Course 421: Academic Year 20023
Problems 1

. Let X be a non-empty set. Let d: X x X — R be defined so that
d(z,y) =1if z # y and d(z,y) = 0 if 2 = y. Verify that the distance
function d on X satisfies the metric space axioms.

. Let X be a metric space with distance function d, and let A be a
non-empty subset of X. Let f: X — R be the function defined by
f(z) = inf{d(z,a) : a € A} (i.e., f(z) is the largest real number with
the property that f(z) < d(x,a) for all a € A). Use the Triangle
Inequality to prove that f(z) < f(y) + d(z,y) for all z,y € X, and
hence show that |f(z) — f(y)| < d(z,y). (Note that this implies that
the function f: X — R is continuous.) Prove that A is closed in X if
and only if A ={z € X : f(x) =0}.

. Prove that the set
{(z,y) €R? :x <0and 2* +¢* < 1}
is neither open nor closed in R2.
. Explain why
{(z,y) € R? : y* — 7 < sin(32® + 2% — 572%7)}
is an open set in R2.

. The Zariski topology on the real numbers R is the topology whose open
sets are the empty set, the set R itself and those subsets of R whose
complements are finite.

(a) Verify that the Zariski topology is a well-defined topology on the
set R of real numbers (i.e., show that the topological space axioms are
satisfied).

(b) Prove that any polynomial function from R to itself is continuous
with respect to the Zariski topology in R.

(c) Give an example of a function from R to itself which is continuous
with respect to the usual topology on R but is not continuous with
respect to the Zariski topology on R.
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(a) Let f: X — Y be a function from a topological space X to a topo-
logical space Y, and let A and B be subsets of X for which X = AUB.
Suppose that the restrictions f|A and f|B of f to the sets A and B are
continuous. Is f: X — Y necessarily continuous on X? [Give proof or
counterexample.]

(b) Let f: X — Y be a function from a topological space X to a
topological space Y, and let F be a (not necessarily finite) collection
of closed subsets of X whose union is the whole of X. Suppose that
the restriction f|A of f to A is continuous for all closed sets A in the
collection F. Is f: X — Y necessarily continuous on X? [Give proof
or counterexample.]

Let f: X — Y be a function from a topological space X to a topological
space Y, and let U be a collection of open subsets of X whose union
is the whole of X. Suppose that the restriction f|WW of f to W is
continuous for all open sets W in the collection U. Prove that f: X — Y
is continuous on X.

Let X be a topological space, let A be a subset of X, and let B be
the complement X \ A of A in X. Prove that the interior of B is the
complement of the closure of A.

Determine which of the following subsets of R? are compact.
(i) The x-axis {(x,y,2) € R*: y = z = 0}

(i) The surface of a tetrahedron in R.

(iii) {(z,y,2) ER®: 2 >0and 2* +y? — 22 < 1}

Let X be a topological space. Suppose that X = AU B, where A and
B are path-connected subsets of X and AN B is non-empty. Show that
X is path-connected.

Let f: X — Y be a continuous map between topological spaces X and
Y. Suppose that X is path-connected. Prove that the image f(X) of
the map f is also path-connected.

Let X and Y be path-connected topological spaces. Explain why the
Cartesian product X x Y of X and Y is path-connected.

Determine the connected components of the following subsets of R:

2



14.

15.

16.

(1) {(z,y) e R?: 22 +y* = 1},

(i) {(z,y) eR®: 2% —y* =1},

(i) {(z,y) € R?:y? = 2(a® — 1)},

(iv) {(z,y) eR?: (x —n)?+y* > { for alln € Z}.
[Fully justify your answers.|

A topological space X is said to be locally path-connected if, given any
point x of X there exists a path-connected open set U in X such that
xeU.

(a) Let X be a locally path-connected topological space, and let p be a
point of X. Let A be the set of all points x of X for which there exists
a path from p to z, and let B be the complement of A in X. Prove
that A and B are open in X.

(b) Use the result of (a) to show that any connected and locally path-
connected topological space is path-connected.

Let X be a convex subset of R”. (A subset X of R™ is said to be
conver if (1 —t)x +ty € X for all x,y € X and real numbers ¢t
satisfying 0 < ¢ < 1.)

(a) Prove that any two continuous functions mapping some topological
space into X are homotopic.

(b) Prove that any two continuous functions mapping X into some
path-connected topological space Y are homotopic.

Determine which of the following maps are covering maps:—
(i) the map from R to [—1,1] sending 6 to sin@,

(i) the map from S* to S! sending (cos@,sin®) to (cosnd,sinnd),
where n is some non-zero integer,

(iii) the map from {z € C: Rez <0} to {z € C: 0 < |z| < 1} sending
z to exp(z),
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(iv) the map from {z € C: —47 <Imz < 47} to {z € C : |2z| > 0}
sending z to exp(z).

[Briefly justify your answers.]

A continuous function f: X — Y between topological spaces X and
Y is said to be a local homeomorphism if, given any point x of X
there exists an open set V' in X containing the point x and an open
set W in Y containing the point f(z) such that the function f maps V'
homeomorphically onto W. Explain why any covering map is a local
homeomorphism.

Determine which of the maps described in question 16 are local home-
omorphisms.

(a) Let W, X, Y and Z be topological spaces, and let A be a subset
of X. Let f: X — Y and g: X — Y be continuous maps. Suppose
that f ~ grel A. Show that ho f >~ h o grel A for all continuous maps

h:Y — Z, and that foe ~ goerele *(A) for all continuous maps
eW — X.

(b) Using (a), explain why, given any continuous map f: X — Y be-
tween topological spaces X and Y, there is a well-defined homomor-
phism fy: 7 (X, 2) — m (Y, f(x)) of fundamental groups for any z € X
which sends [y] to [f o 7] for any loop « based at the point z.

(c) Let f: X — Y and g: X — Y be continuous maps satisfying f(z) =
g(x) and f ~ grel{z}. Show that the homomorphisms f4 and g4 from
m (X, z) to m (Y, f(z)) induced by the maps f and g are equal.

(a) Let X and Y be topological spaces, let f: X — Y and h:Y — X
continuous maps, and let = be a point of X. Suppose that h(f(z)) =«
and that ho f ~ 1xrel{z} and foh ~ 1y rel{f(x)}, where 1y and
1y denote the identity maps of the spaces X and Y. Explain why the
fundamental groups m; (X, z) and m (Y, f(z)) are isomorphic.

(b) Using (a), explain why the fundamental groups 71 (R™\ {0}, p) and
71(S" 1 p) of R*\ {0} and the (n — 1)-dimensional sphere S™~! are
isomorphic for all n > 1, where p € S"71.
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Let X be a topological space, and let a:[0,1] — X and (:[0,1] —
X be paths in X. We say that the path [ is a reparameterization
of the path « if there exists a strictly increasing continuous function
0:10,1] — [0,1] such that ¢(0) = 0, 6(1) = 1 and 8 = a0 0. (Note
that if 3 is a reparameterization of a then «(0) = 5(0), (1) = £(1),
and the paths o and 3 have the same image in X.)

(a) Show that there is a well-defined equivalence relation on the set
of all paths in X, where a path « is related to a path g if and only
if 3 is a reparameterization of a path «. [Hint: use the basic result
of analysis which states that a strictly increasing continuous function
mapping one interval onto another has a continuous inverse.]

(b) Show that if the path 3 is a reparameterization of the path «, then
B~ arel{0,1}.

Given paths 7;,72,...,7, in a topological space X, where v;(1) =
vi41(0) fori = 1,2, ..., n—1, we define the concatenation ;.7 -+ 7y
of the paths by the formula (y1.72. ... yn)(t) = v(nt —i+ 1) for all ¢
satisfying (i — 1)/n <t <i/n.

(¢) Show that the path (1. ... .%).(Vr41. - . -7n) is a reparameteriza-
tion of v1.75. - -+ .y, for any r between 1 and n — 1.

(d) By making repeated applications of (¢), or otherwise, show that
(71.72)-73-(74.75) is a reparameterization of v;.(v2.73.74).75 for all paths
V1,725 735 V4, V5 in X satisfying 71(1) = ’}/'L+1(0) for i = 17 27 374

Let X be a topological space.

(a) Show that, given any path a:[0,1] — X in X, there is a well-
defined homomorphism O,: 7 (X, a(1)) — m (X, a(0)) of fundamental
groups which sends the homotopy class [v] of any loop 7 based at a(1)
to the homotopy class [a.y.a™!] of the loop a.y.a™!, where
o(3t) ifo<t<g,
(v ()= q vt —1) if § <t <3,
a3-3t) if2<t<1
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(i.e., ay.a™! represents ‘« followed by 7 followed by « reversed’).
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(b) Show that ©,3 = ©, 0 ©4 for all paths a and § in X satisfying
B(0) = a(1).

(c) Show that O, is the identity homomorphism whenever « is a con-
stant path.

(d) Let a and & be paths in X satisfying a(0) = &(0) and a(1) = &(1).
Suppose that «(0) ~ &(0) rel{0,1}. Show that ©, = 4.

(e) Explain why the homomorphism ©,: 7 (X, a(1)) — m (X, «(0)) is
an isomorphism for all paths o in X. (This shows that, up to isomor-
phism, the fundamental group of a path-connected topological space
does not depend on the choice of basepoint.)

Let X and Y be topological spaces, and let zy and yy be points of X
and Y. Prove that m (X X Y, (zg,v0)) = m (X, 20) x m1 (Y, yo). [Hint:
you should make use of the result that a function mapping a topolog-
ical space into X x Y is continuous if and only if its components are
continuous.]

(a) Let p: X — X be a covering map, let a:[0,1] — X and 3:[0,1] —
X be paths in X, and let a:[0,1] — X and j3:[0,1] — X be lifts of
and (3 satisfying poa = a, po f = 3 and &(0) = 3(0). Suppose that

a ~ [rel{0,1}. Prove that (1) = f(1).

(b) Let p: X — X be a covering map. Suppose that X is path-
connected and X is simply-connected. Using the results of (a), or
otherwise, prove that p: X — X is a bijection, and is thus a homeo-
morphism.

Real projective RP™ n-dimensional space may be described as the topo-
logical space obtained from the n-dimensional sphere S™ by identifying
together each pair of antipodal points on S™. There is thus an iden-
tification map ¢: S™ — RP"™ that sends each pair of antipodal points
of S™ to the corresponding point of R™. One can easily verify that the
map q is a covering map.

Prove that the fundamental group of RP" is isomorphic to Zy when n >
2, where Zs is the group with exactly two elements. [Hint: adapt the
proof of the theorem concerning the fundamental group of the circle.]



