |c|
for all real

numbers c. Let us define ρ(p, q) = |ϕ(q) − ϕ(p)| for all extended real num-
bers p and q. Then the set [−∞,+∞] becomes a metric space with distance
function ρ. Moreover the function ϕ: [−∞,+∞] → [−1, 1] is a homeomor-
phism from this metric space to the closed interval [−1, 1]. It follows directly
from this that [−∞,+∞] is a compact metric space. Moreover an infinite
sequence (pj : j ∈ N) of extended real numbers is convergent if and only if
the corresponding sequence (ϕ(pj) : j ∈ N) of real numbers is convergent.

Given any non-empty set S of extended real numbers, we can define supS
to be the least extended real number p with the property that s ≤ p for all
s ∈ S. If the set S does not contain the extended real number +∞, and
if there exists some real number B such that s ≤ B for all s ∈ S, then
supS < +∞; otherwise supS = +∞. Similarly we define inf S to be the
greatest extended real number p with the property that s ≥ p for all s ∈ S.
If the set S does not contain the extended real number −∞, and if there
exists some real number A such that s ≥ A for all s ∈ S, then inf S > +∞;
otherwise inf S = −∞. Moreover

ϕ(supS) = supϕ(S) and ϕ(inf S) = inf ϕ(S),

where ϕ: [−∞,+∞] → [−1, 1] is the homeomorphism defined such that
ϕ(+∞) = 1, ϕ(−∞) = −1 and ϕ(c) = c(1 + |c|)−1 for all real numbers c.

Given any sequence (pj : j ∈ N) of extended real numbers, we define the
upper limit lim sup

j→+∞
pj and the lower limit lim inf

j→+∞
pj of the sequence so that

lim sup
j→+∞

pj = lim
j→+∞

sup{pk : k ≥ j}

and
lim inf
j→+∞

pj = lim
j→+∞

inf{pk : k ≥ j}.

Every sequence of extended real numbers has both an upper limit and a lower
limit. Moreover an infinite sequence of extended real numbers converges to
some extended real number if and only if the upper and lower limits of
the sequence are equal. (These results follow easily from the corresponding
results for bounded sequences of real numbers, on using the identities

ϕ(lim sup
j→+∞

pj) = lim sup
j→+∞

ϕ(pj), ϕ(lim inf
j→+∞

pj) = lim inf
j→+∞

ϕ(pj),

where ϕ: [−∞,+∞]→ [−1, 1] is the homeomorphism defined above.)
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The function that sends a pair (p, q) of extended real numbers to the
extended real number p + q is not defined when p = +∞ and q = −∞, or
when p = −∞ and q = +∞ but is continuous elsewhere. The function that
sends a pair (p, q) of extended real numbers to the extended real number pq
is defined everywhere. This function is discontinuous when p = ±∞ and
q = 0, and when p = 0 and q = ±∞. It is continuous for all other values of
the extended real numbers p and q.

Let a1, a2, a3, . . . be an infinite sequence of extended real numbers which
does not include both the values +∞ and −∞, and let pk =

∑k
j=0 aj for

all natural numbers k. If the infinite sequence p1, p2, p3, . . . of extended real
numbers converges in the extended real line [−∞,+∞] to some extended
real number p, then this value p is said to be the sum of the infinite series
+∞∑
j=1

aj, and we write
+∞∑
j=1

aj = p.

It follows easily from this definition that if +∞ is one of the values of

the infinite series a1, a2, a3, . . ., then
+∞∑
j=1

aj = +∞. Similarly if −∞ is one of

the values of this infinite series then then
+∞∑
j=1

aj = −∞. Suppose that the

members of the sequence a1, a2, a3, . . . are all real numbers. Then
+∞∑
j=1

an =

+∞ if and only if, given any real number B, there exists some real number N

such that
k∑
j=1

an > B whenever k ≥ N . Similarly
+∞∑
j=1

aj = −∞ if and only

if, given any real number A, there exists some real number N such that
k∑
j=1

aj < A whenever k ≥ N .
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