Course MA1S11: Michaelmas Term 2016.
Tutorial 7: Sample
October 18-21, 2016
Solutions

Results that may be useful.

Quadratic Polynomials and related Functions

Let a, b and c be real or complex numbers, where $a \neq 0$. The roots of the quadratic polynomial $a x^{2}+b x+c$ are given by the quadratic formula

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Moreover if $a=1$ then the sum of the roots is $-b$ and the product of the roots is c.

Let a and c be real constants, where $a>0$ and $c>0$, and let $F:(0,+\infty) \rightarrow$ \mathbb{R} be the function on the set of positive real numbers defined such that

$$
F(x)=a x+\frac{c}{x}
$$

for all positive real numbers x. A real number y satisfies the equation $y=$ $F(x)$ for some positive real number x if and only if $a x^{2}-y x+c=0$. The real numbers x (if any) that satisfy the equation $y=F(x)$ can therefore be determined from the quadratic formula. The minimum value of $F(x)$ on $(0,+\infty)$ is $2 \sqrt{a c}$, and this value is attained when $x=\sqrt{c / a}$.

Notation for intervals

Let a and b be real numbers, where $a \leq b$. Then

$$
\begin{array}{cl}
{[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\},} & (a, b]=\{x \in \mathbb{R} \mid a<x \leq b\}, \\
{[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\},} & (a, b)=\{x \in \mathbb{R} \mid a<x<b\}, \\
(-\infty, a]=\{x \in \mathbb{R} \mid x \leq a\}, & (-\infty, a)=\{x \in \mathbb{R} \mid x<a\}, \\
{[a,+\infty)=\{x \in \mathbb{R} \mid x \geq a\},} & (a,+\infty)=\{x \in \mathbb{R} \mid x>a\} .
\end{array}
$$

Functions

A function $f: X \rightarrow Y$ maps elements of a set X to elements of a set Y. The set X is the domain of the function $f: X \rightarrow Y$, and the set Y is the codomain of this function. The function $f: X \rightarrow Y$ is injective if it maps distinct elements of domain X to distinct elements of the codomain Y. Thus $f: X \rightarrow Y$ is injective if and only if

$$
u, v \in X \text { and } f(u)=f(v) \Rightarrow u=v .
$$

The range of the function $f: X \rightarrow Y$ is the set $f(X)$, where

$$
f(X)=\{f(x) \mid x \in X\} .
$$

The function $f: X \rightarrow Y$ is surjective if $f(X)=Y$. The function $f: X \rightarrow Y$ is bijective if it is both injective and surjective. An inverse $g: Y \rightarrow X$ for the function $f: X \rightarrow Y$ is a function $g: Y \rightarrow X$ with the properties that $g(f(x))=x$ for all $x \in X$ and $f(g(y))=y$ for all $y \in Y$. A function $f: X \rightarrow Y$ has a well-defined inverse $g: Y \rightarrow X$ if and only if it is bijective.

Problem 1

(a) Let $f:(1,54] \rightarrow \mathbb{R}$ be defined such that $f(x)=3 x+\frac{108}{x}$ for all $x \in$ $(1,54]$.

Note for solution: note that if $F(x)=3 x+\frac{108}{x}$ for all positive real numbers x then $F(x)$ attains a minimum value 18 at $x=6$. Relevant values are $F(2)=60, F(6)=36, F(18)=60, F(54)=164$.
(i) Is the function $f:(1,54] \rightarrow \mathbb{R}$ injective? Tick the correct box below:-

(ii) What is the range of the function $f:(1,54] \rightarrow \mathbb{R}$? Write your answer in the box below as an interval in one of the forms $[a, b],[a, b)$, $(a, b],(a, b)$ as appropriate, where a and b are suitably-chosen real numbers satisfying $a<b$.

$$
[36,164]
$$

Note for solution: the function $f:(1,54] \rightarrow \mathbb{R}$ achieves a minimum value of 36 when $x=6$, where 6 belongs to the given domain $(1,54]$; this determines the lower bound of the range; considering also values of the given polynomial at the endpoints of the domain, and noting that the expression defining this function takes the values 60, 36 and 164 at 2, 6 and 54 respectively, we see that the endpoints of the range must be 36 and 164, and that the range itself must be [36, 164]. Coincidences such as, for example, $f(2)=f(18)$, show that the function f is not injective.
(b) Let $g:(2,6] \rightarrow \mathbb{R}$ be defined such that $g(x)=3 x+\frac{108}{x}$ for all $x \in(2,6]$.
(i) Is the function $g:(2,6] \rightarrow \mathbb{R}$ injective? Tick the correct box below:-
Yes $\sqrt{ }$ No
(ii) What is the range of the function $g:(2,6] \rightarrow \mathbb{R}$? Write your answer in the box below as an interval in one of the forms $[a, b],[a, b)$, $(a, b],(a, b)$ as appropriate, where a and b are suitably-chosen real numbers satisfying $a<b$.

$$
[36,60)
$$

Note for solution: the function g is decreasing on the given domain. It is therefore injective, and the range is determined by the images of the endpoints of the domain interval under the function g.

Problem 2

(a) Consider the function $f:[0,4] \rightarrow[0,64]$ defined such that

$$
f(x)= \begin{cases}37+9 x & \text { if } 0 \leq x \leq 3 \\ 64-x^{3} & \text { if } 3<x \leq 4\end{cases}
$$

for all $x \in[0,4]$.
(i) Is the function $f:[0,4] \rightarrow[0,64]$ injective? Tick the correct box below:-

$$
\text { Yes } \sqrt{ } \quad N o
$$

If you claim that this function is not injective, give a reason for your answer in not more than three sentences in the following box:
N / A
(ii) Is the function $f:[0,4] \rightarrow[0,64]$ surjective? Tick the correct box below:-

If you claim that this function is not surjective, give a reason for your answer in not more than three sentences in the following box:

(iii) Is the function $f:[0,4] \rightarrow[0,64]$ bijective? Tick the correct box below:-

(b) Consider the function $g:[0,4] \rightarrow[0,64)$ defined such that

$$
g(x)= \begin{cases}37+9 x & \text { if } 0 \leq x<3 \\ 64-x^{3} & \text { if } 3 \leq x \leq 4\end{cases}
$$

for all $x \in[0,4]$.
(i) Is the function $g:[0,4] \rightarrow[0,64)$ injective? Tick the correct box below:-

$$
\text { Yes No } \quad \text {, }
$$

If you claim that this function is not injective, give a reason for
your answer in not more than three sentences in the following box:
The function $g:[0,3] \rightarrow[0,27)$ satisfies $g(0)=37=g(3)$, and therefore this function is not injective.
(ii) Is the function $g:[0,4] \rightarrow[0,64)$ surjective? Tick the correct box below:-

If you claim that this function is not surjective, give a reason for your answer in not more than three sentences in the following box:

(iii) Is the function $g:[0,4] \rightarrow[0,64)$ bijective? Tick the correct box below:-

(c) Consider the function $h:[0,3] \rightarrow[0,27]$ defined such that

$$
h(x)= \begin{cases}64-8 x & \text { if } 0 \leq x<3 \\ x^{3}-27 & \text { if } 3 \leq x \leq 4\end{cases}
$$

for all $x \in[0,3]$.
(i) Is the function $h:[0,3] \rightarrow[0,27]$ injective? Tick the correct box below:-

$$
\text { Yes } \sqrt{ } \text { No }
$$

If you claim that this function is not injective, give a reason for your answer in not more than three sentences in the following box:

(ii) Is the function $h:[0,3] \rightarrow[0,27]$ surjective? Tick the correct box below:-
Yes

$$
\text { No } \sqrt{ }
$$

If you claim that this function is not surjective, give a reason for your answer in not more than three sentences in the following box:

The range of this function does not include real numbers in the interval (37,40].
(iii) Is the function $h:[0,3] \rightarrow[0,27]$ bijective? Tick the correct box below:-

