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1. Trigonometry

1. Trigonometry

1.1. Trigonometric Functions

There are six standard trigonometric functions. They are the sine
function (sin), the cosine function (cos), the tangent function
(tan), the cotangent function (cot), the secant function (sec) and
the cosecant function (csc).

Angles will always be represented in the following discussion using
radian measure. If one travels a distance s around a circle of radius
r , then the angle subtended by the starting and finishing positions
at the centre of the circle is s/r radians.

The standard trigonometrical functions represent ratios of sides of
right-angled triangles, as indicated in the following diagrams.
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a cos θ

a sin θ

In the above triangle ABC , in which the angle at the vertex B is a
right angle, the lengths a, b and c satisfy the identities

b = a cos θ, b = a sin θ,

where θ denotes the angle of the triangle at the vertex A.
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b

b sec θ
b tan θ

In the above triangle ABC , in which the angle at the vertex B is a
right angle, the lengths a, b and c satisfy the identities

c = b tan θ, a = b sec θ,

where θ denotes the angle of the triangle at the vertex A.
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c csc θ

In the above triangle ABC , in which the angle at the vertex B is a
right angle, the lengths a, b and c satisfy the identities

b = c cot θ, a = c csc θ,

where θ denotes the angle of the triangle at the vertex A.
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The identities described above that determine the ratios of the
sides of a right angled triangle are summarized in the following
proposition.

Proposition 1.1

Let ABC be a triangle in which the angle at A is a right angle, and
let θ denote the angle at C . Then the lengths |BC |, |AC | and |AB|
of the sides BC, AC and AB respectively satisfy the following
identities:—

|AC | = |BC | cos θ, |AB| = |BC | sin θ;

|AB| = |AC | tan θ, |BC | = |AC | sec θ;

|AC | = |AB| cot θ, |BC | = |AB| csc θ.
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The following trigonometrical formulae follow directly from the
results stated in Proposition 1.1.

Proposition 1.2

The tangent, cotangent, secant and cosecant functions are
determined by the sine and cosine functions in accordance with the
following identities:—

tan θ =
sin θ

cos θ
; cot θ =

cos θ

sin θ
;

sec θ =
1

cos θ
; csc θ =

1

sin θ
.
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Proposition 1.3

The sine and cosine functions are related by the following
relationship, when angles are specified using radian measure:—

sin θ = cos(12π − θ); cos θ = sin(12π − θ).
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Proof
The trigonometrical functions are determined by ratios of edges of
a right angled triangle ABC in which the angle B is a right angle
and the angle A is θ radians. The angles of a triangle add up to
two right angles, and two right angles are equal to π in radian
measure. Thus if ∠B denotes the angle of the right-angled triangle
ABC then

∠A + ∠B + ∠C = π,

and thus
θ + 1

2π + ∠C = π,

and therefore C = 1
2π − θ. The result then follows from the

definitions of the sine and cosine functions.
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The nth powers of trigonometric functions are usually presented
using the following traditional notation, in instances where n is a
positive integer:—

sinn θ = (sin θ)n, cosn θ = (cos θ)n, tann θ = (tan θ)n, etc.

Proposition 1.4

The trigonometric functions satisfy the following identities:—

sin2 θ + cos2 θ = 1;

1 + tan2 θ = sec2 θ;

1 + cot2 θ = csc2 θ;

Proof
These identities follow from the definitions of the trigonometric
functions on applying Pythagoras’ Theorem.
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1.2. Periodicity of the Trigonometrical Functions

Suppose that a particle moves with speed v around the
circumference of a circle of radius r , where that circle is
represented in Cartesian coordinates by the equation

x2 + y2 = r2.

The centre of the circle is thus at the origin of the Cartesian
coordinate system. We suppose that the particle travels in an
anticlockwise direction and passes through the point (r , 0) when
t = 0. Then the particle will be at the point(

r cos
vt

r
, r sin

vt

r

)
.

at time t. The quantities sin θ and cos θ are defined for all real
numbers θ so that the above formula for the position of the
particle moving around the circumference of the circle at a
constant speed remains valid for all times.
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Now the particle moving round the circumference of the circle of

radius r with speed v will complete each revolution in time
2πr

v
.

Thus
cos(θ + 2π) = cos θ and sin(θ + 2π) = sin θ

for all real numbers θ. It follows that

cos(θ + 2nπ) = cos θ and sin(θ + 2nπ) = sin θ

for all real numbers θ and for all integers n. These equations
express the periodicity of the sine and cosine functions.
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1.3. Values of Trigonometric Functions at Particular Angles

The following table sets out the values of sin θ and cos θ for some
angles θ that are multiples of 1

2π:—

θ −π −1
2π 0 1

2π π 3
2π 2π 5

2π

sin θ 0 −1 0 1 0 −1 0 1

cos θ −1 0 1 0 −1 0 1 0
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The following values of the sine and cosine functions can be
derived using geometric arguments involving the use of
Pythagoras’ Theorem:—

θ 0 1
6π

1
4π

1
3π

1
2π

sin θ 0 1
2

1√
2

√
3
2 1

cos θ 1
√
3
2

1√
2

1
2 0
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1.4. The Cosine and Sine Rules

Proposition 1.5

Let 4ABC be a triangle, let a = |BC |, b = |CA| and c = |AB|,
and let |∠A| = |∠CAB|. Then

a2 = b2 + c2 − 2bc cos |∠A|.
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Proof

Let θ = |∠A|. Consider first the case
depicted where the angle θ is acute,
but the perpendicular dropped from
B to the line CA meets that line at a
point D lying between C and A. Let
|BC | = a, |AC | = b and |AB| = c .

Then4BCD is a right-angled triangle
with its right angle at D, and

|CD| = b − c cos θ,

|DB| = c sin θ.

A

B

C D

θ

a

b

c
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Consideration of possibilities shows that the formulae

|CD| = |b − c cos θ| and |DB| = |c sin θ|

hold in all cases, including those cases where the angle θ is null,
right, straight or obtuse, and those cases where the perpendicular
dropped from the point B to the line through AB does not pass
between A and D. It follows from Pythagoras’s Theorem that

a2 = (b − c cos θ)2 + c2 sin2 θ

= b2 − 2bc cos θ + c2(cos2 θ + sin2 θ)

= b2 + c2 − 2bc cos θ,

as required.
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Proposition 1.6

Let 4ABC be a triangle, let a = |BC |, b = |CA| and c = |AB|.
Then

a

sin |∠A| =
b

sin |∠B| =
c

sin |∠C | .
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Proof

We consider the case when the an-
gles of the triangle are all acute. Let
the triangle be as depicted, and let
the perpendicular from the vertex B
to the line AC intersect that line at
D. Then AC and BD are perpendic-
ular. Then

|BD| = a sin |∠C | = c sin |∠A|.

A

B

C D

a c
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It follows that
a

sin |∠A| =
c

sin |∠C | .

The proof in this case is completed by replacing A, B and C by B,
C and A. The proof in other cases is analogous.
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1.5. Sines and Cosines of Angle Sums

Proposition 1.7

The sine and cosine functions satisfy the following identities for all
real numbers A and B:—

sin(A + B) = sinA cosB + cosA sinB,

cos(A + B) = cosA cosB − sinA sinB.
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1st Proof of Proposition 1.7 (for acute angles only)

Let us consider the special case when
angles A, B and A+B all lie between
0◦ and 90◦.

Consider the geometrical configura-
tion depicted to the right, in which
A = |∠ROQ| and B = |∠QOP|, and
thus A−B = |∠ROP|. The lengths of
the sides are denoted by letters from
a to g , where a = |OP|, b = |OQ|,
c = |QP|, d = |OT |, e = |RQ|,
f = |QS | and g = |TR|. In this con-
figuration |PS | = g , |PT | = e + f
and |OR| = d + g . O

P

Q

R

S

T

a

b

c

d

e

f

g

B
A
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Then |∠ROP| = A + B. Also

|∠SQP|+|∠OQR| = 90◦ = |∠ROQ|+|∠OQR|,

and therefore

|∠SQP| = |∠ROQ| = A.

O

P

Q

R

S

T

a

b

c

d

e

f

g

e+ f

g

B
A



1. Trigonometry (continued)

It follows that

b = a cosB,

c = a sinB,

d = a cos(A + B),

e + f = a sin(A + B),

d + g = b cosA,

e = b sinA,

f = c cosA,

g = c sinA.

O

P

Q

R

S

T

a

b

c

d

e

f

g

e+ f

g

B
A
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It follows that

a cos(A + B) = d = (d + g)− g = b cosA− c sinA

= a cosA cosB − a sinA sinB,

a sin(A + B) = e + f = b sinA + c cosA

= a sinA cosB + a cosA sinB.

Thus

cos(A + B) = cosA cosB − sinA sinB,

sin(A + B) = sinA cosB + cosA sinB.
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We now consider another approach for establishing the addition
formulae for the sine and cosine functions, using coordinate
geometry, which does not limit the verification to angles between
0◦ and 90◦.

2nd Proof of Proposition 1.7

Let (x , y) be a point of the plane, specified in Cartesian
coordinates relative to some chosen origin, and let A be an angle.
Using the identity cos2 A + sin2 A = 1, we see that

x = (x cosA + y sinA) cosA− (y cosA− x sinA) sinA,

y = (x cosA + y sinA) sinA + (y cosA− x sinA) cosA,
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Let points O, P, Q and R of the plane be determined so that
O = (0, 0), P = (cosA, sinA), Q = (b cosA, b sinA) and

R = (b cosA− c sinA, b sinA + c cosA),

where b and c are real numbers. Now the point Q lies on the line
OP that passes through the points O and P, and, , for all real
numbers t, the point (b cosA− t sinA, b sinA + t cosA) lies on a
line through the point Q that is perpendicular to the line OP. It
follows that the points O, Q and R are the vertices of a
right-angled triangle whose sides |OQ| and |QR| meeting at the
right angle Q are of length |b| and |c | respectively. Moreover
b = 0 if and only if ∠POR is right, and b < 0 if and only if ∠POR
is obtuse. Also if c > 0 then R makes an anticlockwise angle less
than 180◦ degrees with the ray [OP, and if c < 0 then R makes a
clockwise angle less than 180◦ with the ray [OP.
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It follows that if the point R lies at a distance r from the origin
and the ray [OR makes an anticlockwise angle B with the ray [OP
then b = r cosB and c = r sinB.

We can apply this result when R = (cos(A + B), sin(A + B). where
A and B are angles. In this case the ray [OR makes an
anticlockwise angle B with the ray [OP. In this case b = cosB
and c = sinB, and therefore It follows that

cos(A + B) = b cosA− c sinA

= cosA cosB − sinA sinB,

sin(A + B) = b sinA + c cosA

= sinA cosB + cosA sinB,

as required.
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The next proof of Proposition 1.7] develops the formulae for
changes of coordinates resulting from rotations about the origin.

3rd Proof of Proposition 1.7 (using coordinate
transformations)

An anticlockwise rotation about the origin through an angle of A
radians sends a point (x , y) of the plane to the point (x ′, y ′), where{

x ′ = x cosA− y sinA
y ′ = x sinA + y cosA

(This follows easily from the fact that such a rotation takes the
point (1, 0) to the point (cosA, sinA) and takes the point (0, 1) to
the point (− sinA, cosA).) An anticlockwise rotation about the
origin through an angle of B radians then sends the point (x ′, y ′)
of the plane to the point (x ′′, y ′′), where{

x ′′ = x ′ cosB − y ′ sinB
y ′′ = x ′ sinB + y ′ cosB
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Now an anticlockwise rotation about the origin through an angle
of A + B radians sends the point (x , y), of the plane to the point
(x ′′, y ′′), and thus{

x ′′ = x cos(A + B)− y sin(A + B)
y ′′ = x sin(A + B) + y cos(A + B)

But if we substitute the expressions for x ′ and y ′ in terms of x , y
and A obtained previously into the above equation, we find that{

x ′′ = x(cosA cosB − sinA sinB)− y(sinA cosB + cosA sinB)
y ′′ = x(sinA cosB + cosA sinB) + y(cosA cosB − sinA sinB)

On comparing equations, we see that

cos(A + B) = cosA cosB − sinA sinB,

and
sin(A + B) = sinA cosB + cosA sinB,

as required.
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4th Proof of Proposition 1.7 (using matrix multiplication)
Let a vector (u, v) be rotated about the origin through an
anticlockwise angle A, yielding a vector (u′, v ′). Then let the
vector (u′, v ′) in turn be rotated about the origin through an
anticlockwise angle B, yielding a vector (u′′, v ′′). Then(

u′

v ′

)
=

(
cosA − sinA
sinA cosA

)(
u
v

)
,(

u′′

u′′

)
=

(
cosB − sinB
sinB cosB

)(
u′

v ′

)
.

Moreover the combined effect of these two rotations has the effect
of rotating the vector (u, v) through an anticlockwise angle of
A + B to yield the vector (u′′, v ′′). Therefore(

u′′

v ′′

)
=

(
cos(A + B) − sin(A + B)
sin(A + B) cos(A + B)

)(
u
v

)
.
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It follows from basic properties of matrix multiplication that(
cos(A + B) − sin(A + B)
sin(A + B) cos(A + B)

)
=

(
cosB − sinB
sinB cosB

)(
cosA − sinA
sinA cosA

)
,

and therefore

sin(A + B) = sinA cosB + cosA sinB,

cos(A + B) = cosA cosB − sinA sinB,

as required.
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On replacing B by −B, and noting that cos(−B) = cosB and
sin(−B) = − sinB, we find that

cos(A− B) = cosA cosB + sinA sinB,

and
sin(A− B) = sinA cosB − cosA sinB.

We have therefore established the addition formulae for the sine
and cosine functions stated in the following proposition.
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Corollary 1.8

The sine and cosine functions satisfy the following identities for all
real numbers A and B:—

sin(A− B) = sinA cosB − cosA sinB,

cos(A− B) = cosA cosB + sinA sinB.

Proof
The result follows from the formulae for sin(A + B) and
cos(A + B) on simply replacing B by −B.
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Remark
The equations describing how Cartesian coordinates of points of
the plane transform under rotations about the origin may be
written in matrix form as follows:(

x ′

y ′

)
=

(
cosA − sinA
sinA cosA

)(
x
y

)
,(

x ′′

y ′′

)
=

(
cosB − sinB
sinB cosB

)(
x ′

y ′

)
.

Also equation (31) may be written(
x ′′

y ′′

)
=

(
cos(A + B) − sin(A + B)
sin(A + B) cos(A + B)

)(
x
y

)
.
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It follows from basic properties of matrix multiplication that(
cos(A + B) − sin(A + B)
sin(A + B) cos(A + B)

)
=

(
cosB − sinB
sinB cosB

)(
cosA − sinA
sinA cosA

)
.

Therefore

cos(A + B) = cosA cosB − sinA sinB

sin(A + B) = sinA cosB + cosA sinB.

This provides an alternative derivation of the addition formulae
stated in Proposition 1.7.
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Corollary 1.9

The sine and cosine functions satisfy the following identities for all
real numbers A:—

sin(A + 1
2π) = cosA,

cos(A + 1
2π) = − sinA,

sin(A + π) = − sinA,

cos(A + π) = − cosA,

Proof
These results follow directly on applying Proposition 1.7 in view of
the identities

sin 1
2π = 1, cos 1

2π = 0, sinπ = 0 and cosπ = −1.



1. Trigonometry (continued)

The formulae stated in the following corollary follow directly from
the addition formulae stated in Proposition 1.7 on adding and
subtracting those addition formulae.

Corollary 1.10

The sine and cosine functions satisfy the following identities for all
real numbers A and B:—

sinA sinB = 1
2(cos(A− B)− cos(A + B));

cosA cosB = 1
2(cos(A + B) + cos(A− B));

sinA cosB = 1
2(sin(A + B) + sin(A− B)).



1. Trigonometry (continued)

Corollary 1.11

The sine and cosine functions satisfy the following identities for all
real numbers A:—

sin 2A = 2 sinA cosA;

cos 2A = cos2 A− sin2 A

= 2 cos2 A− 1

= 1− 2 sin2 A.

Proof
The formula for sin 2A and the first formula for cos 2A follow from
the identities stated in Proposition 1.7 on setting B = A in the
formulae for sin(A + B) and cos(A + B). The second and third
formulae for cos 2A then follow on making use of the identity
sin2 A + cos2A = 1.
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The following formulae then follow directly from those stated in
Corollary 1.11.

Corollary 1.12

The sine and cosine functions satisfy the following identities for all
real numbers A:—

sin2 A = 1
2(1− cos 2A);

cos2 A = 1
2(1 + cos 2A).
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1.6. Limits of Functions of a Single Real Variable

Definition

Let s and L be real numbers, and let f : D → R be a real-valued
function defined over a subset D of R that, for some strictly
positive real number δ0, includes all real numbers x satisfying
0 < |x − s| < δ0. We say that L is the limit of f (x) as x tends to
s, and write

lim
x→s

f (x) = L,

if and only if, given any strictly positive real number ε, there exists
some strictly positive real number δ such that
L− ε < f (x) < L + ε for all real numbers x in D that satisfy both

s − δ < x < s + δ and x 6= s.
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y

xss− δ s+ δ

L

L+ ε

L− ε

ε

δ



1. Trigonometry (continued)

1.7. Derivatives of Trigonometrical Functions

Lemma 1.13

Let ε be a positive real number. Then there exists some positive
real number δ satisfying 0 < δ < 1

2π with the property that
1− ε < cos θ < 1 whenever 0 < θ < δ.
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Proof
Choose a real number u satisfying 0 < u < 1 for which 1− ε ≤ u.
Let a right-angled triangle 4OFG be constructed so that the angle
at F is a right angle, |OF | = u and |FG | =

√
1− u2, and let δ be

the angle of this triangle at the vertex O. Then

|OG |2 = |OF |2 + |FG |2 = 1,

and therefore u = cos δ. It follows that if θ is a positive real
number satisfying 0 < θ < δ then

1− ε ≤ cos δ < cos θ < 1.

The result follows.
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O F

G

δ

|OG| = 1

|OF | = u
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Proposition 1.14

Let sin : R→ R be the sine function whose value sin θ, for a given
real number θ is the sine of an angle of θ radians. Then

lim
θ→0

sin θ

θ
= 1.
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Proof
Let a circle of unit radius pass through points A and B, so that the
angle θ in radians between the line segements OA and OB at the
centre O of the circle satisfies the inequalities 0 < θ < 1

2π. Let C
be the point on the line segment OA for which the angle OCB is a
right angle, and let the line OB be produced to the point D
determined so that the angle OAD is a right angle.

O A

B

C

D

θ
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The sector OAB of the unit circle is by definition the region
bounded by the arc AB of the circle and the radii OA and OB.
Now the area of a sector of a circle subtending at the centre an
angle of θ radians is equal to the area of the circle multiplied by
θ

2π
. But the area of a circle of unit radius is π. It follows that a

sector of the unit circle subtending at the centre an angle of θ
radians has area 1

2θ.

O A

B
D

θ
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The the area of a triangle is half the base of the triangle multiplied
by the height of the triangle. The base |OA| and height |BC | of
the triangle AOB satisfy

|OA| = 1, |BC | = sin θ.

It follows that

area of triangle OAB = 1
2 × |OA| × |BC | = 1

2 sin θ.

O A

B

C

D

θ

|OA| = 1

|BC| = sin θ
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Also the base |OA| and height |AD| of the triangle AOD satisfy

|OA| = 1, |AD| =
sin θ

cos θ
.

It follows that

area of triangle OAD = 1
2 × |OA| × |AD| =

sin θ

2 cos θ
.

O A

B
D

θ

|OA| = 1

|AD| = sin θ

cos θ
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The results concerning areas just obtained can be summarized as
follows:—

area of triangle OAB = 1
2 × |OA| × |BC |

= 1
2 sin θ,

area of sector OAB =
θ

2π
× π = 1

2θ,

area of triangle OAD = 1
2 × |OA| × |AD|

= 1
2 tan θ =

sin θ

2 cos θ
.
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Moreover the triangle OAB is strictly contained in the sector OAB,
which in turn is strictly contained in the triangle OAD. It follows
that

area(4OAB) < area(sectorOAB) < area(4OAD),

and thus
1
2 sin θ < 1

2θ <
sin θ

2 cos θ

for all real numbers θ satisfying 0 < θ < 1
2π.

O A

B

C

D

θ



1. Trigonometry (continued)

Multiplying by 2, and then taking reciprocals, we find that

1

sin θ
>

1

θ
>

cos θ

sin θ

for all real numbers θ satisfying 0 < θ < 1
2π. If we then multiply

by sin θ, we obtain the inequalities

cos θ <
sin θ

θ
< 1,

for all real numbers θ satisfying 0 < θ < 1
2π.
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Now, given any positive real number ε, there exists some positive
real number δ satisfying 0 < δ < 1

2π such that 1− ε < cos θ < 1
whenever 0 < θ < δ (see Lemma 1.13). But then

1− ε < sin θ

θ
< 1

whenever 0 < θ < δ. These inequalities also hold when

−δ < θ < 0, because the value of
sin θ

θ
is unchanged on replacing

θ by −θ. It follows that lim
θ→0

sin θ

θ
= 1, as required.
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Corollary 1.15

Let cos : R→ R be the cosine function whose value cos θ, for a
given real number θ is the cosine of an angle of θ radians. Then

lim
θ→0

1− cos θ

θ
= 0.
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Proof
Basic trigonometrical identities ensure that

1− cos θ = 2 sin2 1
2θ and sin θ = 2 sin 1

2θ cos 1
2θ

for all real numbers θ (see Corollary 1.11 and Corollary 1.12).
Therefore

1− cos θ

sin θ
=

sin 1
2θ

cos 1
2θ

= tan 1
2θ

for all real numbers θ. It follows that

lim
θ→0

1− cos θ

sin θ
= lim

θ→0
tan 1

2θ = 0,

and therefore

lim
θ→0

1− cos θ

θ
= lim

θ→0

1− cos θ

sin θ
× lim

θ→0

sin θ

θ
= 0× 1 = 0,

as required.
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Proposition 1.16

The derivatives of the sine and cosine functions satisfy

d

dx
(sin x) = cos x , and

d

dx
(cos x) = − sin x .

Proof
Limits of sums, differences and products of functions are the
corresponding sums, differences and products of the limits of those
functions, provided that those limits exist. Also

sin(x + h) = sin x cos h + cos x sin h

and
cos(x + h) = cos x cos h − sin x sin h

for all real numbers h (see Proposition 1.7). Applying these results,
together with those of Proposition 1.14 and Corollary 1.15, we see
that
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d

dx
(sin x) = lim

h→0

sin(x + h)− sin x

h

= lim
h→0

sin x cos h + cos x sin h − sin x

h

= cos x lim
h→0

sin h

h
− sin x lim

h→0

1− cos h

h
= cos x .



1. Trigonometry (continued)

Similarly

d

dx
(cos x) = lim

h→0

cos(x + h)− cos x

h

= lim
h→0

cos x cos h − sin x sin h − cos x

h

= − sin x lim
h→0

sin h

h
− cos x lim

h→0

1− cos h

h
= − sin x ,

as required.

Corollary 1.17

The derivative of the tangent function satisfies

d

dx
(tan x) =

1

cos2 x
= sec2 x .



1. Trigonometry (continued)

Proof
Using the formulae for the derivatives of the sine and cosine
functions (Proposition 1.16), together with the Quotient Rule of
differential calculus we find that

d

dx
(tan x) =

d

dx

(
sin x

cos x

)
=

1

cos2 x

(
d

dx
(sin x) cos x − d

dx
(cos x) sin x

)
=

cos2 x + sin2 x

cos2 x

=
1

cos2 x
= sec2 x

as required.
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