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2 Polynomials

2.1 Completing the Square in Quadratic Polynomials

A quadratic polynomial takes the form

ax2 + bx + c

where the coefficients a, b and c are numbers (which may be real or complex),
and a 6= 0.

The qualitative behaviour of a quadratic polynomial and, in particular,
the roots of a quadratic polynomial can be determined through a process of
“completing the square”.

The process of “completing the square”, one seeks numbers p and k for
which

ax2 + bx + c = a(x− p)2 + k.

Now
a(x− p)2 + k = ax2 − 2apx + ap2 + k.

On equating coefficients of corresponding powers of x, we arrive at the equa-
tions 2ap = −b and ap2 + k = c. Solving these equations, we find that

p = − b

2a
and k = c− ap2 =

4ac− b2

4a
.

A number r is a root of the polynomial ax2 + bx + c if and only if ar2 +
br + c = 0. A real number r is thus a root of this polynomial if and only if
a(r − p)2 = −k, where

p = − b

2a
and k =

4ac− b2

4a
.

Now a real or complex number w can be determined so that w2 =√
b2 − 4ac. Then

−k

a
=

b2 − 4ac

(2a)2
=

( w

2a

)2

.

This number w may then be represented in the form

w =
√
b2 − 4ac.

A root r of the polynomial ax2 + bx + c must satisfy the equation

(r − p)2 =
( w

2a

)2

.
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It follows that
r − p = ± w

2a
,

and thus

r = p± w

2a
=
−b±

√
b2 − 4ac

2a
.

The process of completing the square thus yields the standard formula for
the roots of a quadratic polynomial, stated in the following lemma (which
follows directly from the immediately preceding remarks).

Lemma 2.1 Let ax2+bx+c be a quadratic polynomial, where the coefficients
a, b and c are real or complex numbers and a 6= 0. Then the roots of the
polynomial are given by the formula

−b±
√
b2 − 4ac

2a
.

Lemma 2.2 Let x2+bx+c be a quadratic polynomial in which the coefficient
of x2 is equal to one, and let r and s be the roots of the polynomial (with s = r
in the case when b2 = 4c). Then r + s = −b and rs = c.

Proof If the roots of the quadratic polynomial are r and s then

x2 + bx + c = (x− r)(x− s) = x2 − (r + s)x + rs.

The result follows.

Remark The result of Lemma 2.2 can be used to check the standard formula
for the roots of a quadratic polynomial presented in Lemma 2.1. Indeed a
real number x satisfies ax2 + bx+ c = 0, where a, b and c are real or complex
numbers, with a 6= 0, if and only if

x2 +
b

a
x +

c

a
.

It follows from Lemma 2.2 that real numbers r and s are roots of this
quadratic polynomial if and only if

r + s = − b

a
and rs =

c

a
.

Let

r =
−b + w

2a
and s =

−b− w

2a
,
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where w is some real or complex number (customarily denoted by
√
b2 − 4ac)

that satisfies the equation w2 = b2 − 4ac. Then

r + s = − b

a

and

rs =
(−b + w)(−b− w)

4a2
=

(−b)2 − w2

4a2
=

b2 − w2

4a2

=
b2 − (b2 − 4ac)

4a2
=

4ac

4a2
=

c

a
.

It follows that r and s are indeed the roots of the quadratic polynomial
ax2 + bx + c.

2.2 Quadratic Polynomials with Real Coefficients

We now restrict our attention to quadratic polynomials ax2 + bx+ c in which
the coefficients a, b and c are real numbers and a 6= 0. The process of
completing the square then yields the equation

ax2 + bx + c = a

(
x +

b

2a

)2

+
4ac− b2

4a
.

Examining the structure of the formula on the right hand side of the
above equation, we can deduce immediately the following result.

Lemma 2.3 Let ax2+bx+c be a quadratic polynomial, where the coefficients
a, b and c are real numbers and a > 0. Then

ax2 + bx + c ≥ 4ac− b2

4a
.

Moreover

ax2 + bx + c =
4ac− b2

4a

if and only if

x = − b

2a
.

To summarize, if the coefficients a, b, c of the quadratic polynomial ax2 +
bx + c are real numbers and a > 0, then the quadratic polynomial achieves
its minimum value when x = −b/(2a).
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Similarly, if the coefficients a, b, c of the quadratic polynomial ax2+bx+c
are real numbers and a < 0, then the quadratic polynomial achieves its
maximum value when x = −b/(2a).

In both cases determined by the sign of the coefficient a, the minimum
value (in the case a > 0), or maximum value (in the case a < 0), is equal to

4ac− b2

4a
,

Proposition 2.4 Let a, b and c be real numbers, where a 6= 0. Then the
sign of the quantity b2− 4ac determines the qualitative nature of roots of the
quadratic polynomial ax2 + bx + c according to the following prescription:

Case when b2 > 4ac: in this case the polynomial has two distinct real roots;

Case when b2 = 4ac: in this case the polynomial has a repeated root at
−b/2a.

Case when b2 < 4ac: in this case the polynomial has two complex roots p+
iq and p− iq, where

p = − b

2a
, q =

4ac− b2

2a
, i2 = −1.

2.3 Polynomial Factorization Examples

We discuss examples exemplifying the use of standard methods for solving
quadratic equations.

Example We factorize the polynomial

x5 − 13x3 + 36x.

as a product of linear factors of the form x− r, where r is some root of the
polynomial p(x). Now

x5 − 13x3 + 36x = x(x4 − 13x2 + 36).

Moreover
x4 − 13x2 + 36 = u2 − 13u + 36,

where u = x2. Applying standard methods for finding the roots of quadratic
polynomials, we find that

u2 − 13u + 36 = (u− 4)(u− 9).
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(In this case, the factorization follows directly on noting that 4 and 9 are the
unique numbers whose sum is 13 and whose product is 36.) It follows that

x5 − 13x3 + 36x = x(x2 − 4)(x2 − 9).

Now
x2 − 4 = (x + 2)(x− 2) and x2 − 9 = (x + 3)(x− 3).

It follows that

x5 − 13x3 + 36x = x(x− 1)(x− 2)(x + 3)(x− 3).

Example Consider the problem of identifying all non-zero real numbers x
that satisfy the equation

1

x2
+

2

x
= 35.

There are at least two methods for solving this equation.
To apply the first method, we let u = 1/x. Then x satisfies the given

equation if and only if the corresponding non-zero real number u satisfies

u2 + 2u− 35 = 0.

Now
u2 + 2u− 35 = (u + 7)(u− 5).

It follows that the non-zero values of x that solve the equation

1

x2
+

2

x
= 35.

are

x = −1

7
and x =

1

5
.

To apply the second method, we multiply both sides of the equation

1

x2
+

2

x
= 35

by x2 in order to clear denominators. We find that

1 + 2x = x2

(
1 +

1

x2
+

2

x

)
= 35x2.

It follows that a non-zero real number x satisfies the equation

1

x2
+

2

x
= 35
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if and only if it satisfies the quadratic equation

35x2 − 2x− 1 = 0.

From the standard quadratic formula, we see that the roots of the poly-
nomial 35x2 − 2x− 1 are x1 and x2, where

x1 =
2 +
√

4 + 4× 35

70
and x2 =

2−
√

4 + 4× 35

70
.

Moreover

√
4 + 4× 35 =

√
4× 36 =

√
4×
√

36 = 2× 6 = 12.

It follows that

x1 =
2 + 12

70
=

14

70
=

2

10
=

1

5
,

and

x2 =
2− 12

70
= −10

70
= −1

7
.

We have thus found the solutions of the given equation.

Example We now seek to determine all positive real numbers x satisfying
the equation

x
2
3 − 5x

1
2 + 6x

1
3 = 0.

Now
1

2
− 1

3
=

1

6
and

2

3
− 1

3
= 2× 1

6
.

It follows that

x
2
3 − 5x

1
2 + 6x

1
3 = x

1
3 ((x

1
6 )2 − 5x

1
6 + 6) = x

1
3 (u2 − 5u + 6),

where u = x
1
6 . Now

u2 − 5u + 6 = (u− 2)(u− 3).

It follows that a positive real number x satisfies the equation

x
2
3 − 5x

1
2 + 6x

1
3 = 0.

if and only if either x
1
6 = 2 or x

1
6 = 3. Therefore the positive real numbers x

that satisfy the given equation are 64 and 729.
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2.4 Polynomial Division

Example Let p(x) be the polynomial in x defined so that

p(x) = x3 − 8x2 + 17x− 10.

Now p(1) = 0. (Indeed the coefficients 1, −8, 17 and −10 add up to zero.)
The problem is to find the other roots.

A standard procedure for discovering the other roots is to divide the poly-
nomial p(x) by the polynomial x−1 using a calculation scheme modelled on a
standard scheme for performing long division in arithmetic. The calculation
goes as follows:—

x2 − 7x + 10

x− 1
)
x3 − 8x2 + 17x − 10

x3 − x2

−7x2 + 17x

−7x2 + 7x

10x − 10

10x − 10

0

This calculation yields the result that

x3 − 8x2 + 17x− 10 = (x− 1)(x2 − 7x + 10).

Now the polynomial x2 − 7x + 10 can be factored using the standard
formula for the roots of a quadratic polynomial. Alternatively, because the
leading term is equal to one, it follows from Lemma 2.2 that the sum of the
roots of the polynomial x2 − 7x + 10 is equal to 7 and the product of those
roots is equal to 10. From this we can deduce that the roots are 2 and 5,
and thus

x2 − 7x + 10 = (x− 2)(x− 5),

and thus

p(x) = x3 − 8x2 + 17x− 10 = (x− 1)(x− 2)(x− 5).

We now divide the polynomial x3−8x2+17x−10 by x−1 using standard
algebraic notation, to see how the individual steps are justified.
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Let
p(x) = x3 − 8x2 + 17x− 10.

First we note that we can obtain a polynomial whose leading term matches
the leading term x3 of p(x) by multiplying the polynomial x− 1 by x2. Now
x3 = (x− 1)x2 + x2. It follows that

p(x) = (x− 1)x2 + x2 − 8x2 + 17x− 10

= (x− 1)x2 − 7x2 + 17x− 10.

Next we note that we can obtain a polynomial whose leading term is −7x2

by multiplying the polynomial x− 1 by −7x. Now −7x2 = −7(x− 1)x− 7x.
It follows that

p(x) = x3 − 8x2 + 17x− 10

= (x− 1)x2 − 7x2 + 17x− 10

= (x− 1)x2 − 7(x− 1)x− 7x + 17x− 10

= (x− 1)(x2 − 7x) + 10x− 10.

But 10x− 10 = 10(x− 1). It follows that

p(x) = (x− 1)(x2 − 7x + 10).

Moreover x2 − 7x + 10 = (x− 2)(x− 5). It follows that

p(x) = (x− 1)(x− 2)(x− 5).

Example We now divide the polynomial

ax3 + bx2 + cx + d

by the polynomial
x− r,

where the coefficients a, b, c, d and r of these polynomials are numbers
(which may be real or complex). The calculation may be set out as a division
calculation as follows:
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ax2 + (ar + b)x + (ar2 + br + c)

x− r
)
ax3 + bx2 + cx + d

ax3 − arx2

(ar + b)x2 + cx

(ar + b)x2 − (ar2 + br)x

(ar2 + br + c)x + d

(ar2 + br + c)x − (ar3 + br2 + cr)

ar3 + br2 + cr + d

This calculation scheme yields the result that

ax3 + bx2 + cx + d

= q(x)(x− r) + ar3 + br2 + cr + d,

where
q(x) = ax2 + (ar + b)x + (ar2 + br + c).

The following lemma establishes the result more formally, using standard
algebraic notation.

Lemma 2.5 Let p(x) be a polynomial of degree at most 3, given by the for-
mula

p(x) = ax3 + bx2 + cx + d,

where the coefficients of this polynomial are numbers (which may be real or
complex), and let r be a number (which also may be real or complex). Then

p(x) = (x− r)q(x) + p(r),

where
q(x) = ax2 + (ar + b)x + ar2 + br + c.

Proof

p(x) = ax3 + bx2 + cx + d

= a(x− r)x2 + arx2 + bx2 + cx + d

= a(x− r)x2 + (ar + b)x2 + cx + d

= a(x− r)x2 + (ar + b)(x− r)x + (ar2 + br)x + cx + d
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= (x− r)(ax2 + (ar + b)x) + (ar2 + br + c)x + d

= (x− r)(ax2 + (ar + b)x) + (ar2 + br + c)(x− r)

+ ar3 + br2 + cr + d

= (x− r)(ax2 + (ar + b)x + ar2 + br + c) + p(r)

= (x− r)q(x) + p(r),

as required.

Theorem 2.6 (Remainder Theorem) Let p(x) be a polynomial of any
degree, and let r be a number. Suppose that q(x) is a polynomial and k
is a number determined so that

p(x) = q(x)(x− r) + k.

Then k = p(r), and thus

p(x) = q(x)(x− r) + p(r).

Proof The result follows immediately on substituting x = r in the equation
p(x) = q(x)(x− r) + k.

Theorem 2.7 (Factor Theorem) Let p(x) be a polynomial of any degree,
and let r be a number. Then x− r is a factor of p(x) if and only if p(r) = 0.

Proof If x− r is a factor of p(x) then it follows directly that p(r) = 0.
Conversely suppose that p(r) = 0. We must prove that x − r is a factor

of p(r). Now the Remainder Theorem ensures the existence of a polynomial
q(x) such that p(x) = (x − r)q(x) + p(r). But p(r) = 0. It follows that
p(x) = (x− r)q(x), and thus x− r is a factor of p(x), as required.

The following proposition is useful in limiting the number of cases that
need to be considered when given a cubic polynomial with integer coefficients,
and it is known that the polynomial already has at least one integer root.

Proposition 2.8 Let p(x) be a polynomial of degree at most 3, given by the
formula

p(x) = ax3 + bx2 + cx + d,

where the coefficients of this polynomial are integers, and let r be a root of
this polynomial that is also an integer. Then r divides d.
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Proof The integer r is a root of the polynomial p(x). It follows directly from
Lemma 2.5 that

p(x) = q(x)(x− r),

where
q(x) = ax2 + (ar + b)x + ar2 + br + c.

Equating coefficients, we find that

d = −(ar2 + br + c)r.

Now r, a, b, c and d are all integers. It follows that ar2 + br+ c is an integer,
and therefore r divides d. The result follows.

Example Consider the polynomial p(x), where

4x3 − 44x2 + 127x− 105.

Now 105 = 3× 5× 7, and therefore the divisors of 105 are

±1, ±3, ±5, ±7, ±15, ±21, ±35 and ± 105.

Calculating, we find that

p(1) = −18, p(−1) = −280,

p(3) = −12, p(−3) = −990,

p(5) = −70, p(−5) = −2340,

p(7) = 0, p(−7) = −4522,

p(15) = 5400, p(−15) = −25410,

p(21) = 20202, p(−21) = −59220,

p(35) = 121940, p(−35) = −229950,

p(105) = 4158630, p(−105) = −5129040.

It follows that 7 is the only root of the polynomial p(x) that is an integer.

Polynomials can always be divided by polynomials of lower degree, taking
quotient and remainder. We now give an example of polynomial division that
involves dividing a polynomial of degree 4 by a quadratic polynomial.
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Example We divide the polynomial p(x) by x2 + 2x + 2, where

p(x) = x4 + 8x3 + 27x2 + 39x + 28.

The calculation can be undertaken using the following scheme:—

x2 + 6x + 13

x2 + 2x + 2
)
x4 + 8x3 + 27x2 + 39x + 28

x4 + 2x3 + 2x2

6x3 + 25x2 + 39x

6x3 + 12x2 + 12x

13x2 + 27x + 28

13x2 + 26x + 26

x + 2

This calculation scheme yields the result that

x4 + 8x3 + 27x2 + 39x + 28 = (x2 + 2x + 2)(x2 + 6x + 13) + x + 2.

We may establish this result using standard algebraic notation as follows:—

p(x) = x4 + 8x3 + 27x2 + 39x + 28

= (x2 + 2x + 2)x2 − 2x3 − 2x2 + 8x3 + 27x2 + 39x + 28

= (x2 + 2x + 2)x2 + 6x3 + 25x2 + 39x + 28

= (x2 + 2x + 2)x2 + 6(x2 + 2x + 2)x− 12x2 − 12x

+ 25x2 + 39x + 28

= (x2 + 2x + 2)(x2 + 6x) + 13x2 + 27x + 28

= (x2 + 2x + 2)(x2 + 6x) + 13(x2 + 2x + 2)− 26x− 26

+ 27x + 28

= (x2 + 2x + 2)(x2 + 6x + 13) + x + 2.

Thus
p(x) = (x2 + 2x + 2)(x2 + 6x + 13) + x + 2.
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The structure of calculation in the standard scheme can also be clarified
by adding redundant terms (coloured red) as follows:—

x2 + 6x + 13

x2 + 2x + 2
)
x4 + 8x3 + 27x2 + 39x + 28

x4 + 2x3 + 2x2 +0x +0

6x3 + 25x2 + 39x +28

6x3 + 12x2 + 12x +0

13x2 + 27x + 28

13x2 + 26x + 26

x + 2
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