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ATTEMPT UP TO EIGHT QUESTIONS

1. Give the de�nition of the fundamental group �

1

(X;x

0

) of a topological space X based

at some point x

0

of X, de�ne the group operation on �

1

(X;x

0

), and verify that �

1

(X;x

0

)

is indeed a group by showing that the group operation is well-de�ned and associative and

proving the existence of an identity element and appropriate inverses.

2. (a) Let

~

X and X be topological spaces, and let p:

~

X ! X be a continuous map. What

is meant by saying that an open set U in X is evenly covered by the map p? What is

meant by saying that the map p:

~

X ! X is a covering map?

(b) Let p:

~

X ! X be a covering map over a connected topological space X. Suppose

that p

�1

(fxg) is a �nite set for at least one point x of X. Use the de�nition of covering

maps to prove that there is a well-de�ned non-negative integer n with the property that

p

�1

(fxg) has exactly n elements for all x 2 X.

(c) Determine which of the following continuous maps are covering maps:|

(i) the map q:S

1

! S

1

sending (cos �; sin �) 2 S

1

to (cosm�; sinm�), where

m is some non-zero integer and S

1

= f(x; y) 2 R

2

: x

2

+ y

2

= 1g,

(ii) the map r:S

2

! D sending (x; y; z) 2 S

2

to (x; y), where

S

2

= f(x; y; z) 2 R

3

: x

2

+ y

2

+ z

2

= 1g;

D = f(x; y) 2 R

2

: x

2

+ y

2

� 1g:

[Brie
y justify your answers.]

3. Prove that �

1

(S

1

; b)

�

=

Z, where b is some point on the circle S

1

. [You may use,

without proof, the Path Lifting Theorem and the Monodromy Theorem, also known as

the Homotopy Lifting Theorem for covering maps.]
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4. (a) What is meant by saying that points v

0

;v

1

; : : : ;v

q

in R

k

are geometrically indepen-

dent (or a�ne independent)?

(b) De�ne the concepts of simplex and simplicial complex .

(c) A subset K of R

k

is said to be convex if �x+ (1� �)y 2 K for all points x and y of

K and real numbers � satisfying 0 � � � 1.

Let � be a simplex in R

k

with vertices v

0

;v

1

; : : : ;v

q

. Show that � is convex. Show

also that � � K for any convex subset K of R

k

that contains the vertices v

0

;v

1

; : : : ;v

q

of �.

5. (a) Let K be a simplicial complex which is a subdivision of an n-dimensional simplex.

What is a Sperner labelling of the vertices of K?

(b) State and prove Sperner's Lemma.

(c) Use Sperner's Lemma and the Simplicial Approximation Theorem to show that there

is no continuous map r:� ! @� from an n-simplex � to its boundary @� with the

property that r(x) = x for all x 2 @�.

6. Give an account of the manner in which the Brouwer Fixed Point Theorem can be

applied to prove the existence of a Walras equilibrium in an exchange economy (i.e.,

prove the existence of prices that ensure that the supply of each commodity matches its

demand).

7. (a) Let C

q

(K) be the qth chain group of a simplicial complex K, and let @

q

:C

q

(K) !

C

q�1

(K) be the boundary homomorphism. Write down the expression which de�nes

@

q

(hv

0

;v

1

; : : : ;v

q

i) for an oriented q-simplex hv

0

;v

1

; : : : ;v

q

i of K. [You are not required

to prove that the boundary homomorphism is well-de�ned.]

(b) De�ne the group Z

q

(K) of q-cycles, the group B

q

(K) of q-boundaries and the qth

homology group H

q

(K) of a simplicial complex K.

(c) LetK be the simplicial complex consisting of all the vertices, edges and triangular faces

of a tetrahedron (or 3-simplex) in R

3

with vertices P

0

, P

1

P

2

and P

3

. (The tetrahedron

itself does not belong to the simplicial complex K.) Let

�

0

= hP

1

; P

2

; P

3

i; �

1

= hP

0

; P

2

; P

3

i; �

2

= hP

0

; P

1

; P

3

i; �

3

= hP

0

; P

1

; P

2

i;

�

01

= hP

0

; P

1

i; �

02

= hP

0

; P

2

i; �

03

= hP

0

; P

3

i;

�

12

= hP

1

; P

2

i; �

13

= hP

1

; P

3

i; �

23

= hP

2

; P

3

i:

Let � and � be elements of C

2

(K) and C

1

(K) respectively given by

� = n

0

�

0

+ n

1

�

1

+ n

2

�

2

+ n

3

�

3

;

� = m

01

�

01

+m

02

�

02

+m

03

�

03

+m

12

�

12

+m

13

�

13

+m

23

�

23

;

where the coe�cients n

i

and m

ij

are integers. Calculate @

2

(�) in terms of the oriented

edges �

ij

, and �nd necessary and su�cient conditions on the coe�cients n

i

to ensure

that @

2

(�) = 0. Calculate also @

1

(�), and �nd necessary and su�cient conditions on

the coe�cients m

ij

to ensure that @

1

(�) = 0. Show moreover that � 2 C

1

(K) satis�es

@

1

(�) = 0 if and only if � = @

2

(�) for some � 2 C

2

(K). [Hint: look for a solution � in
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which the coe�cient of �

0

is zero.] Use your results to calculate the groups B

q

(K) and

Z

q

(K) for q = 0; 1; 2. Hence calculate the homology groups of the simplicial complex K.

8. Let K be a simplicial complex.

(a) What is meant by saying that two vertices of K can be joined by an edge path?

(b) Prove that the polyhedron jKj of K is connected if and only if any two vertices of K

can be joined by an edge path.

(c) Prove that if jKj is connected then H

0

(K)

�

=

Z.

9. (a) What is meant by saying that a sequence of Abelian groups and homomorphisms is

exact?

(b) Let 0�!F

�

�!G

�

�!H�!0 be a short exact sequence of Abelian groups and homomor-

phisms, and let �:G! K be a homomorphism of Abelian groups. Suppose that ��� = 0.

Prove that there exists a unique homomorphism ':H ! K such that � = ' � �.

Let

G

1

�

1

�! G

2

�

2

�! G

3

�

3

�! G

4

�

4

�! G

5

?

?

y

 

1

?

?

y

 

2

?

?

y

 

3

?

?

y

 

4

?

?

y

 

5

H

1

�

1

�! H

2

�

2

�! H

3

�

3

�! H

4

�

4

�! H

5

be a commutative diagram of Abelian groups and homomorphisms whose rows are both

exact sequences.

(c) Suppose that  

2

and  

4

are monomorphisms and that  

1

is a epimorphism. Prove

that  

3

is an monomorphism.

(d) Suppose that  

2

and  

4

are epimorphisms and that  

5

is a monomorphism. Prove

that  

3

is an epimorphism.

[Recall that a monomorphism is an injective homomorphism, and an epimorphism is

a surjective homomorphism.]

10. (a) Write down the Mayer-Vietoris exact sequence associated with the decomposition

of a simplicial complex K as the union of two subcomplexes L and M .

(b) Let 0�!Z

h

�!G

k

�!Z�!0 be an exact sequence of Abelian groups and homomor-

phisms. Explain why there exists a homomorphism s:Z! G such that k � s is the

identity homomorphism of Z, and show that the homomorphism sending (m;n) 2Z�Z

to h(m) + s(n) is an isomorphism from G to Z�Z.

(c) Let K be a simplicial complex whose polyhedron is homeomorphic to the union of the

unit sphere

f(x; y; z) 2 R

3

: x

2

+ y

2

+ z

2

= 1g

in R

3

and the closed disk

f(x; y; z) 2 R

3

: x

2

+ y

2

� 1 and z = 0:g

Use the Mayer-Vietoris exact sequence to calculate the homology groups of K. [You may

make use of the topological invariance of homology groups together with the following

well-known results: if jLj is homeomorphic to a closed disk thenH

0

(L)

�

=

ZandH

q

(L) = 0
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for all q > 0; also if jM j is homeomorphic to an n-sphere for some n > 0 then H

q

(M)

�

=

Z

for q = 0 and q = n, and H

q

(M) = 0 for all other values of q.]

11. (a) Let K and L be simplicial complexes. What is meant by saying that two simplicial

maps s:K ! L and t:K ! L from K to L are contiguous?

(b) Let K and M be simplicial complexes, and let s:K ! L and t:K ! L be simplicial

approximations to some continuous map f : jKj ! jLj from the polyhedron of K to that

of L. Prove that the simplicial maps s and t are contiguous.

(c) Let s:K ! L and t:K ! L be contiguous simplicial maps. For each non-negative

integer q, let D

q

:C

q

(K)! C

q+1

(K) be the homomorphism de�ned so that

D

q

(hv

0

;v

1

; : : : ;v

q

i) =

q

X

j=0

(�1)

j

hs(v

0

); : : : ; s(v

j

); t(v

j

); : : : ; t(v

q

)i :

whenever v

0

;v

1

; : : :v

q

are the vertices of a q-simplex of K listed in increasing order with

respect to some chosen ordering of the vertices of K. Show by direct calculation that

@

1

�D

0

= t

0

� s

0

and

@

q+1

�D

q

+D

q�1

� @

q

= t

q

� s

q

for all q > 0. Use this result to prove that the induced homomorphisms s

�

and t

�

from

H

q

(K) to H

q

(L) are equal for all non-negative integers q.

12. (a)The M�obius stripM is the topological space obtained from the unit square [0; 1]�[0; 1]

by identifying (0; t) with (1; 1 � t) for all t 2 [0; 1]. Show that H

0

(M)

�

=

Z, H

1

(M)

�

=

Z,

and H

q

(M) = 0 for all q � 2. [Hint: in order to study the homology of M , you may �nd

it helpful to show that a certain continuous map from S

1

to M induces isomorphisms of

homology groups.]

(b) Let [z] and [w] be generators of H

1

(M) and H

1

(@M) respectively, where @M is the

boundary of M . Indicate brie
y why i

�

([w]) = �2[z], where i

�

:H

1

(@M)! H

1

(M) is the

homomorphism of homology groups induced by the inclusion map i: @M !M . [You may

use, without proof, the result that the homomorphism induced by any continuous map

from S

1

to itself sends � 2 H

1

(S

1

) to n�, where n is the winding number of the map.]

(c) The real projective plane can be obtained by gluing together along their boundaries a

M�obius strip and a closed disk. Calculate the homology groups of the real projective plane

using the Mayer-Vietoris exact sequence associated with the resulting decomposition of

the real projective plane as a union of a M�obius strip and a closed disk.

c
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