
Course 421: Academic Year 2002–3

Problems I

1. Let X be a non-empty set. Let d:X × X → R be defined so that
d(x, y) = 1 if x 6= y and d(x, y) = 0 if x = y. Verify that the distance
function d on X satisfies the metric space axioms.

2. Let X be a metric space with distance function d, and let A be a
non-empty subset of X. Let f :X → R be the function defined by
f(x) = inf{d(x, a) : a ∈ A} (i.e., f(x) is the largest real number with
the property that f(x) ≤ d(x, a) for all a ∈ A). Use the Triangle
Inequality to prove that f(x) ≤ f(y) + d(x, y) for all x, y ∈ X, and
hence show that |f(x) − f(y)| < d(x, y). (Note that this implies that
the function f :X → R is continuous.) Prove that A is closed in X if
and only if A = {x ∈ X : f(x) = 0}.

3. Prove that the set

{(x, y) ∈ R2 : x ≤ 0 and x2 + y2 < 1}

is neither open nor closed in R2.

4. Explain why

{(x, y) ∈ R2 : y3 − 7 < sin(3x3 + x12 − 57x937)}

is an open set in R2.

5. The Zariski topology on the real numbers R is the topology whose open
sets are the empty set, the set R itself and those subsets of R whose
complements are finite.

(a) Verify that the Zariski topology is a well-defined topology on the
set R of real numbers (i.e., show that the topological space axioms are
satisfied).

(b) Prove that any polynomial function from R to itself is continuous
with respect to the Zariski topology in R.

(c) Give an example of a function from R to itself which is continuous
with respect to the usual topology on R but is not continuous with
respect to the Zariski topology on R.
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6. (a) Let f :X → Y be a function from a topological space X to a topo-
logical space Y , and let A and B be subsets of X for which X = A∪B.
Suppose that the restrictions f |A and f |B of f to the sets A and B are
continuous. Is f :X → Y necessarily continuous on X? [Give proof or
counterexample.]

(b) Let f :X → Y be a function from a topological space X to a
topological space Y , and let F be a (not necessarily finite) collection
of closed subsets of X whose union is the whole of X. Suppose that
the restriction f |A of f to A is continuous for all closed sets A in the
collection F . Is f :X → Y necessarily continuous on X? [Give proof
or counterexample.]

7. Let f :X → Y be a function from a topological space X to a topological
space Y , and let U be a collection of open subsets of X whose union
is the whole of X. Suppose that the restriction f |W of f to W is
continuous for all open sets W in the collection U . Prove that f :X → Y
is continuous on X.

8. Let X be a topological space, let A be a subset of X, and let B be
the complement X \ A of A in X. Prove that the interior of B is the
complement of the closure of A.

9. Determine which of the following subsets of R3 are compact.

(i) The x-axis {(x, y, z) ∈ R3 : y = z = 0}

(ii) The surface of a tetrahedron in R3.

(iii) {(x, y, z) ∈ R3 : x > 0 and x2 + y2 − z2 ≤ 1}.

10. Let X be a topological space. Suppose that X = A ∪ B, where A and
B are path-connected subsets of X and A∩B is non-empty. Show that
X is path-connected.

11. Let f :X → Y be a continuous map between topological spaces X and
Y . Suppose that X is path-connected. Prove that the image f(X) of
the map f is also path-connected.

12. Let X and Y be path-connected topological spaces. Explain why the
Cartesian product X × Y of X and Y is path-connected.

13. Determine the connected components of the following subsets of R2:
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(i) {(x, y) ∈ R2 : x2 + y2 = 1},

(ii) {(x, y) ∈ R2 : x2 − y2 = 1},

(iii) {(x, y) ∈ R2 : y2 = x(x2 − 1)},

(iv) {(x, y) ∈ R2 : (x− n)2 + y2 > 1
4

for all n ∈ Z}.

[Fully justify your answers.]

14. A topological space X is said to be locally path-connected if, given any
point x of X there exists a path-connected open set U in X such that
x ∈ U .

(a) Let X be a locally path-connected topological space, and let p be a
point of X. Let A be the set of all points x of X for which there exists
a path from p to x, and let B be the complement of A in X. Prove
that A and B are open in X.

(b) Use the result of (a) to show that any connected and locally path-
connected topological space is path-connected.

15. Let X be a convex subset of Rn. (A subset X of Rn is said to be
convex if (1 − t)x + ty ∈ X for all x,y ∈ X and real numbers t
satisfying 0 ≤ t ≤ 1.)

(a) Prove that any two continuous functions mapping some topological
space into X are homotopic.

(b) Prove that any two continuous functions mapping X into some
path-connected topological space Y are homotopic.

16. Determine which of the following maps are covering maps:—

(i) the map from R to [−1, 1] sending θ to sin θ,

(ii) the map from S1 to S1 sending (cos θ, sin θ) to (cosnθ, sinnθ),
where n is some non-zero integer,

(iii) the map from {z ∈ C : Re z < 0} to {z ∈ C : 0 < |z| < 1} sending
z to exp(z),
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(iv) the map from {z ∈ C : −4π < Im z < 4π} to {z ∈ C : |z| > 0}
sending z to exp(z).

[Briefly justify your answers.]

17. A continuous function f :X → Y between topological spaces X and
Y is said to be a local homeomorphism if, given any point x of X
there exists an open set V in X containing the point x and an open
set W in Y containing the point f(x) such that the function f maps V
homeomorphically onto W . Explain why any covering map is a local
homeomorphism.

18. Determine which of the maps described in question 16 are local home-
omorphisms.

19. (a) Let W , X, Y and Z be topological spaces, and let A be a subset
of X. Let f :X → Y and g:X → Y be continuous maps. Suppose
that f ' g relA. Show that h ◦ f ' h ◦ g relA for all continuous maps
h:Y → Z, and that f ◦ e ' g ◦ e rel e−1(A) for all continuous maps
e:W → X.

(b) Using (a), explain why, given any continuous map f :X → Y be-
tween topological spaces X and Y , there is a well-defined homomor-
phism f#: π1(X, x)→ π1(Y, f(x)) of fundamental groups for any x ∈ X
which sends [γ] to [f ◦ γ] for any loop γ based at the point x.

(c) Let f :X → Y and g:X → Y be continuous maps satisfying f(x) =
g(x) and f ' g rel{x}. Show that the homomorphisms f# and g# from
π1(X, x) to π1(Y, f(x)) induced by the maps f and g are equal.

20. (a) Let X and Y be topological spaces, let f :X → Y and h:Y → X
continuous maps, and let x be a point of X. Suppose that h(f(x)) = x
and that h ◦ f ' 1X rel{x} and f ◦ h ' 1Y rel{f(x)}, where 1X and
1Y denote the identity maps of the spaces X and Y . Explain why the
fundamental groups π1(X, x) and π1(Y, f(x)) are isomorphic.

(b) Using (a), explain why the fundamental groups π1(Rn\{0},p) and
π1(Sn−1,p) of Rn \ {0} and the (n − 1)-dimensional sphere Sn−1 are
isomorphic for all n > 1, where p ∈ Sn−1.
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21. Let X be a topological space, and let α: [0, 1] → X and β: [0, 1] →
X be paths in X. We say that the path β is a reparameterization
of the path α if there exists a strictly increasing continuous function
σ: [0, 1] → [0, 1] such that σ(0) = 0, σ(1) = 1 and β = α ◦ σ. (Note
that if β is a reparameterization of α then α(0) = β(0), α(1) = β(1),
and the paths α and β have the same image in X.)

(a) Show that there is a well-defined equivalence relation on the set
of all paths in X, where a path α is related to a path β if and only
if β is a reparameterization of a path α. [Hint: use the basic result
of analysis which states that a strictly increasing continuous function
mapping one interval onto another has a continuous inverse.]

(b) Show that if the path β is a reparameterization of the path α, then
β ' α rel{0, 1}.

Given paths γ1, γ2, . . . , γn in a topological space X, where γi(1) =
γi+1(0) for i = 1, 2, . . . , n−1, we define the concatenation γ1.γ2. · · · .γn
of the paths by the formula (γ1.γ2. . . . .γn)(t) = γi(nt− i+ 1) for all t
satisfying (i− 1)/n ≤ t ≤ i/n.

(c) Show that the path (γ1. . . . .γr).(γr+1. . . . .γn) is a reparameteriza-
tion of γ1.γ2. · · · .γn for any r between 1 and n− 1.

(d) By making repeated applications of (c), or otherwise, show that
(γ1.γ2).γ3.(γ4.γ5) is a reparameterization of γ1.(γ2.γ3.γ4).γ5 for all paths
γ1, γ2, γ3, γ4, γ5 in X satisfying γi(1) = γi+1(0) for i = 1, 2, 3, 4.

22. Let X be a topological space.

(a) Show that, given any path α: [0, 1] → X in X, there is a well-
defined homomorphism Θα: π1(X,α(1))→ π1(X,α(0)) of fundamental
groups which sends the homotopy class [γ] of any loop γ based at α(1)
to the homotopy class [α.γ.α−1] of the loop α.γ.α−1, where

(α.γ.α−1)(t) =


α(3t) if 0 ≤ t ≤ 1

3
,

γ(3t− 1) if 1
3
≤ t ≤ 2

3
,

α(3− 3t) if 2
3
≤ t ≤ 1

(i.e., α.γ.α−1 represents ‘α followed by γ followed by α reversed’).

5



(b) Show that Θα.β = Θα ◦ Θβ for all paths α and β in X satisfying
β(0) = α(1).

(c) Show that Θα is the identity homomorphism whenever α is a con-
stant path.

(d) Let α and α̂ be paths in X satisfying α(0) = α̂(0) and α(1) = α̂(1).
Suppose that α(0) ' α̂(0) rel{0, 1}. Show that Θα = Θα̂.

(e) Explain why the homomorphism Θα: π1(X,α(1))→ π1(X,α(0)) is
an isomorphism for all paths α in X. (This shows that, up to isomor-
phism, the fundamental group of a path-connected topological space
does not depend on the choice of basepoint.)

23. Let X and Y be topological spaces, and let x0 and y0 be points of X
and Y . Prove that π1(X × Y, (x0, y0)) ∼= π1(X, x0) × π1(Y, y0). [Hint:
you should make use of the result that a function mapping a topolog-
ical space into X × Y is continuous if and only if its components are
continuous.]

24. (a) Let p: X̃ → X be a covering map, let α: [0, 1]→ X and β: [0, 1]→
X be paths in X, and let α̃: [0, 1] → X̃ and β̃: [0, 1] → X̃ be lifts of α
and β satisfying p ◦ α̃ = α, p ◦ β̃ = β and α̃(0) = β̃(0). Suppose that
α ' β rel{0, 1}. Prove that α̃(1) = β̃(1).

(b) Let p: X̃ → X be a covering map. Suppose that X̃ is path-
connected and X is simply-connected. Using the results of (a), or
otherwise, prove that p: X̃ → X is a bijection, and is thus a homeo-
morphism.

25. Real projective RP n n-dimensional space may be described as the topo-
logical space obtained from the n-dimensional sphere Sn by identifying
together each pair of antipodal points on Sn. There is thus an iden-
tification map q:Sn → RP n that sends each pair of antipodal points
of Sn to the corresponding point of Rn. One can easily verify that the
map q is a covering map.

Prove that the fundamental group of RP n is isomorphic to Z2 when n ≥
2, where Z2 is the group with exactly two elements. [Hint: adapt the
proof of the theorem concerning the fundamental group of the circle.]
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