UNIVERSITY OF DUDLIN

TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

JS Mathematics SS Mathematics Trinity Term 1995

Course 421

Wednesday, May 31

Sports Hall

14.00 - 17.00

Dr. D. R. Wilkins

ATTEMPT UP TO EIGHT QUESTIONS

- (a) What is meant by saying that a topological space is compact?
 (b) Let X and Y be topological spaces, let K be a compact subset of Y, and let U be an open set in X × Y. Let V = {x ∈ X : {x} × K ⊂ U}. Prove that V is an open set in X.
 (c) Prove that a Cartesian product of two compact topological spaces is compact.
- **2.** (a) What is meant by saying that a topological space is *connected*? What is meant by saying that a topological space is *path-connected*?

(b) Prove that a topological space X is connected if and only if every continuous function $f: X \to \mathbb{Z}$ from X to the set \mathbb{Z} of integers is constant.

(c) Prove that every path-connected topological space is connected.

(d) Let X be a non-empty connected open subset of \mathbb{R}^n for some positive integer n. Prove that X is path-connected. [Hint: use the connectedness of X to show that, given a point b of X, the set of points of X that are endpoints of paths in X starting at b must be the whole of X.]

3. (a) Let \tilde{X} and X be topological spaces, and let $p: \tilde{X} \to X$ be a continuous map. What is meant by saying that an open set U in X is evenly covered by the map p? What is meant by saying that the map $p: \tilde{X} \to X$ is a covering map?

(b) Let $p: \tilde{X} \to X$ be a covering map. Prove that p(V) is open in X for every open set V in \tilde{X} .

(c) Let $p: \tilde{X} \to X$ be a covering map, let Z be a connected topological space, and let $g: Z \to \tilde{X}$ and $h: Z \to \tilde{X}$ be continuous maps. Suppose that $p \circ g = p \circ h$ and that g(z) = h(z) for some $z \in Z$. Prove that g = h.

(d) Let $H = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$, and let $f: H \to \mathbb{C} \setminus \{0\}$ be defined by $f(z) = z^4$ for all $z \in H$. Is the map f a covering map from H to $\mathbb{C} \setminus \{0\}$? [Justify your answer.]

2551

4. (a) Let $\gamma:[0,1] \to \mathbb{C}$ be a closed curve in the complex plane \mathbb{C} , and let w be a complex number that does not lie on the curve γ . Give the definition of the winding number $n(\gamma, w)$ of the curve γ about w.

(b) Let $\gamma: [0, 1] \to \mathbb{C}$ be a closed curve in the complex plane that does not pass through zero, and let $\eta: [0, 1] \to \mathbb{C}$ be the closed curve in the complex plane defined by $\eta(t) = 1/\gamma(t)$ for all $t \in [0, 1]$. Prove that $n(\eta, 0) = -n(\gamma, 0)$.

(c) Let w be a complex number and, for each $\tau \in [0, 1]$, let $\gamma_{\tau}: [0, 1] \to \mathbb{C}$ be a closed curve in \mathbb{C} which does not pass through w. Suppose that the map sending $(t, \tau) \in [0, 1] \times [0, 1]$ to $\gamma_{\tau}(t)$ is a continuous map from $[0, 1] \times [0, 1]$ to \mathbb{C} . Using the Monodromy Theorem, or otherwise, prove that $n(\gamma_0, w) = n(\gamma_1, w)$.

(d) Let $\gamma_0: [0,1] \to \mathbb{C}$ and $\gamma_1: [0,1] \to \mathbb{C}$ be closed curves in \mathbb{C} , and let w be a complex number which does not lie on the images of γ_0 and γ_1 . Suppose that $|\gamma_1(t) - \gamma_0(t)| < |w - \gamma_0(t)|$ for all $t \in [0,1]$. Prove that $n(\gamma_0, w) = n(\gamma_1, w)$.

- (e) State and prove the Fundamental Theorem of Algebra.
- 5. (a) What is meant by saying that a topological space X is simply-connected? (b) Let X be a topological space, and let U and V be open subsets of X with $U \cup V = X$. Suppose that U and V are simply-connected, and that $U \cap V$ is non-empty and pathconnected. Prove that X is simply-connected.

(c) Explain why the unit sphere S^n in \mathbb{R}^{n+1} is simply-connected when n > 1.

- **6.** Prove that $\pi_1(S^1, \mathbf{b}) \cong \mathbb{Z}$, where **b** is a point on the circle S^1 . [You may use, without proof, the *Path Lifting Theorem* and the *Monodromy Theorem*.]
- 7. (a) What is meant by saying that points $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ in \mathbb{R}^k are geometrically independent (or affinely independent)?

(b) Define the concepts of simplex and simplicial complex. What is the polyhedron of a simplicial complex?

(c) An edge path $\mathbf{v_0}, \mathbf{v_1}, \ldots, \mathbf{v_m}$ joining vertices $\mathbf{v_0}$ and $\mathbf{v_m}$ of a simplicial complex is a finite sequence of vertices such that $\mathbf{v_{j-1}}$ and $\mathbf{v_j}$ are endpoints of an edge of K for $j = 1, 2, \ldots, m$. Prove that if the polyhedron |K| of a simplicial complex is a connected topological space then any two vertices of K can be joined by an edge path.

8. (a) Let K be a simplicial complex and let **x** be a point of the polyhedron |K| of K. What is the star $\operatorname{st}_{K}(\mathbf{x})$ of **x** in K?

(b) Let K be a simplicial complex and let \mathbf{x} be a point of the polyhedron |K| of K. Prove that the star $\operatorname{st}_{K}(\mathbf{x})$ is an open subset of |K| and that $\mathbf{x} \in \operatorname{st}_{K}(\mathbf{x})$. [You may use, without proof, the result that every point of |K| belongs to the interior of a unique simplex of K.] (c) Let K and L be simplicial complexes, and let $f:|K| \to |L|$ be a continuous map. Prove that a function s: VertK \to VertL between the vertex sets of simplicial complexes K and L is a simplicial map, and is a simplicial approximation to $f:|K| \to |L|$, if and only if $f(\operatorname{st}_{K}(\mathbf{v})) \subset \operatorname{st}_{L}(\mathbf{s}(\mathbf{v}))$ for all vertices \mathbf{v} of K.

(d) State and prove the Simplicial Approximation Theorem. [You may use, without proof, the result that the mesh of the *j*th barycentric subdivision of a simplical complex K converges to zero as $j \to +\infty$.]

9. (a) Let $C_q(K)$ be the *q*th chain group of a simplicial complex K, and let $\partial_q: C_q(K) \to C_{q-1}(K)$ be the boundary homomorphism. Write down the expression which defines $\partial_q(\langle \mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q \rangle)$ for an oriented *q*-simplex $\langle \mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q \rangle$ of K, and show that $\partial_{q-1} \circ \partial_q = 0$ when $2 \leq q \leq \dim K$.

(b) Define the group $Z_q(K)$ of *q*-cycles, the group $B_q(K)$ of *q*-boundaries and the *q*th homology group $H_q(K)$ of a simplicial complex K.

(c) Let K be a simplicial complex. Suppose that there exists a vertex **w** of K with the following property: vertices $\mathbf{w}, \mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ span a simplex of K whenever $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ do so. Prove that $H_0(K) \cong \mathbb{Z}$ and $H_q(K) = 0$ for all q > 0.

10. Let $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ be the vertices of a triangle contained in the plane $\{(x, y, z) \in \mathbb{R}^3 : z = 0\}$, and let $\mathbf{v_4} = (\mathbf{0}, \mathbf{0}, \mathbf{1})$ and $\mathbf{v_5} = (\mathbf{0}, \mathbf{0}, -\mathbf{1})$. Let K be the 2-dimensional simplicial complex consisting of the triangular faces, edges and vertices of the tetrahedra $\mathbf{v_1v_2v_3v_4}$ and $\mathbf{v_1v_2v_3v_5}$. (Thus the polyhedron of |K| consists of the surfaces of the two tetrahedra which are glued together along a single common triangular face $\mathbf{v_1v_2v_3}$.)

(a) Calculate the boundary of the 2-chain

$$a \langle \mathbf{v_1} \mathbf{v_2} \mathbf{v_4} \rangle + \mathbf{b} \langle \mathbf{v_2} \mathbf{v_3} \mathbf{v_4} \rangle + \mathbf{c} \langle \mathbf{v_3} \mathbf{v_1} \mathbf{v_4} \rangle + \mathbf{d} \langle \mathbf{v_1} \mathbf{v_2} \mathbf{v_5} \rangle + \mathbf{e} \langle \mathbf{v_2} \mathbf{v_3} \mathbf{v_5} \rangle + \mathbf{f} \langle \mathbf{v_3} \mathbf{v_1} \mathbf{v_5} \rangle + \mathbf{g} \langle \mathbf{v_1} \mathbf{v_2} \mathbf{v_3} \rangle$$

of K, where a, b, c, d, e, f and g are integers. Show that the group $Z_2(K)$ of 2-cycles of K is given by $Z_2(K) = \{mz_1 + nz_2 : m, n \in \mathbb{Z}\}$, where

$$z_1 = \langle \mathbf{v_1}\mathbf{v_2}\mathbf{v_4} \rangle + \langle \mathbf{v_2}\mathbf{v_3}\mathbf{v_4} \rangle + \langle \mathbf{v_3}\mathbf{v_1}\mathbf{v_4} \rangle - \langle \mathbf{v_1}\mathbf{v_2}\mathbf{v_3} \rangle$$

$$z_2 = \langle \mathbf{v_1}\mathbf{v_2}\mathbf{v_5} \rangle + \langle \mathbf{v_2}\mathbf{v_3}\mathbf{v_5} \rangle + \langle \mathbf{v_3}\mathbf{v_1}\mathbf{v_5} \rangle - \langle \mathbf{v_1}\mathbf{v_2}\mathbf{v_3} \rangle$$

and explain why $H_2(K) \cong \mathbb{Z} \oplus \mathbb{Z}$.

(b) For each of the following 1-chains of K determine whether or not that 1-chain of K is a 1-boundary of K and, if so, find a 2-chain of K of which it is the boundary:

(i)
$$\langle \mathbf{v_1}\mathbf{v_2} \rangle + \langle \mathbf{v_2}\mathbf{v_4} \rangle + \langle \mathbf{v_4}\mathbf{v_3} \rangle + \langle \mathbf{v_3}\mathbf{v_5} \rangle + \langle \mathbf{v_5}\mathbf{v_1} \rangle;$$

(ii) $2\langle \mathbf{v_1}\mathbf{v_2} \rangle + 3\langle \mathbf{v_2}\mathbf{v_3} \rangle + \langle \mathbf{v_3}\mathbf{v_1} \rangle.$

11. (a) Define the following: an *exact sequence* of Abelian groups and homomorphisms; a *chain complex*; the *homology groups* of a chain complex; a *chain map*; a *short exact sequence of chain complexes*.

(b) Let $0 \to A_* \xrightarrow{p_*} B_* \xrightarrow{\bar{q}_*} C_* \to 0$ be a short exact sequence of chain complexes. Prove that there is a well-defined homomorphism $\alpha_i: H_i(C_*) \to H_{i-1}(A_*)$ which sends the homology class [z] of an element z of $Z_i(C_*)$ to the homology class [w] of any element w of $Z_{i-1}(A_*)$ with the property that $p_{i-1}(w) = \partial_i(b)$ for some $b \in B_i$ satisfying $q_i(b) = z$. (Here $Z_i(C_*)$ and $Z_{i-1}(A_*)$ denote the kernels of the homomorphisms $\partial_i: C_i \to C_{i-1}$ and $\partial_{i-1}: A_{i-1} \to A_{i-2}$ respectively.)

12. Write an account of aspects of the theory of the topological classification of closed surfaces.

© UNIVERSITY OF DUBLIN 1995