TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

JS Mathematics SS Mathematics Trinity Term 1997

Course 421

Friday, May 30

Luce Hall

9.30 - 12.30

Dr. D. R. Wilkins

Credit will be given for the best 7 questions answered. Logarithmic tables will be available in the examination hall.

- 1. (a) What is a topological space? What is meant by saying that a function $f: X \to Y$ between topological spaces X and Y is continuous?
 - (b) Give the definition of the *product topology* on a Cartesian product $X_1 \times X_2 \times \cdots \times X_n$ of topological spaces X_1, X_2, \cdots, X_n .
 - (c) Prove that the product topology on \mathbb{R}^n coincides with the usual topology (i.e., the topology generated by the Euclidean distance function on \mathbb{R}^n).
- 2. (a) What is a *compact* topological space?
 - (b) Let $f: X \to Y$ be a continuous map between topological spaces X and Y. Let A be a compact subset of X. Prove that f(A) is compact.
 - (c) Prove that any compact subset of \mathbb{R}^n is bounded.
 - (d) Let A be a subset of \mathbb{R}^n . The *convex hull* of A consists of all points of \mathbb{R}^n that are of the form $(1-t)\mathbf{x} + t\mathbf{y}$ with $\mathbf{x} \in A, \mathbf{y} \in A$ and $t \in [0,1]$. Prove that if A is compact then so is the convex hull of A.
- 3. (a) What is a *connected* topological space? What is a *path-connected* topological space?
 - (b) Prove that a topological space X is connected if and only if every continuous function $f: X \to \mathbb{Z}$ from X to the set of integers is constant.
 - (c) Prove that every path-connected topological space is connected.
 - (d) Let $X = \{(x, y, z) \in \mathbb{R}^3 : y^2 + z^2 = x^3 x\}$. What are the connected components of X? [Justify your answer.]

2 MA4211

4. (a) Let $\gamma:[0,1] \to \mathbb{C}$ be a closed curve in the complex plane \mathbb{C} , and let w be a complex number that does not lie on the curve γ . Give the definition of the winding number $n(\gamma, w)$ of the curve γ about w.

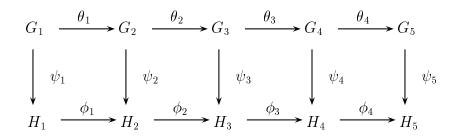
- (b) Let $f: \mathbb{C} \to \mathbb{C} \setminus \{0\}$ be a continuous map from \mathbb{C} to $\mathbb{C} \setminus \{0\}$. Explain briefly why $n(f \circ \beta, 0) = 0$ for all closed curves $\beta : [0, 1] \to \mathbb{C}$ in the complex plane.
- (c) Let $\gamma(t) = 3e^{6\pi it} 2e^{8\pi it}$ for all $t \in [0,1]$. What is the winding number of the closed curve $\gamma: [0,1] \to \mathbb{C}$ about 0. [Justify your answer.]
- 5. Give the definition of the fundamental group $\pi_1(X, x_0)$ of a topological space X based at some point x_0 of X, define the group operation on $\pi_1(X, x_0)$, and verify that $\pi_1(X, x_0)$ is indeed a group by showing that the group operation is well-defined and associative and proving the existence of an identity element and appropriate inverses.
- 6. Prove that $\pi_1(S^1, b) \cong \mathbb{Z}$, where b is some point on the circle S^1 . [You may use, without proof, the Path Lifting Theorem and the Monodromy Theorem.]
- 7. (a) What is a *simplex*? What is the *interior* of a simplex? What is a *simplicial* complex? What is the *polyhedron* of a simplicial complex.
 - (b) Let K be a finite collection of simplices in \mathbb{R}^k and let |K| be the union of the simplices belonging to K. Suppose that every face of a simplex of K belongs to K. Prove that K is a simplicial complex if and only if every point of |K| belongs to the interior of a unique simplex of K.
- 8. Let K be a simplicial complex.
 - (a) What is meant by saying that two vertices of K can be joined by an edge path?
 - (b) Prove that the polyhedron |K| of K is connected if and only if any two vertices of K can be joined by an edge path.
 - (c) Prove that if |K| is connected then $H_0(K) \cong \mathbb{Z}$.
- 9. (a) Let $C_q(K)$ be the qth chain group of a simplicial complex K, and let $\delta_q: C_q(K) \to C_{q-1}(K)$ be the boundary homomorphism. Give the definition of $\delta_q(<\mathbf{v}_0,\mathbf{v}_1,\cdots,\mathbf{v}_q>)$ for an oriented q-simplex $<\mathbf{v}_0,\mathbf{v}_1,\cdots,\mathbf{v}_q>$ of K.
 - (b) Define the group $Z_q(K)$ of q-cycles, the group $B_q(K)$ of q-boundaries and the qth homology group $H_q(K)$ of a simplicial complex K.
 - (c) Let $\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t}$, and \mathbf{u} be the vertices of a hexagon in the plane, and let K be the simplicial complex consisting of the six vertices $\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t}$, and \mathbf{u} , the eight edges $\mathbf{pq}, \mathbf{qr}, \mathbf{rp}, \mathbf{st}, \mathbf{tu}, \mathbf{us}, \mathbf{pu}$ and \mathbf{rs} and the two triangles \mathbf{pqr} and \mathbf{stu} . Let

$$c = n_1 < \mathbf{p}, \mathbf{q} > +n_2 < \mathbf{q}, \mathbf{r} > +n_3 < \mathbf{r}, \mathbf{p} > +n_4 < \mathbf{s}, \mathbf{t} >$$

 $+n_5 < \mathbf{t}, \mathbf{u} > +n_6 < \mathbf{u}, \mathbf{s} > +n_7 < \mathbf{p}, \mathbf{u} > +n_8 < \mathbf{r}, \mathbf{s} >$

where the coefficients n_1, n_2, \dots, n_8 are integers. Calculate $\delta_1(c)$. What conditions must the coefficients satisfy for c to be a 1-cycle or a 1-boundary? Show that $H_1(K) \cong \mathbb{Z}$.

- 10. (a) What is meant by saying that a sequence of Abelian groups and homomorphisms is *exact*?
 - (b) Let



be a commutative diagram of Abelian groups and homomorphisms whose rows are both exact sequences. Prove that if ψ_1, ψ_2, ψ_4 and ψ_5 are isomorphisms then so is ψ_3 (the *Five-Lemma*).

- 11. Let K be a simplicial complex and let K' be its first barycentric division. Prove that the homology groups of K' are isomorphic to those of K. [You may use without proof the Five-Lemma and the fact that any two simplicial approximations to some continuous map induce the same homomorphisms of homology groups.]
- 12. Write an account of aspects of the theory of the topological classification of closed surfaces. [A detailed proof of the classification theorem is not required.]