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7 Integration

7.1 Darboux Sums of a Bounded Function

The approach to the theory of integration discussed below was developed
by Jean-Gaston Darboux (1842–1917). The integral defined using lower and
upper sums in the manner described below is sometimes referred to as the
Darboux integral of a function on a given interval. However the class of func-
tions that are integrable according to the definitions introduced by Darboux
is the class of Riemann-integrable functions. Thus the approach using Dar-
boux sums provides a convenient approach to define and establish the basic
properties of the Riemann integral.

Let f : [a, b]→ R be a real-valued function on a closed interval [a, b] that
is bounded above and below on the interval [a, b], where a and b are real
numbers satisfying a < b. Then there exist real numbers m and M such that
m ≤ f(x) ≤M for all real numbers x satisfying a ≤ x ≤ b. We seek to define

a quantity
∫ b
a
f(x) dx, the definite integral of the function f on the interval

[a, b], where the value of this quantity represents the area “below” the graph
of the function where the function is positive, minus the area “above” the
graph of the function where the function is negative.

We now introduce the definition of a partition of the interval [a, b].

Definition A partition P of an interval [a, b] is a set {x0, x1, x2, . . . , xn} of
real numbers satisfying

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

A partition P of the closed interval [a, b] provides a decomposition of that
interval as a union of the subintervals [xi−1, xi] for i = 1, 2, . . . , n, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Successive subintervals of the partition intersect only at their endpoints.
Let P be a partition of the interval [a, b]. Then P = {x0, x1, x2, . . . , xn}

where x0, x1, . . . , xn are real numbers satisfying

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

The values of the bounded function f : [a, b] → R satisfy m ≤ f(x) ≤ M for
all real numbers x satisfying a ≤ x ≤ b. It follows that, for each integer i
between i and n, the set

{f(x) | xi−1 ≤ x ≤ xi}.
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is a set of real numbers that is bounded below by m and bounded above
by M . The Least Upper Bound Principle then ensures that the set {f(x) |
xi−1 ≤ x ≤ xi} has a well-defined greatest lower bound and a well-defined
least upper bound (see the discussion of least upper bounds and greatest
lower bounds in Subsections 1.1.15 to 1.1.19).

For each integer i between 1 and n, let us denote by mi the greatest lower
bound on the values of the function f on the interval [xi−1, xi], and let us
denote by Mi the least upper bound on the values of the function f on the
interval [xi−1, xi], so that

mi = inf{f(x) | xi−1 ≤ x ≤ xi}

and
Mi = sup{f(x) | xi−1 ≤ x ≤ xi}.

Then the interval [mi,Mi] can be characterized as the smallest closed interval
in R that contains the set

{f(x) | xi−1 ≤ x ≤ xi}.

We now consider what the values of the greatest lower bound and least upper
bound on the values of the function are determined in particular cases where
the function has some special behaviour.

First suppose that the function f is non-decreasing on the interval [xi−1, xi].
Then mi = f(xi−1) and Mi = f(xi), because in this case the values of the
function f satisfy f(xi−1) ≤ f(x) ≤ f(xi) for all real numbers x satisfying
xi−1 ≤ x ≤ xi.

Next suppose that the function f is non-increasing on the interval [xi−1, xi].
Then mi = f(xi) and Mi = f(xi−1), because in this case the values of the
function f satisfy f(xi−1) ≥ f(x) ≥ f(xi) for all real numbers x satisfying
xi−1 ≤ x ≤ xi.

Next suppose that that the function f is continuous on the interval
[xi−1, xi]. The Extreme Value Theorem (Theorem 4.29) then ensures the
existence of real numbers ui and vi, where xi−1 ≤ ui ≤ xi and xi−1 ≤ vi ≤ xi
with the property that

f(ui) ≤ f(x) ≤ f(vi)

for all real numbers x satisfying xi−1 ≤ ui ≤ xi. Then mi = f(ui) and
Mi = f(vi).

Finally consider the function f :R → R defined such that f(x) = x −
bxc for all real numbers x, where bxc is the greatest integer satisfying the
inequality bxc ≤ x. Then 0 ≤ f(x) < 1 for all real numbers x. If the interval
[xi−1, xi] includes an integer in its interior then

sup{f(x) | xi−1 ≤ x ≤ xi} = 1,
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and thus Mi = 1, even though there is no real number x for which f(x) = 1.
We now summarize the essentials of the discussion so far.
The function f : [a, b] → R is a bounded function on the closed interval

[a, b], where a and b are real numbers satisfying a < b. There then exist
real numbers m and M such that m ≤ f(x) ≤ M for all real numbers x
satisfying a ≤ x ≤ b. We are given also a partition P of the interval [a, b].
This partition P is representable as a finite set of real numbers in the interval
[a, b] that includes the endpoints of the interval. Thus

P = {x0, x1, . . . , xn}

where
a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

The quantities mi and Mi are then defined so that

mi = inf{f(x) | xi−1 ≤ x ≤ xi}

and
Mi = sup{f(x) | xi−1 ≤ x ≤ xi}.

for i = 1, 2, . . . , n. Then mi ≤ f(x) ≤ Mi for all real numbers x satisfying
xi−1 ≤ x ≤ xi. Moreover [mi,Mi] is the smallest closed interval that contains
all the values of the function f on the interval [xi−1, xi].

Definition Let f : [a, b] → R be a bounded function defined on a closed
bounded interval [a, b], where a < b, and let the partition P be a partition
of [a, b] given by P = {x0, x1, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Then the lower sum (or lower Darboux sum) L(P, f) and the upper sum (or
upper Darboux sum) U(P, f) of f for the partition P of [a, b] are defined so
that

L(P, f) =
n∑
i=1

mi(xi − xi−1), U(P, f) =
n∑
i=1

Mi(xi − xi−1),

where mi = inf{f(x) | xi−1 ≤ x ≤ xi} and Mi = sup{f(x) | xi−1 ≤ x ≤ xi}.

Clearly L(P, f) ≤ U(P, f). Moreover
n∑
i=1

(xi−xi−1) = b−a, and therefore

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a),

for any real numbers m and M satisfying m ≤ f(x) ≤M for all x ∈ [a, b].
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Remark Let us consider how the lower and upper sum of a bounded function
f : [a, b] → R on a closed bounded interval [a, b] are related to the notion of
the area “under the graph of the function f” on the interval a, in the case
where the function f is non-negative on the interval [a, b]. Thus suppose that
f(x) ≥ 0 for all x ∈ [a, b], and let X denote the region of the plane bounded
by the graph of the function f from x = a to x = b and the lines x = a,
x = b and y = 0. Then

X = {(x, y) ∈ R2 | a ≤ x ≤ b and 0 ≤ y ≤ f(x)},

where R2 is the set of all ordered pairs of real numbers. (The elements of R2

are then regarded as Cartesian coordinates of points of the plane.)
For each integer i let

Xi = {(x, y) ∈ X | xi−1 ≤ x ≤ xi}
= {(x, y) ∈ R2 | xi−1 ≤ x ≤ xi and 0 ≤ y ≤ f(x)}.

If the regions X and Xi have well-defined areas for i = 1, 2, . . . , n satisfying
the properties that areas of planar regions are expected to satisfy, then

area(X) =
n∑
i=1

area(Xi),

because, where subregions Xi for different values of i intersect one another,
they intersect only along their bounding edges.

Let i be an integer between 1 and n. Then 0 ≤ mi ≤ f(x) for all real
numbers x satisfying xi−1 ≤ x ≤ xi. It follows that the rectangle with vertices
(xi−1, 0), (xi, 0), (xi,mi) and (xi−1,mi) is contained in the region Xi. This
rectangle has width xi−xi−1 and height mi, and thus has area mi(xi−xi−1).
It follows that

mi(xi − xi−1) ≤ area(Xi)

for all integers i between 1 and n. Summing these inequalities over i, we find
that

L(P, f) =
n∑
i=1

mi(xi − xi−1) ≤
n∑
i=1

area(Xi) = area(X).

An analogous inequality holds for upper sums. For each integer i between
xi−1 and xi the region Xi of the plane R2 is contained within the rectangle
with vertices (xi−1, 0), (xi, 0), (xi,Mi) and (xi−1,Mi). This rectangle has
width xi − xi−1 and height Mi, and thus has area Mi(xi − xi−1). It follows
that

Mi(xi − xi−1) ≥ area(Xi)
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for all integers i between 1 and n. Summing these inequalities over i, we find
that

U(P, f) =
n∑
i=1

Mi(xi − xi−1) ≥
n∑
i=1

area(Xi) = area(X).

We conclude therefore that if the function f is non-negative on the interval
a, b], and if the region X “under the graph of the function” on the interval
[a, b] has a well-defined area, then

L(P, f) ≤ area(X) ≤ U(P, f).

7.2 Upper and Lower Integrals and Integrability

Definition Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b
a
f(x) dx (or upper Darboux

integral) and the lower Riemann integral L
∫ b
a
f(x) dx (or lower Darboux

integral) of the function f on [a, b] are defined by

U
∫ b

a

f(x) dx = inf {U(P, f) | P is a partition of [a, b]} ,

L
∫ b

a

f(x) dx = sup {L(P, f) | P is a partition of [a, b]} .

The definition of upper and lower integrals thus requires that U
∫ b
a
f(x) dx

be the infimum of the values of U(P, f) and that L
∫ b
a
f(x) dx be the supre-

mum of the values of L(P, f) as P ranges over all possible partitions of the
interval [a, b].

Remark Let us consider how the lower and upper Riemann integrals of a
bounded function f : [a, b]→ R on a closed bounded interval [a, b] are related
to the notion of the area “under the graph of the function f” on the interval a,
in the case where the function f is non-negative on the interval [a, b]. Thus
suppose that the region X has a well-defined area area(X), where

X = {(x, y) ∈ R2 | a ≤ x ≤ b and 0 ≤ y ≤ f(x)}.

We have already shown that

L(P, f) ≤ area(X) ≤ U(P, f)

for all partitions P of the interval [a, b]. It follows that area(X) is an upper
bound on all the lower sums determined by all the partitions P of [a, b]. It

155



y

xx0 x1 x2 x3 x4 x5 x6 x7 x8

The upper sum U(P, f)

y

xx0 x1 x2 x3 x4 x5 x6 x7 x8

The lower sum L(P, f)
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is therefore not less than the least upper bound on all these lower sums.
Therefore

L
∫ b

a

f(x) dx ≤ area(X),

An analogous argument shows that

U
∫ b

a

f(x) dx ≥ area(X).

Thus if the region X has a well-defined area, then that area must satisfy the
inequalities

L
∫ b

a

f(x) dx ≤ area(X) ≤ U
∫ b

a

f(x) dx.

Definition A bounded function f : [a, b] → R on a closed bounded interval
[a, b] is said to be Riemann-integrable (or Darboux-integrable) on [a, b] if

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

in which case the Riemann integral
∫ b
a
f(x) dx (or Darboux integral) of f on

[a, b] is defined to be the common value of U
∫ b
a
f(x) dx and L

∫ b
a
f(x) dx.

When a > b we define∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

for all Riemann-integrable functions f on [b, a]. We set
∫ b
a
f(x) dx = 0 when

b = a.
If f and g are bounded Riemann-integrable functions on the interval

[a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx, since

L(P, f) ≤ L(P, g) and U(P, f) ≤ U(P, g) for all partitions P of [a, b].
We recall the basic definitions associated with the definition of the Rie-

mann integral (or Riemann-Darboux) integral of a bounded real-valued func-
tion f : [a, b] → R on a closed bounded interval [a, b], where a and b are
real numbers satisfying a < b. The function f is required to be bounded,
and therefore there exist real numbers m and M with the property that
m ≤ f(x) ≤M for all real numbers x satisfying a ≤ x ≤ b.

A partition P of the interval [a, b], may be specified in the form P =
{x0, x1, x2, . . . , xn}, where x0, x1, . . . , xn are real numbers satisfying

a = x0 < x1 < x2 < · · · < xn = b
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The quantities mi and Mi are defined for i = 1, 2, . . . , n so that

mi = inf{f(x) | xi−1 ≤ x ≤ xi}

and
Mi = sup{f(x) | xi−1 ≤ x ≤ xi}.

Then the interval [mi,Mi] can be characterized as the smallest closed interval
in R that contains the set

{f(x) | xi−1 ≤ x ≤ xi}.

The Darboux lower sum L(P, f) and Darboux upper sum U(P, f) determined
by the function f and the partition P of the interval [a, b] are then defined
by the identities

L(P, f) =
n∑
i=1

mi(xi − xi−1), U(P, f) =
n∑
i=1

Mi(xi − xi−1).

y

xx0 x1 x2 x3 x4 x5 x6 x7 x8

The lower Riemann integral L
∫ b
a
f(x) dx of the function f on the interval

[a, b] is defined to be the least upper bound of the Darboux lower sums L(P, f)
as P ranges over all partitions of the interval [a, b].

Similarly the upper Riemann integral L
∫ b
a
f(x) dx of the function f on

the interval [a, b] is defined to be the greatest lower bound of the Darboux
upper sums U(P, f) as P ranges over all partitions of the interval [a, b].

The lower and upper Riemann integrals of the function f on the interval
[a, b] are therefore characterized by the properties presented in the following
lemmas.

Lemma 7.1 Let f : [a, b] → R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a < b. Then the lower
Riemann integral is the unique real number characterized by the following two
properties:—
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(i)

L(P, f) ≤ L
∫ b

a

f(x) dx

for all partitions P of the interval [a, b].

(ii) given any positive real number ε, there exists a partition P of the in-
terval [a, b] for which

L(P, f) > L
∫ b

a

f(x) dx− ε.

Lemma 7.2 Let f : [a, b] → R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a < b. Then the up-
per Riemann integral is the unique real number characterized by the following
two properties:—

(i)

U(P, f) ≥ U
∫ b

a

f(x) dx

for all partitions P of the interval [a, b].

(ii) given any positive real number ε, there exists a partition P of the in-
terval [a, b] for which

U(P, f) < U
∫ b

a

f(x) dx+ ε.

A bounded function f on the interval [a, b] is then Riemann-integrable if
and only if

L
∫ b

a

f(x) dx = U
∫ b

a

f(x) dx.

The integral
∫ b
a
f(x) dx of a Riemann-integrable function f on the interval

[a, b] is then the common value of the upper and lower Riemann integrals.
In order to develop further the theory of integration, we introduce the no-

tion of a refinement of a partition, and prove that if we replace a partition P
by a refinement R of that partition, then the Darboux upper and lower sums
satisfy the inequalities

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f).

for all bounded functions f on [a, b]. This result is an essential tool in devel-
oping the theory of the Riemann integral.
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Definition Let P and R be partitions of [a, b], given by P = {x0, x1, . . . , xn}
and R = {u0, u1, . . . , um}. We say that the partition R is a refinement of P
if P ⊂ R, so that, for each xi in P , there is some uj in R with xi = uj.

Lemma 7.3 Let R be a refinement of some partition P of [a, b]. Then

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f)

for any bounded function f : [a, b]→ R.

Proof Let P = {x0, x1, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b.

Then

L(P, f) =
n∑
i=1

mi(xi − xi−1)

and

U(P, f) =
n∑
i=1

Mi(xi − xi−1),

where
mi = inf{f(x) | xi−1 ≤ x ≤ xi}

and
Mi = sup{f(x) | xi−1 ≤ x ≤ xi}.

Suppose that we add an extra division point to P to obtain a partition Q.
We suppose that the extra division point z is added between xk−1 and xk,
where k is some integer between 1 and n, so that xk−1 < z < xk. Let

m′k = inf{f(x) | xk−1 ≤ x ≤ z},
M ′

k = sup{f(x) | xk−1 ≤ x ≤ z},
m′′k = inf{f(x) | z ≤ x ≤ xk},
M ′′

k = sup{f(x) | z ≤ x ≤ xk}.

Then mk ≤ m′k, mk ≤ m′′k, Mk ≥M ′
k and Mk ≥M ′′

k .
It follows that

mk(xk − xk−1) = mk(z − xk−1) +mk(xk − z)

≤ m′k(z − xk−1) +m′′k(xk − z)
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and

Mk(xk − xk−1) = Mk(z − xk−1) +Mk(xk − z)

≥ M ′
k(z − xk−1) +M ′′

k (xk − z)

But the lower sum L(P, f) is the sum of the quantities mi(xi − xi−1) as
i ranges from 1 to n, and the lower sum L(Q, f) is the analogous sum for
the partition Q, obtained on replacing the summand mk(xk − xk1) by the
quantity

m′k(z − xk−1) +m′′k(xk − z),

which is no smaller than mk(xk − xk1). It follows that L(P, f) ≤ L(Q, f).
Similarly U(P, f) is the sum of the quantities Mi(xi − xi−1) as i ranges

from 1 to n, and the upper sum U(Q, f) is the analogous sum for the parti-
tion Q, obtained on replacing the summand Mk(xk − xk−1) by the quantity

M ′
k(z − xk−1) +M ′′

k (xk − z),

which is no larger than Mk(xk − xk1). It follows that U(P, f) ≥ U(Q, f).
If the partition R of the interval [a, b] is a refinement of the partition P ,

then one can obtain R from P by successively adding extra division points,
one at a time. We have shown that the lower sums do not decrease, and
the upper sums do not increase, each time a new division point is added. It
follows that

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f),

as required.

Given any two partitions P and Q of [a, b] there exists a partition R of
[a, b] which is a refinement of both P and Q. Indeed we can take R to be
the partition of [a, b] obtained in taking as division points all the division
points belonging to the partitions P and Q. Such a partition is said to be a
common refinement of the partitions P and Q.

Lemma 7.4 Let f be a bounded real-valued function on the interval [a, b],
where a and b are real numbers satisfying a < b. Then

L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx.

Proof Let P and Q be partitions of [a, b], and let R be a common refinement
of P and Q. It follows from Lemma 7.3 that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤
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U(Q, f). Thus, on taking the supremum of the left hand side of the inequality
L(P, f) ≤ U(Q, f) as P ranges over all possible partitions of the interval [a, b],

we see that L
∫ b
a
f(x) dx ≤ U(Q, f) for all partitions Q of [a, b]. But then,

taking the infimum of the right hand side of this inequality as Q ranges over
all possible partitions of [a, b], we see that L

∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx, as

required.

Proposition 7.5 Let f be a bounded real-valued function on the interval
[a, b], where a and b are real numbers satisfying a < b. Then the function f

is Riemann-integrable on f , with Riemann integral
∫ b
a
f(x) dx if and only if

the following two properties are satisfied:

(i)

L(P, f) ≤
∫ b

a

f(x) dx ≤ U(P, f)

for all partitions P of the interval [a, b];

(ii) given any positive real number ε, there exists a partition P of the in-
terval [a, b] for which∫ b

a

f(x) dx− ε < L(P, f) ≤ U(P, f) <

∫ b

a

f(x) + ε.

Proof Let A be a real number. Suppose that L(P, f) ≤ A ≤ U(P, f) for
all partitions P of [a, b], and that, given any positive real number ε, there
exists a partition P of [a, b] for which A − ε < L(P, f) ≤ U(P, f) < A + ε.

It then follows from Lemma 7.1 and Lemma 7.2 that A = L
∫ b
a
f(x) dx and

A = U
∫ b
a
f(x) dx. Therefore the function f is Riemann-integrable on [a, b],

and
∫ b
a
f(x) dx = A.

Conversely, suppose that the function f is Riemann-integrable on [a, b],

with Riemann integral equal to the real number A. Then A = L
∫ b
a
f(x) dx =

U
∫ b
a
f(x) dx, and therefore L(P, f) ≤ A ≤ U(P, f) for all partitions P of

[a, b]. Moreover it follows from Lemma 7.1 and Lemma 7.2 that there exist
partitions P1 and P2 of [a, b] for which L(P1, f) > A−ε and U(P2, f) < A+ε.
Let P be a common refinement of the partitions P1 and P2. It follows from
Lemma 7.3 that

A− ε < L(P1, f) ≤ L(P, f) ≤ U(P, f) < U(P2, f) < A+ ε.

The result follows.
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Corollary 7.6 Let f : [a, b] → R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfing a ≤ b. Then the
function f is Riemann-integrable on [a, b] if and only if, given any positive
real number ε, there exists a partition P of [a, b] with the property that

U(P, f)− L(P, f) < ε.

Proof Suppose that the bounded function f is Riemann-integrable on [a, b].

Let A =
∫ b
a
f(x) dx. It follows from Proposition 7.5 that, given any positive

real number ε, there exists a partition P of [a, b] for which

A− 1
2
ε < L(P, f) ≤ U(P, f) < A+ 1

2
ε.

Then U(P, f)− L(P, f) < ε.
for which there exists a partition P with U(P, f)− L(P, f) < ε. Then

L(P, f) ≤ L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx ≤ U(P, f)

(see Lemma 7.4). Therefore

0 ≤ U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < ε

for all positive real numbers ε. But the difference of the upper and lower
Riemann integrals is independent of ε. It follows that

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx = 0,

and thus the function f is Riemann-integrable on [a, b], as required.

Corollary 7.7 Let f : [a, b] → R be a bounded Riemann-integrable function
on a closed bounded interval [a, b], where a < b, and let u and v be real
numbers belonging to [a, b]. Then the function f is Riemann-integrable on
the interval with endpoints u and v, and∫ v

u

f(x) dx = −
∫ u

v

f(x) dx.

Proof First suppose that a ≤ u < v ≤ b. Let some positive real number ε be
given. Then there exists a partition P of [a, b] for which U(P, f)−L(P, f) < ε.
Let Q be the partition of [u, v] consisting of the endpoints u and v of the
closed interval [u, v] together with those division points of P that lie in the
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interior of this interval. An examination of the relevant definitions shows
that

U(Q, f)− L(Q, f) ≤ U(P, f)− L(P, f) < ε.

It follows that if a ≤ u < v ≤ b then the function f is Riemann-integrable
on [u, v]. The definition of the relevant integrals then ensures that∫ u

v

f(x) dx = −
∫ v

u

f(x) dx.

(see subsection 7.7.2).
If a ≤ v < u ≤ b then the required result follows from the case already

proved on interchanging u and v. If a ≤ u = v ≤ b then the integrals∫ v

u

f(x) dx and

∫ u

v

f(x) dx are equal to zero, and therefore the result follows

in this case also. This completes the proof.

Lemma 7.8 Let f : [a, b]→ R and g: [a, b]→ R be bounded Riemann-integrable
functions on a closed interval [a, b], where a < b. Suppose that f(x) ≤ g(x)
for all real numbers x satisfying a ≤ x ≤ b. Then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Proof The Darboux lower and uppse sums of the functions f and g satisfy
L(P, f) ≤ L(P, g) and U(P, f) ≤ U(P, g). It follows that

L
∫ b

a

f(x) dx ≤ L
∫ b

a

g(x) dx and U
∫ b

a

f(x) dx ≤ U
∫ b

a

g(x) dx.

The result follows.

Proposition 7.9 Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-
integrable functions on a closed bounded interval [a, b], where a and b are
real numbers satisfying a ≤ b. Then the functions f + g and f − g are
Riemann-integrable on [a, b], and moreover∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Proof Let
∫ b
a
f(x) dx = A′ and

∫ b
a
g(x) dx = A′′, and let A = A′ + A′′. Let

some positive number ε be given. It follows from Proposition 7.5 that there
exist partitions P ′ and P ′′ of [a, b] that satisfy

A′ − 1
2
ε < L(P ′, f) < U(P ′, f) < A′ + 1

2
ε
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and
A′′ − 1

2
ε < L(P ′′, g) < U(P ′′, g) < A′′ + 1

2
ε

Let P be a common refinement of the partitions P ′ and P ′′. Then L(P ′, f) ≤
L(P, f), L(P ′′, g) ≤ L(P, g), U(P ′, f) ≥ U(P, f) and U(P ′′, g) ≥ L(P, g), and
therefore

A− ε < L(P, f) + L(P, g) ≤ U(P, f) + U(P, g) < A+ ε.

Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b,

and let

M ′
i = sup{f(x) : xi−1 ≤ x ≤ xi},

M ′′
i = sup{g(x) : xi−1 ≤ x ≤ xi},

Mi = sup{f(x) + g(x) : xi−1 ≤ x ≤ xi},
m′i = inf{f(x) : xi−1 ≤ x ≤ xi},
m′′i = inf{g(x) : xi−1 ≤ x ≤ xi},
mi = inf{f(x) + g(x) : xi−1 ≤ x ≤ xi}.

Let i be an integer between 1 and n. Then m′i ≤ f(x) ≤ M ′
i and m′′i ≤

g(x) ≤M ′′
i for all real numbers x satisfying xi−1 ≤ x ≤ xi, and therefore

m′i +m′′i ≤ f(x) + g(x) ≤M ′
i +M ′′

i

for all real numbers x satisfying xi−1 ≤ x ≤ xi. It follows that

m′i +m′′ ≤ mi ≤Mi ≤M ′
i +M ′′

for i = 1, 2, . . . , n. Multiplying by xi−xi−1 and summing over i, we find that

n∑
i=1

m′i(xi − xi−1) +
n∑
i=1

m′′i (xi − xi−1)

≤
n∑
i=1

mi(xi − xi−1) ≤
n∑
i=1

Mi(xi − xi−1)

≤
n∑
i=1

M ′
i(xi − xi−1) +

n∑
i=1

M ′′
i (xi − xi−1).
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Thus

L(P, f) + L(P, g) ≤ L(P, f + g)

≤ U(P, f + g) ≤ U(P, f) + U(P, g).

It then follows from inequalities obtained earlier in the proof that

A− ε < L(P, f + g) ≤ L(P, f + g) < A+ ε.

The result therefore follows on applying Proposition 7.5 to the function f+g
on [a, b].

Lemma 7.10 Let f : [a, b] → R be a bounded Riemann-integrable function
on a closed bounded interval [a, b], where a < b, and let c be a real number.
Then cf is Riemann-integrable on [a, b], and∫ b

a

(cf(x)) dx = c

∫ b

a

f(x) dx.

Proof Let A =
∫ b
a
f(x) dx. The result is immediate if c = 0. Suppose that

c > 0. Then L(P, cf) = cL(P, f) and U(P, cf) = cU(P, f) for all partitions
P of [a, b]. It follows that L(P, cf) ≤ cA ≤ U(P, cf) for all partitions P of
[a, b]. Also, given any positive real number ε, there exists a partition P of
[a, b] for which

A− ε/c < L(P, f) ≤ U(P, f) < A+ ε/c

(see Proposition 7.5). But then

cA− ε < L(P, cf) ≤ U(P, cf) < cA+ ε.

The result therefore follows in the case when c > 0.
The result is also true in the case where c = −1, because L(P,−f) =

−U(P, f) and U(P,−f) = −L(P, f) for all partitions P of the interval [a, b].
Combining these results, we see that the result is true for all real numbers c,
as required.

Proposition 7.11 Let f be a bounded real-valued function on the interval
[a, c]. Suppose that f is Riemann-integrable on the intervals [a, b] and [b, c],
where a < b < c. Then f is Riemann-integrable on [a, c], and∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.
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Proof Let some positive real number ε be given. There exist partitions P1

and P2 of [a, b] and [b, c] respectively for which∫ b

a

f(x) dx− 1
4
ε < L(P1, f) ≤ U(P1, f) <

∫ b

a

f(x) dx+ 1
4
ε

∫ c

b

f(x) dx− 1
4
ε < L(P2, f) ≤ U(P2, f) <

∫ c

b

f(x) dx+ 1
4
ε

(see Proposition 7.5). The partitions P1 and P2 combine to give a partition P
of [a, c], where P = P1 ∪ P2. Moreover

L(P, f) = L(P1, f) + L(P2, f) and U(P, f) = U(P1, f) + U(P2, f).

It follows that∫ b

a

f(x) dx+

∫ c

b

f(x) dx− 1
2
ε

< L(P, f) ≤ U(P, f)

<

∫ b

a

f(x) dx+

∫ c

b

f(x) dx+ 1
2
ε,

and therefore U(P, f) − L(P, f) < ε. It now follows from Corollary 7.6
that the function f is Riemann-integrable in [a, b], and then follows from
Proposition 7.5 that∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx,

as required.

Corollary 7.12 Let f : [a, b]→ R be a bounded Riemann-integrable function
on a closed interval [a, b], where a < b. Then∫ w

u

f(x) dx =

∫ v

u

f(x) dx+

∫ w

v

f(x) dx

for all real numbers u, v and w belonging to [a, b].

Proof In the case where u = w, the result follows from the identity∫ u

v

f(x) dx = −
∫ v

u

f(x) dx
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(see Lemma 7.7). In the case where u = v and when v = w the result follows
from the definition of the integral, which requires that

∫ u
u
f(x) dx = 0 and∫ w

w
f(x) dx = 0.
In the case when u < v < w, the result follows directly from Proposi-

tion 7.11. In the case when u < w < v, it follows from Proposition 7.11
that ∫ v

u

f(x) dx =

∫ w

u

f(x) dx+

∫ v

w

f(x) dx

It then follows that∫ w

u

f(x) dx =

∫ v

u

f(x) dx−
∫ v

w

f(x) dx

=

∫ v

u

f(x) dx+

∫ w

v

f(x) dx.

It then follows that if either v < w < u or v < u < w then∫ u

v

f(x) dx =

∫ w

v

f(x) dx+

∫ u

w

f(x) dx,

and therefore ∫ w

u

f(x) dx = −
∫ u

w

f(x) dx

= −
∫ u

v

f(x) dx+

∫ w

v

f(x) dx

=

∫ v

u

f(x) dx+

∫ w

v

f(x) dx.

Finally if w < u < v or w < v < u then∫ v

w

f(x) dx =

∫ u

w

f(x) dx+

∫ v

u

f(x) dx,

and therefore ∫ w

u

f(x) dx = −
∫ u

w

f(x) dx

=

∫ v

u

f(x) dx−
∫ v

w

f(x) dx

=

∫ v

u

f(x) dx+

∫ w

v

f(x) dx.

This completes the proof.
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Proposition 7.13 Let f : [a, b] → R be a bounded Riemann-integrable real-
valued function on a closed bounded interval [a, b], where a < b, and let k be
a positive real number. Then∫ b

a

f(x) dx = k

∫ b/k

a/k

f(ku) du.

Proof Let g: [a/k, b/k] → R be defined so that g(u) = f(ku) for all real
numbers u satisfying a/k ≤ u ≤ b/k. Each partition P of [a, b] determines
a corresponding partition Q of [a/k, b/k] so that if P = {x0, x1, x2, . . . , xn},
where

a = x0 < x1 < x2 < · · · < xn = b,

then Q = {u0, u1, . . . , un}, where ui = xi/k for i = 1, 2, . . . , n. Then
kL(Q, g) = L(P, f) and kU(Q, g) = U(P, f). This ensures that

k

∫ b/k

a/k

f(ku) du = k

∫ b/k

a/k

g(u) du =

∫ b

a

f(x) dx,

as required.

7.3 Integrability of Monotonic Functions

Let a and b be real numbers satisfying a < b. A real-valued function
f : [a, b] → R defined on the closed bounded interval [a, b] is said to be non-
decreasing if f(u) ≤ f(v) for all real numbers u and v satisfying a ≤ u ≤ v ≤
b. Similarly f : [a, b] → R is said to be non-increasing if f(u) ≥ f(v) for all
real numbers u and v satisfying a ≤ u ≤ v ≤ b. The function f : [a, b]→ R is
said to be monotonic on [a, b] if either it is non-decreasing on [a, b] or else it
is non-increasing on [a, b].

Proposition 7.14 Let a and b be real numbers satisfying a < b. Then every
monotonic function on the interval [a, b] is Riemann-integrable on [a, b].

Proof Let f : [a, b]→ R be a non-decreasing function on the closed bounded
interval [a, b]. Then f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b], and therefore the
function f is bounded on [a, b]. Let some positive real number ε be given.
Let δ be some strictly positive real number for which (f(b)−f(a))δ < ε, and
let P be a partition of [a, b] of the form P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b
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y

xx0 x1 x2 x3 x4

Darboux sums before refinement
y

xx0 x1 z x2 x3 x4

Darboux sums with new division point z between x1 and x2

y

xx0 x1 x2 x3 x4 x5 x6 x7 x8
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and xi − xi−1 < δ for i = 1, 2, . . . , n.
The maximum and minimum values of f(x) on the interval [xi−1, xi] are

attained at xi and xi−1 respectively, and therefore the upper sum U(P, f)
and L(P, f) of f for the partition P satisfy

U(P, f) =
n∑
i=1

f(xi)(xi − xi−1)

and

L(P, f) =
n∑
i=1

f(xi−1)(xi − xi−1).

Now f(xi)− f(xi−1) ≥ 0 for i = 1, 2, . . . , n. It follows that

y

xx0 x1 x2 x3 x4 x5 x6 x7 x8

U(P, f)− L(P, f)

=
n∑
i=1

(f(xi)− f(xi−1))(xi − xi−1)

< δ

n∑
i=1

(f(xi)− f(xi−1)) = δ(f(b)− f(a)) < ε.

We have thus shown that, given any positive real number ε, there exists
a partition P of the interval [a, b] for which U(P, f) − L(P, f) < ε. It then
follows from Corollary 7.6 that the function f is Riemann-integrable on [a, b],
as required.

Corollary 7.15 Let a and b be real numbers satisfing a < b, and let f : [a, b]→
R be a real-valued function on the interval [a, b]. Suppose that there exist real
numbers x0, x1, . . . , xn, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,
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such that the function f restricted to the interval [xi−1, xi] is monotonic on
[xi−1, xi] for i = 1, 2, . . . , n. Then f is Riemann-integrable on [a, b].

Proof The result follows immediately on applying the results of Proposi-
tion 7.11 and Proposition 7.14.

Remark The result and proof of Proposition 7.14 are to be found in their es-
sentials, though expressed in different language, in Isaac Newton, Philosophiae
naturalis principia mathematica (1686), Book 1, Section 1, Lemmas 2 and 3.

7.4 Integrability of Continuous functions

The following theorem is stated without proof.

Theorem 7.16 Let a and b be real numbers satisfying a < b. Then any
continuous real-valued function on the interval [a, b] is Riemann-integrable.

7.5 The Fundamental Theorem of Calculus

Let a and b be real numbers satisfying a < b. One can show that all con-
tinuous functions on the interval [a, b] are Riemann-integrable (see Theo-
rem 7.16). However the task of calculating the Riemann integral of a contin-
uous function directly from the definition is difficult if not impossible for all
but the simplest functions. Thus to calculate such integrals one makes use
of the Fundamental Theorem of Calculus.

Theorem 7.17 (The Fundamental Theorem of Calculus) Let f be a
continuous real-valued function on the interval [a, b], where a < b. Then

d

ds

(∫ s

a

f(x) dx

)
= f(s)

for all real numbers s satisfying a < s < b.

Proof Let

F (t) =

∫ t

a

f(x) dx

for all real numbers t satisfying a ≤ t ≤ b. If s is a real number satisfying
a < s < b, and if h is a real number close enough to zero to ensure that
a ≤ h ≤ b then

F (s+ h) =

∫ s+h

a

f(x) dx =

∫ s

a

f(x) dx+

∫ s+h

s

f(x) dx

= F (s) +

∫ s+h

s

f(x) dx
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(see Corollary 7.12). Also

∫ s+h

s

c dx = hc for all real constants c. It follows

that

F (s+ h)− F (s)− hf(s) =

∫ s+h

s

(f(x)− f(s)) dx

for all real numbers s satisfying a < s < b and for all real numbers h close
enough to zero to ensure that a ≤ s+ h ≤ b.

Let s be a real number satisfying a < s < b, and let some strictly positive
real number ε be given. Let ε0 be a real number chosen so that 0 < ε0 < ε.
(For example, one could choose ε0 = 1

2
ε.) Now the function f is continuous

at s, where a < s < b. It follows that there exists some strictly positive real
number δ such that a ≤ x ≤ b and

f(s)− ε0 ≤ f(x) ≤ f(s) + ε0

for all real numbers x satisfying s− δ < x < s+ δ. Now

−ε0 ≤ f(x)− f(s) ≤ ε0

for all real numbers x that lie between s and s+ h. It follows that

−ε0|h| ≤
∫ s+h

s

(f(x)− f(s)) dx ≤ ε0|h|

for all real numbers h satisfying 0 < |h| < δ, Also

F (s+ h)− F (s)

h
− f(s) =

1

h

∫ s+h

s

(f(x)− f(s)) dx

for all real numbers h satisfying 0 < |h| < δ. It follows that

−ε < −ε0 ≤
F (s+ h)− F (s)

h
− f(s) ≤ ε0 < ε

for all real numbers h satisfying 0 < |h| < δ. We conclude from this that

F ′(s) =
dF (x)

dx

∣∣∣∣
x=s

= lim
h→0

F (s+ h)− F (s)

h
= f(s),

as required.

Corollary 7.18 Let f be a continuous real-valued function on the interval
[a, b], where a < b. Then

d

ds

(∫ b

s

f(x) dx

)
= −f(s)

for all real numbers s satisfying a < s < b.
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Proof The integral satisfies∫ b

a

f(x) dx =

∫ s

a

f(x) dx+

∫ b

s

f(x) dx.

(see Proposition 7.11). Differentiating this identity, and applying the Fun-
damental Theorem of Calculus (Theorem 7.17), we find that

0 =
d

ds

(∫ b

a

f(x) dx

)
=

d

ds

(∫ s

a

f(x) dx

)
+

d

ds

(∫ b

s

f(x) dx

)
= f(s) +

d

ds

(∫ b

s

f(x) dx

)
.

The result follows.

Let f : [a, b] → R be a continuous function on a closed interval [a, b]. We
say that f is continuously differentiable on [a, b] if the derivative f ′(x) of f
exists for all x satisfying a < x < b, the one-sided derivatives

f ′(a) = lim
h→0+

f(a+ h)− f(a)

h
,

f ′(b) = lim
h→0−

f(b+ h)− f(b)

h

exist at the endpoints of [a, b], and the function f ′ is continuous on [a, b].
If f : [a, b] → R is continuous, and if F (s) =

∫ x
a
f(x) dx for all s ∈ [a, b]

then the one-sided derivatives of F at the endpoints of [a, b] exist, and

lim
h→0+

F (a+ h)− F (a)

h
= f(a), lim

h→0−

F (b+ h)− F (b)

h
= f(b).

One can verify these results by adapting the proof of the Fundamental The-
orem of Calculus.

Corollary 7.19 Let f be a continuously-differentiable real-valued function
on a closed interval with endpoints a and b. Then∫ b

a

df(x)

dx
dx = f(b)− f(a).
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Proof The result in the case when b < a follows from that in the case when
a < b by interchanging the limits a and b of integration, since both sides of
the identity change sign when a and b are interchanged. It therefore suffices
to prove the result in the case when a < b.

Define g: [a, b]→ R by

g(x) = f(x)− f(a)−
∫ x

a

df(t)

dt
dt.

Then g(a) = 0, and

dg(x)

dx
=
df(x)

dx
− d

dx

(∫ x

a

df(t)

dt
dt

)
= 0

for all x satisfing a < x < b, by the Fundamental Theorem of Calculus. Now
it follows from the Mean Value Theorem (Theorem 5.9) that there exists
some s satisfying a < s < b for which g(b)− g(a) = (b− a)g′(s). We deduce
therefore that g(b) = 0, which yields the required result.

When evaluating definite integrals, it is customary to denote the difference
in the values of a function between the endpoints of an interval by [f(x)]ba,
where

[f(x)]ba = f(b)− f(a).

The result of Corollary 7.19 is therefore represented by the following identity:
valid for all continuously-differentiable functions f on a closed interval with
endpoints a and b: ∫ b

a

df(x)

dx
dx = [f(x)]ba = f(b)− f(a).

Corollary 7.20 Let q be a rational number, where q 6= −1. Then∫ b

a

xq dx =
1

q + 1
(bq+1 − aq+1)

for all positive real numbers a and b. Moreover this identity is valid for all
real numbers a and b in the special case where q is a non-negative integer.

Proof Applying Corollary 7.19, we find that∫ b

a

xq dx =
1

q + 1

∫ b

a

d

dx

(
xq+1

)
dx =

1

q + 1

[
xq+1

]b
a

=
1

q + 1
(bq+1 − aq+1),

as required.
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Corollary 7.21 Let p(x) be a polynomial function of a real variable x, and
let

p(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n,

where c0, c1, c2, c3, . . . , cn are real constants. Then∫ b

a

p(x) dx =

[
P (x)

]b
a

,

for all real numbers a and b, where

P (x) = c0x+
c1
2
x2 +

c2
3
x3 + · · ·+ cn

n+ 1
xn+1.

Proof Applying Corollary 7.19, we find that∫ b

a

p(x) dx =

∫ b

a

dP (x)

dx
dx = [P (x)]ba = P (b)− P (a),

as required.

Example We determine the value of∫ 3

1

(6x2 − 4x+ 3) dx

Applying Corollary 7.21 we find that∫ 3

1

(6x2 − 4x+ 3) dx

=

[
2x3 − 2x2 + 3x

]3
1

= (2× 33 − 2× 32 + 3× 3)− (2× 13 − 2× 12 + 3× 1)

= 42

Corollary 7.22 Let k be a real number. Then∫ s

0

sin kx dx =
1

k
(1− cos ks),

and ∫ s

0

cos kx dx =
1

k
sin ks.
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Proof Applying Corollary 7.19, we find that∫ s

0

sin kx dx = −1

k

∫ s

0

d

dx
(cos kx) dx = −1

k
[cos kx]s0

=
1

k
(1− cos ks)

and ∫ s

0

cos kx dx =
1

k

∫ s

0

d

dx
(sin kx) dx =

1

k
[sin kx]s0

=
1

k
sin ks,

as required.

Corollary 7.23 Let a be a real number. Then∫ s

0

1

a2 + x2
dx =

1

a
arctan

(s
a

)
.

Proof The derivative of the inverse tangent function satisfies

d

du
(arctanu) =

1

1 + u2

(see Proposition 6.16). It follows from the Chain Rule (Proposition 5.5) that

d

dx

(
arctan

(x
a

))
=

1

a
× 1

1 +
x2

a2

=
a

a2 + x2
.

Applying Corollary 7.19, we now find that∫ s

0

1

a2 + x2
dx =

1

a

∫ s

0

d

dx

(
arctan

(x
a

))
dx

=
1

a

[
arctan

(x
a

)]s
0

=
1

a
arctan

(s
a

)
,

as required.

Corollary 7.24 Let a be a real number. Then∫ s

0

1√
a2 − x2

dx = arcsin
(s
a

)
.
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Proof The derivative of the inverse sine function satisfies

d

du
(arcsinu) =

1√
1− u2

(see Proposition 6.18). It follows from the Chain Rule (Proposition 5.5) that

d

dx

(
arcsin

(x
a

))
=

1

a
× 1√

1− x2

a2

=
1√

a2 − x2
.

Applying Corollary 7.19, we now find that∫ s

0

1√
a2 − x2

dx =

∫ s

0

d

dx

(
arcsin

(x
a

))
dx

=
[
arcsin

(x
a

)]s
0

= arcsin
(s
a

)
,

as required.

7.6 Integration by Parts

Proposition 7.25 (Integration by Parts) Let f and g be continuously
differentiable real-valued functions on the interval [a, b]. Then∫ b

a

f(x)
dg(x)

dx
dx = f(b)g(b)− f(a)g(a)−

∫ b

a

g(x)
df(x)

dx
dx.

Proof This result follows from Corollary 7.19 on integrating the identity

f(x)
dg(x)

dx
=

d

dx
(f(x)g(x))− g(x)

df(x)

dx
.

Example We determine the value of∫ s

0

x sin kx dx

where k is a non-zero real constant. Let

f(x) = x and g(x) = −1

k
cos kx

for all real numbers x. Then

dg(x)

dx
= sin kx.
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It follows that∫ s

0

x sin kx dx =

∫ s

0

f(x)
dg(x)

dx
dx

= [f(x)g(x)]s0 −
∫ s

0

df(x)

dx
g(x) dx

= −1

k
[x cos kx]s0 +

1

k

∫ s

0

cos kx dx

= − s
k

cos ks+
1

k2
[sin kx]s0

= − s
k

cos ks+
1

k2
sin ks.

Thus ∫ s

0

x sin kx dx =
1

k2
sin ks− s

k
cos ks.

7.7 Integration by Substitution

Proposition 7.26 (Integration by Substitution) Let ϕ: [a, b] → R be a
continuously-differentiable function on the interval [a, b]. Then∫ ϕ(b)

ϕ(a)

f(u) du =

∫ b

a

f(ϕ(x))
dϕ(x)

dx
dx.

for all continuous real-valued functions f on the range ϕ([a, b]) of the func-
tion ϕ.

Proof Let c = ϕ(a) and d = ϕ(b), and let F and G be the functions on [a, b]
defined by

F (s) =

∫ ϕ(s)

c

f(u)du, G(s) =

∫ s

a

f(ϕ(x))
dϕ(x)

dx
dx.

Then F (a) = 0 = G(a). Moreover F (s) = H(ϕ(s)), where

H(w) =

∫ w

c

f(u) du,

for all w ∈ ϕ([a, b]). Using the Chain Rule (Proposition 5.5) and the Funda-
mental Theorem of Calculus (Theorem 7.17), we find that

F ′(s) = H ′(ϕ(s))ϕ′(s) = f(ϕ(s))ϕ′(s) = G′(s)

for all s ∈ (a, b). On applying the Mean Value Theorem (Theorem 5.9) to the
function F−G on the interval [a, b], we see that F (b)−G(b) = F (a)−G(a) =
0. Thus H(d) = F (b) = G(b), which yields the required identity.
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Let x be a real variable taking values in a closed interval [a, b], and let
u = ϕ(x) for all x ∈ [a, b], where ϕ: [a, b]→ R be a continuously-differentiable
function on the interval [a, b]. The rule for Integration by Substitution
(Proposition 7.26) can then be stated as follows:∫ u(b)

u(a)

f(u) du =

∫ b

a

f(u(x)))
du

dx
dx.

for all continuous real-valued functions f whose domain includes u(x) for all
real numbers x satisfying a ≤ x ≤ b, where u(a) and u(b) denote the values
of u when x = a and x = b respectively.

Example We determine the value of the integral∫ s

0

x5√
1− x2

dx,

where s is a real number satisfying −1 < s < 1. Let u =
√

1− x2. Then

du

dx
= −2x× 1

2
√

1− x2
= − x√

1− x2
.

Also u2 = 1− x2 and therefore x2 = 1− u2 and x4 = 1− 2u2 + u4. It follows
that ∫ s

0

x5√
1− x2

dx = −
∫ s

0

(1− 2u2 + u4)
du

dx
dx

= −
∫ u(s)

u(0)

(1− 2u2 + u4) du

= −
∫ √1−s2
1

(1− 2u2 + u4) du

= −
[
u− 2

3
u3 + 1

5
u5
]√1−s2
1

= 8
15
−
√

1− s2
(
1− 2

3
(1− s2) + 1

5
(1− s2)2

)
= 8

15
−
√

1− s2
(

8
15

+ 4
15
s2 + 1

5
s4
)
.

Example We determine the value of the integral∫ π

0

sin θ cos4 θ dθ
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Let u = cos θ. Then
du

dθ
= − sin θ. It follows that∫ π

0

sin θ cos4 θ dθ = −
∫ π

0

u4
du

dθ
dθ

= −
∫ cos(π)

cos(0)

u4 du = −
∫ −1
1

u4 du

=

∫ 1

−1
u4 du =

[
1

5
u5
]1
−1

=
1

5
(15 − (−1)5)

=
2

5
.

Example We determine the value of the integral∫ 2

0

x2√
1 + x3

dx.

Let u = 1 + x3. Then
du

dx
= 3x2. It follows that∫ 2

0

x2√
1 + x3

dx =
1

3

∫ 2

0

1√
u

du

dx
dx

=
1

3

∫ 9

1

1√
u
du =

1

3

∫ 9

1

u−
1
2 du

=
1

3

[
2u

1
2

]9
1

=
2

3
(
√

9−
√

1) =
4

3
.

Example We determine the value of the integral∫ s

0

x3 sin5(x4) cos(x4) dx

for all real numbers s. Let u = sin(x4). Then

du

dx
= 4x3 cos(x4).

Applying the rule for Integration by Substitution, we see that∫ s

0

x3 sin5(x4) cos(x4) dx =
1

4

∫ s

0

u5
du

dx
dx =

1

4

∫ u(s)

u(0)

u5 du

=
1

24

[
u6
]u(s)
u(0)

=
1

24
sin6(s4).
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Example We determine the value of the integral∫ s

1

1

x2
sin

(
2π

x

)
dx

for all positive real numbers s. Let u =
2π

x
. Then

du

dx
= −2π

x2
.

It follows that∫ s

1

1

x2
sin

(
2π

x

)
dx = − 1

2π

∫ s

1

sinu
du

dx
dx

= − 1

2π

∫ 2π
s

2π

sinu du

=
1

2π

[
cosu

]2π
s

2π

=
1

2π

(
cos

(
2π

s

)
− 1

)
.

In the examples we have considered above, we have been given an integral
of the form

∫ b
a
F (x) dx, and we have evaluated the integral by finding a

function u of x and a function f(u) of u for which F (x) = f(u(x))
du

dx
. Some

calculus texts refer to substitutions of this type as u-substitutions.
In some cases it may be possible to evaluate integrals using the method

of Integration by Substitution, but expressing the variable x of integration
as a function of some other real variable.

Example We evaluate ∫ 1

0

√
1− x2 dx.

Let x = sin θ. Then 0 = sin 0 and 1 = sin 1
2
π. It follows from the rule for

Integration by Substitution (Proposition 7.26) that∫ 1

0

√
1− x2 dx =

∫ 1
2
π

0

√
1− sin2 θ

d(sin θ)

dθ
dθ.

But
d(sin θ)

dθ
= cos θ and

√
1− sin2 θ = cos θ for all real numbers θ satisfying

0 ≤ θ = 1
2
π. It follows that∫ 1

0

√
1− x2 dx =

∫ 1
2
π

0

cos2 θ dθ.
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Now cos2 θ = 1
2
(1 + cos 2θ). It follows that∫ 1

2
π

0

cos2 θ dθ =
[
1
2
x+ 1

4
sin 2θ

] 1
2
π

0
= 1

4
(π + sin π − sin 0) = 1

4
π.

With the benefit of hindsight, this result should not seem too surprising! The
curve y =

√
1− x2 is an arc of a circle representing one quarter of the circle,

and the definition of the integral as representing the area between this curve
and the x-axis ensures that the integral measures the area of a sector of the
unit circle subtending a right angle at the centre of the circle. The area of
this sector is then a quarter of the area π of the unit circle.

Example We determine the value of the integral∫ s

0

1

(a2 + x2)2
dx

for all positive real numbers s, where a is a positive real constant. We
substitute x = a tan θ. Let β = arctan(s/a). Then a tan β = s. The rule for
Integration by Substitution (Proposition 7.26) then ensures that∫ s

0

1

(a2 + x2)2
dx =

∫ β

0

1

a4(1 + tan2 θ)2
d(a tan θ)

dθ
dθ.

Now

1 + tan2 θ = sec2 θ =
1

cos2 θ
.

Also
d

dθ
(tan θ) = sec2 θ =

1

cos2 θ
(Corollary 6.14). It follows that∫ s

0

1

(a2 + x2)2
dx =

1

a3

∫ β

0

cos4 θ × 1

cos2 θ
dθ

=
1

a3

∫ β

0

cos2 θ dθ =
1

2a3

∫ β

0

(1 + cos 2θ) dθ

=
1

2a3
[
θ + 1

2
sin 2θ

]β
0

=
1

2a3
(β + 1

2
sin 2β)

=
1

2a3
(β + sin β cos β)

Now

sin β cos β = tan β cos2 β =
tan β

1 + tan2 β

=
a2 tan β

a2 + a2 tan2 β
=

as

a2 + s2
.
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We conclude therefore that∫ s

0

1

(a2 + x2)2
dx =

1

2a3
arctan

(s
a

)
+

s

2a2(a2 + s2)
.

7.8 Indefinite Integrals

Let f(x) be an integrable function of a real variable x. It is commonplace to
use the notation

∫
f(x) dx to denote some function g(x) with the property

that
d

dx
(g(x)) = f(x).

This function
∫
f(x) dx is said to be an indefinite integral of the function f .

It follows from the Fundamental Theorem of Calculus (Theorem 7.17),
we find that that if f(x) is an integrable function of x on an interval D, and
if a is a real number of D then the function g(x) is an indefinite integral of
f(x), where

g(x) =

∫ x

a

f(t) dt.

We can therefore write g(x) =
∫
f(x) dx.

Note that an indefinite integral is only defined up to addition of an ar-
bitrary constant: if

∫
f(x) dx is an indefinite integral of f(x) then so is∫

f(x) dx+ C, where C is a real constant known as the constant of integra-
tion.

7.9 Riemann Sums

Let f : [a, b] → R be a bounded function on a closed bounded interval [a, b],
where a < b, and let P be a partition of [a, b]. Then P = {x0, x1, x2, . . . , xn},
where

a0 = x1 < x2 < x2 < · · · < xn = b.

A Riemann sum for the function f on the interval [a, b] is a sum of the form

n∑
i=1

f(x∗i )(xi − xi−1),

where xi−1 ≤ x∗i ≤ xi for i = 1, 2, . . . , n.
The definition of the Darboux lower and upper sums ensures that

L(P, f) ≤
n∑
i=1

f(x∗i )(xi − xi−1) ≤ U(P, f)
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for any Riemann sum
n∑
i=1

f(x∗i )(xi − xi−1) associated with the partition P .

Thus is the partition P is chosen fine enough to ensure that U(P, f) −
L(P, f) < ε then all Riemann sums associated with the partition P and
its refinements will differ from one another by at most ε. Moreover if the
function f is Riemann-integrable on [a, b], then all Riemann sums associated
with the partition P and its refinements will approximate to the value of the
integral

∫ b
a
f(x) dx to within an error of at most ε.

Some textbooks use definitions of integration that represent integrals as
being, in an appropriate sense, limits of Riemann sums.
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