UNIVERSITY OF DUDLIN

TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

JS Mathematics SS Mathematics SS Two Sub Mod Trinity Term 1993

Course 421

Thursday, May 27

Luce Hall

Dr. D. R. Wilkins

ATTEMPT UP TO EIGHT QUESTIONS

- 1. Give the definition of the fundamental group $\pi_1(X, x_0)$ of a topological space X based at some point x_0 of X, define the group operation on $\pi_1(X, x_0)$, and verify that $\pi_1(X, x_0)$ is indeed a group by showing that the group operation is well-defined and associative and proving the existence of an identity element and appropriate inverses.
- **2.** (a) Let \hat{X} and X be topological spaces, and let $p: \hat{X} \to X$ be a continuous map. What is meant by saying that an open set U in X is evenly covered by the map p? What is meant by saying that the map $p: \hat{X} \to X$ is a covering map?

(b) Let $p: \tilde{X} \to X$ be a covering map over a connected topological space X. Suppose that $p^{-1}(\{x\})$ is a finite set for at least one point x of X. Use the definition of covering maps to prove that there is a well-defined non-negative integer n with the property that $p^{-1}(\{x\})$ has exactly n elements for all $x \in X$.

(c) Determine which of the following continuous maps are covering maps:—

- (i) the map $q: S^1 \to S^1$ sending $(\cos \theta, \sin \theta) \in S^1$ to $(\cos m\theta, \sin m\theta)$, where m is some non-zero integer and $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},$
- (ii) the map $r: S^2 \to D$ sending $(x, y, z) \in S^2$ to (x, y), where

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} : x^{2} + y^{2} + z^{2} = 1\},$$

$$D = \{(x, y) \in \mathbb{R}^{2} : x^{2} + y^{2} \leq 1\}.$$

[Briefly justify your answers.]

3. Prove that $\pi_1(S^1, b) \cong \mathbb{Z}$, where b is some point on the circle S^1 . [You may use, without proof, the *Path Lifting Theorem* and the *Monodromy Theorem*, also known as the *Homotopy Lifting Theorem* for covering maps.]

2551

2.00 - 5.00

- **4.** (a) What is meant by saying that points $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ in \mathbb{R}^k are geometrically independent (or affine independent)?
 - (b) Define the concepts of simplex and simplicial complex.
 - (c) A subset K of \mathbb{R}^k is said to be *convex* if $\lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in K$ for all points \mathbf{x} and \mathbf{y} of K and real numbers λ satisfying $0 \le \lambda \le 1$.

Let σ be a simplex in \mathbb{R}^k with vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$. Show that σ is convex. Show also that $\sigma \subset K$ for any convex subset K of \mathbb{R}^k that contains the vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ of σ .

5. (a) Let K be a simplicial complex which is a subdivision of an n-dimensional simplex. What is a *Sperner labelling* of the vertices of K?

(b) State and prove Sperner's Lemma.

(c) Use Sperner's Lemma and the Simplicial Approximation Theorem to show that there is no continuous map $r: \Delta \to \partial \Delta$ from an *n*-simplex Δ to its boundary $\partial \Delta$ with the property that $r(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in \partial \Delta$.

- 6. Give an account of the manner in which the Brouwer Fixed Point Theorem can be applied to prove the existence of a Walras equilibrium in an exchange economy (i.e., prove the existence of prices that ensure that the supply of each commodity matches its demand).
- 7. (a) Let $C_q(K)$ be the qth chain group of a simplicial complex K, and let $\partial_q: C_q(K) \to C_{q-1}(K)$ be the boundary homomorphism. Write down the expression which defines $\partial_q(\langle \mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q \rangle)$ for an oriented q-simplex $\langle \mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q \rangle$ of K. [You are not required to prove that the boundary homomorphism is well-defined.]

(b) Define the group $Z_q(K)$ of *q*-cycles, the group $B_q(K)$ of *q*-boundaries and the *q*th homology group $H_q(K)$ of a simplicial complex K.

(c) Let K be the simplicial complex consisting of all the vertices, edges and triangular faces of a tetrahedron (or 3-simplex) in \mathbb{R}^3 with vertices P_0 , P_1 P_2 and P_3 . (The tetrahedron itself does not belong to the simplicial complex K.) Let

$$\begin{aligned} \tau_0 &= \langle P_1, P_2, P_3 \rangle, \quad \tau_1 &= \langle P_0, P_2, P_3 \rangle, \quad \tau_2 &= \langle P_0, P_1, P_3 \rangle, \quad \tau_3 &= \langle P_0, P_1, P_2 \rangle, \\ \rho_{01} &= \langle P_0, P_1 \rangle, \quad \rho_{02} &= \langle P_0, P_2 \rangle, \quad \rho_{03} &= \langle P_0, P_3 \rangle, \\ \rho_{12} &= \langle P_1, P_2 \rangle, \quad \rho_{13} &= \langle P_1, P_3 \rangle, \quad \rho_{23} &= \langle P_2, P_3 \rangle. \end{aligned}$$

Let α and β be elements of $C_2(K)$ and $C_1(K)$ respectively given by

$$\begin{aligned} \alpha &= n_0 \tau_0 + n_1 \tau_1 + n_2 \tau_2 + n_3 \tau_3, \\ \beta &= m_{01} \rho_{01} + m_{02} \rho_{02} + m_{03} \rho_{03} + m_{12} \rho_{12} + m_{13} \rho_{13} + m_{23} \rho_{23}, \end{aligned}$$

where the coefficients n_i and m_{ij} are integers. Calculate $\partial_2(\alpha)$ in terms of the oriented edges ρ_{ij} , and find necessary and sufficient conditions on the coefficients n_i to ensure that $\partial_2(\alpha) = 0$. Calculate also $\partial_1(\beta)$, and find necessary and sufficient conditions on the coefficients m_{ij} to ensure that $\partial_1(\beta) = 0$. Show moreover that $\beta \in C_1(K)$ satisfies $\partial_1(\beta) = 0$ if and only if $\beta = \partial_2(\alpha)$ for some $\alpha \in C_2(K)$. [Hint: look for a solution α in which the coefficient of τ_0 is zero.] Use your results to calculate the groups $B_q(K)$ and $Z_q(K)$ for q = 0, 1, 2. Hence calculate the homology groups of the simplicial complex K.

8. Let K be a simplicial complex.

(a) What is meant by saying that two vertices of K can be joined by an edge path?

(b) Prove that the polyhedron |K| of K is connected if and only if any two vertices of K can be joined by an edge path.

(c) Prove that if |K| is connected then $H_0(K) \cong \mathbb{Z}$.

9. (a) What is meant by saying that a sequence of Abelian groups and homomorphisms is exact?

(b) Let $0 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 0$ be a short exact sequence of Abelian groups and homomorphisms, and let $\theta: G \to K$ be a homomorphism of Abelian groups. Suppose that $\theta \circ \alpha = 0$. Prove that there exists a unique homomorphism $\varphi: H \to K$ such that $\theta = \varphi \circ \beta$.

Let

G_1	$\xrightarrow{\theta_1}$	G_2	$\xrightarrow{\theta_2}$	G_3	$\xrightarrow{\theta_3}$	G_4	$\xrightarrow{\theta_4}$	G_5
ψ_1		ψ_2		ψ_3		ψ_4		ψ_5
\checkmark	ſ	\checkmark	(\checkmark	(\checkmark	1	\checkmark
H_1	$\xrightarrow{\phi_1}$	H_2	$\xrightarrow{\phi_2}$	H_3	$\xrightarrow{\phi_3}$	H_4	$\xrightarrow{\phi_4}$	H_5

be a commutative diagram of Abelian groups and homomorphisms whose rows are both exact sequences.

(c) Suppose that ψ_2 and ψ_4 are monomorphisms and that ψ_1 is a epimorphism. Prove that ψ_3 is an monomorphism.

(d) Suppose that ψ_2 and ψ_4 are epimorphisms and that ψ_5 is a monomorphism. Prove that ψ_3 is an epimorphism.

[Recall that a *monomorphism* is an injective homomorphism, and an *epimorphism* is a surjective homomorphism.]

10. (a) Write down the Mayer-Vietoris exact sequence associated with the decomposition of a simplicial complex K as the union of two subcomplexes L and M.

(b) Let $0 \longrightarrow \mathbb{Z} \xrightarrow{h} G \xrightarrow{k} \mathbb{Z} \longrightarrow 0$ be an exact sequence of Abelian groups and homomorphisms. Explain why there exists a homomorphism $s:\mathbb{Z} \to G$ such that $k \circ s$ is the identity homomorphism of \mathbb{Z} , and show that the homomorphism sending $(m, n) \in \mathbb{Z} \oplus \mathbb{Z}$ to h(m) + s(n) is an isomorphism from G to $\mathbb{Z} \oplus \mathbb{Z}$.

(c) Let K be a simplicial complex whose polyhedron is homeomorphic to the union of the unit sphere

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

in \mathbb{R}^3 and the closed disk

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1 \text{ and } z = 0.\}$$

Use the Mayer-Vietoris exact sequence to calculate the homology groups of K. [You may make use of the topological invariance of homology groups together with the following well-known results: if |L| is homeomorphic to a closed disk then $H_0(L) \cong \mathbb{Z}$ and $H_q(L) = 0$ for all q > 0; also if |M| is homeomorphic to an n-sphere for some n > 0 then $H_q(M) \cong \mathbb{Z}$ for q = 0 and q = n, and $H_q(M) = 0$ for all other values of q.]

11. (a) Let K and L be simplicial complexes. What is meant by saying that two simplicial maps $s: K \to L$ and $t: K \to L$ from K to L are contiguous?

(b) Let K and M be simplicial complexes, and let $s: K \to L$ and $t: K \to L$ be simplicial approximations to some continuous map $f: |K| \to |L|$ from the polyhedron of K to that of L. Prove that the simplicial maps s and t are contiguous.

(c) Let $s: K \to L$ and $t: K \to L$ be contiguous simplicial maps. For each non-negative integer q, let $D_q: C_q(K) \to C_{q+1}(K)$ be the homomorphism defined so that

$$D_q(\langle \mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q \rangle) = \sum_{j=0}^q (-1)^j \langle s(\mathbf{v}_0), \dots, s(\mathbf{v}_j), t(\mathbf{v}_j), \dots, t(\mathbf{v}_q) \rangle.$$

whenever $\mathbf{v}_0, \mathbf{v}_1, \ldots \mathbf{v}_q$ are the vertices of a q-simplex of K listed in increasing order with respect to some chosen ordering of the vertices of K. Show by direct calculation that $\partial_1 \circ D_0 = t_0 - s_0$ and

$$\partial_{q+1} \circ D_q + D_{q-1} \circ \partial_q = t_q - s_q$$

for all q > 0. Use this result to prove that the induced homomorphisms s_* and t_* from $H_q(K)$ to $H_q(L)$ are equal for all non-negative integers q.

12. (a) The Möbius strip M is the topological space obtained from the unit square $[0, 1] \times [0, 1]$ by identifying (0, t) with (1, 1 - t) for all $t \in [0, 1]$. Show that $H_0(M) \cong \mathbb{Z}$, $H_1(M) \cong \mathbb{Z}$, and $H_q(M) = 0$ for all $q \ge 2$. [Hint: in order to study the homology of M, you may find it helpful to show that a certain continuous map from S^1 to M induces isomorphisms of homology groups.]

(b) Let [z] and [w] be generators of $H_1(M)$ and $H_1(\partial M)$ respectively, where ∂M is the boundary of M. Indicate briefly why $i_*([w]) = \pm 2[z]$, where $i_*: H_1(\partial M) \to H_1(M)$ is the homomorphism of homology groups induced by the inclusion map $i: \partial M \to M$. [You may use, without proof, the result that the homomorphism induced by any continuous map from S^1 to itself sends $\theta \in H_1(S^1)$ to $n\theta$, where n is the winding number of the map.]

(c) The real projective plane can be obtained by gluing together along their boundaries a Möbius strip and a closed disk. Calculate the homology groups of the real projective plane using the Mayer-Vietoris exact sequence associated with the resulting decomposition of the real projective plane as a union of a Möbius strip and a closed disk.

© UNIVERSITY OF DUBLIN 1993