Mathematics Course 421, Trinity Term 1995.
Worked Solutions

1. (a) (BOOKWORK) A topological space X is said to be compact if
and only if every open cover of X possesses a finite subcover.
(b) (BOOKWORK) Let z € V. For each y € K there exist open
subsets D,, and E, of X and Y respectively such that (z,y) € D, x
E, and D, x E, C U. Now there exists a finite set {y1,y2,...,yx}
of points of K such that

KcE,UE,U---ULE,,
since K is compact. Set

N, =D, N Dy N---ND,,.

Then N, is an open set in X. Moreover

k k
N, x K | (N, x E,) c | J(D,, x E,) C U,

i=1 i=1

so that N, C V. It follows that V is the union of the open sets N,
for all z € V. Thus V is itself an open set in X, as required.

(c) (BOOKWORK) Let X and Y be topological spaces, and let U
be an open cover of X x Y. We must show that this open cover
possesses a finite subcover.

Let = be a point of X. The set {z} x Y is a compact subset of
X x Y, since it is the image of the compact space Y under the
continuous map from Y to X x Y which sends y € Y to (x,y),
and the image of any compact set under a continuous map is itself
compact. Therefore there exists a finite collection Uy, Us, ..., U,
of open sets belonging to the open cover U such that

{LL’}XYCUlLJUQU"'UUT.

Let
Vx:{x’EX:{x’}XYCU1UU2U---UU,,}.

It follows from (b) that V, is an open set in X. We have therefore
shown that, for each point z in X, there exists an open set V,
in X containing the point x such that V, x Y is covered by finitely
many of the open sets belonging to the open cover U.
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Now {V, : x € X} is an open cover of the space X. It follows from
the compactness of X that there exists a finite set {x1, 22, ...,z }
of points of X such that

X =V, UV, U---UV,,.

Now X x Y is the union of the sets V,, x Y for j = 1,2,... 7,
and each of these sets can be covered by a finite collection of open
sets belonging to the open cover 4. On combining these finite
collections, we obtain a finite collection of open sets belonging to
U which covers X x Y. This shows that X x Y is compact.



2. (a) (BOOKWORK) A topological space X is said to be connected if
the empty set () and the whole space X are the only subsets of X
that are both open and closed. A topological space X is said to
be path-connected if and only if, given any two points zy and x;
of X, there exists a path in X from zy to x;.

(b) (BOOKWORK) Suppose that X is connected. Let f: X — Z
be a continuous function. Choose n € f(X), and let

U={zreX: f(x)=n}, V={rxeX: f(x)#n}.

Then U and V are the preimages of the open subsets {n} and
Z\{n} of Z, and therefore both U and V" are open in X. Moreover
UNV =0, and X = UUV. It follows that V= X \ U, and
thus U is both open and closed. Moreover U is non-empty, since
n € f(X). It follows from the connectedness of X that U = X,
so that f: X — Z is constant, with value n.

Conversely suppose that every continuous function f: X — Z is
constant. Let S be a subset of X which is both open and closed.
Let f: X — Z be defined by

1 ifzxes,

J(@) = {0 itz ¢S
Now the preimage of any subset of Z under f is one of the open
sets ), S, X \ S and X. Therefore the function f is continuous.

It follows from (éiz) that the function f is constant, so that either
S =0 or S=X. This shows that X is connected.

(c) (BOOKWORK) Let X be a path-connected topological space,
and let f: X — Z be a continuous integer-valued function on X.
If xo and x; are any two points of X then there exists a path
v:[0,1] — X such that v(0) = 2z and (1) = ;. But then
fo~:[0,1] — Z is a continuous integer-valued function on [0, 1].
But [0, 1] is connected, therefore f oy is constant. It follows that
f(zg) = f(x1). Thus every continuous integer-valued function
on X is constant. Therefore X is connected, by (b)

(d) Let b be a point of X and let Y be the set of all points of X that
are endpoints of paths starting at b. Let y be a point of Y. Now
X is open in R", and therefore there exists some § > 0 such that
B(y,0) C X, where B(y,d) = {x € R" : |x — y| < §}. But then
B(y,0) C Y, since a path in X from b to any point z of B(y,d)
can be constructed by concatenating a path in X from b to y with
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a path along the straight line segment joining y to z. Therefore
Y is open in R™.

Now let w be a point of X \ Y. There exists some d > 0 such that
B(w,d) C X. Now there is no path in X that joins b to w, since
w € X\ Y. It follows that there cannot exist a path joining b to
any point z in B(w, ), since any such path could be concatenated
with a path along the line segment joining z to w to obtain a path
in X from b to w. Thus B(w,d) C X\ Y. Therefore X \ Y is open
in R™.

A connected topological space cannot be expressed as the union of
two disjoint open sets unless one of those sets is the whole space
and the other is the empty set. Therefore Y = X, and therefore
any point of X can be joined to b by a path in X. It follows that
X is path-connected, as required.



3. (a) (BOOKWORK) An open subset U of X is said to be evenly
covered by the map p if and only if p~(U) is a disjoint union of
open sets of X each of which is mapped homeomorphically onto U
by p. The map p: X — X is said to be a covering map if p: X — X
is surjective and in addition every point of X is contained in some
open set that is evenly covered by the map p.

(b) (BOOKWORK) Let V be open in X, and let z € p(V). Then
x = p(v) for some v € V. Now there exists an open set U contain-
ing the point x which is evenly covered by the covering map p.
Then p~'(U) is a disjoint union of open sets, each of which is
mapped homeomorphically onto U by the covering map p. One
of these open sets contains v; let U be this open set, and let
N, = p(V N U) Now N, is open in X, since V' N U is open in
U and p|U is a homeomorphism from U to U. Also z € N, and
N, C p(V). It follows that p(V') is the union of the open sets N,
as x ranges over all points of p(V'), and thus p(V) is itself an open
set, as required.

(c) (BOOKWORK) Let Zy = {z € Z: g(z) = h(z)}. Note that Z,
is non-empty, by hypothesis. We show that Zj is both open and
closed in Z.

Let z be a point of Z. There exists an open set U in X containing
the point p(g(z)) which is evenly covered by the covering map p.
Then p~'(U) is a disjoint union of open sets, each of which is
mapped homeomorphically onto U by the covering map p. One of
these open sets contains g(z); let this set be denoted by U. Also
one of these open sets contains h(z); let this open set be denoted
by V. Let N, = ¢{(U) N h~Y(V). Then N, is an open set in Z
containing z.

Consider the case when z € Zy. Then g(z) = h(z), and therefore
V = U. It follows from this that both 1 g and h map the open set IV,
into U. But po g =poh, and p\U U — U is a homeomorphism.
Therefore g|N, = h|N,, and thus N, C Z,. We have thus shown
that, for each z € Zj, there exists an open set N, such that z € NV,
and N, C Zy. We conclude that Z; is open.

Next consider the case when z € Z \ Z;. In this case UNV = 0,
since g(z) # h(z). But g(N.) € U and h(N,) C V. Therefore
g(Z') # h(2') for all 2/ € N,, and thus N, C Z \ Z,. We have thus
shown that, for each z € Z\ Zj, there exists an open set IV, such
that z € N, and N, C Z \ Zy. We conclude that Z \ Z; is open.

The subset Z; of Z is therefore both open and closed. Also %
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is non-empty by hypothesis. We deduce that Zy; = Z, since Z is
connected. Thus g = h, as required.

(d) The map f: H — C\ {0} defined by f(z) = 2* is not a covering
map. One way of verifying this is to observe that the continuous
path 7:[0,1] — C\ {0} defined by 7(t) = exp(4mit) does not lift
to a path in H. Indeed a lift of v would have to be of the form
t — exp(mit), and such a path leaves H when t > %



(a) (BOOKWORK) There exists a continuous path 4:[0,1] — C
in C such that v(t) — w = exp(¥(t)) for all ¢t € [0,1]. (This is
a consequence of the Path Lifting Theorem, applied to the expo-
nential map from C to C\ {0}. We define

i) = 3(0)

(b) Let 4:]0,1] — C be a continuous path such that v(¢) = exp(5(t))
for all t € [0,1]. Then n(t) = exp(—7(t)) for all ¢ € [0,1], and
hence

n(n,0) = : =— = —n(y,0).

(c) (BOOKWORK) Let H:[0,1] x [0,1] — C\ {0} be defined by
H(t,7) = v:(t) — w. It follows from the Monodromy Theorem
that there exists a continuous map H: [0, 1] x [0, 1] — C such that
H = expoH. But then

H(1,7) — H(0,7) = 2min(y,, w)

for all 7 € [0, 1], and therefore the function 7 — n(~,,w) is a con-
tinuous function on the interval [0, 1] taking values in the set Z of
integers. But such a function must be constant on [0, 1], since the
interval [0, 1] is connected. Thus n(v, w) = n(vy1, w), as required.

(d) ( BOOKWORK) Let v, (t) = (1—7)7v(t) + 771 (t) for all ¢t € [0, 1]
and 7 € [0,1]. Then

7 (t) = )| = 77 (t) — ()] < Jw—(t)],

for all ¢t € [0,1] and 7 € [0, 1], and thus the closed curve 7, does
not pass through w. The result therefore follows from (c).

() (BOOKWORK)

The Fundamental Theorem of Algebra

Let P:C — C be a non-constant polynomaial with complex
coefficients. Then there exists some complex number zy
such that P(z) = 0.

Proof: The result is trivial if P(0) = 0. Thus it suffices to prove
the result when P(0) # 0.

For any r > 0, let the closed curve o, denote the circle about zero
of radius r, traversed once in the anticlockwise direction, given by
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o.(t) = rexp(2mit) for all t € [0, 1]. Consider the winding number
n(P o o,,0) of Po o, about zero. We claim that this winding
number is equal to m for large values of r, where m is the degree
of the polynomial P.

Let P(z) = ap+a1z+---+a,2™, where ay, ay, . .., a, are complex
numbers, and where a,, # 0. We write P(z) = P,(z) + Q(2),
where P,,(z) = a,,2™ and

Q(Z) =ay+aiz+---+ am—lZm_l.

Let
o ool ] o
‘am|
If |2| > R then
Q(z) 1 ) ag a;
— m—1| < 1’
P, (2) | z| | zm=1  zm=2 o Gme

since R > 1, and thus |P(z) — P,.(2)| < |Pn(2)|. It follows from
(d) that n(P o o,,0) = n(P,, o0,,0) = m for all r > R.

Given r > 0, let 7, = P o o,, for all 7 € [0,1]. Then n(vy,0) =0,
since 7y is a constant curve with value P(0). Thus if the polyno-
mial P were everywhere non-zero, then it would follow from (¢)
that n(v1,0) = n(v,0) = 0. But n(v,0) = n(P oo,,0) = m for
all r > R, and m > 0. Therefore the polynomial P must have at
least one zero in the complex plane.



5. (a) (BOOKWORK) A topological space X is said to be simply-
connected if it is path-connected, and any continuous map f: 0D —
X mapping the boundary circle 0D of a closed disc D into X can
be extended continuously over the whole of the disk.

(b) (BOOKWORK) We must show that any continuous function

f:0D — X defined on the unit circle 9D can be extended contin-
uously over the closed unit disk D. Now the preimages f~'(U) and
f7HV) of U and V are open in 9D (since f is continuous), and
oD = f~HU)uU f~1(V). It follows from the Lebesgue Lemma that
there exists some ¢ > 0 such that any arc in 0D whose length is
less than ¢ is entirely contained in one or other of the sets f~1(U)
and f~1(V). Choose points 21, 2y,..., 2, around 9D such that
each point z; is within a distance ¢ of its neighbours z; 1 and z;,1,
where 2y = z,. Then, for each i, the short arc joining 2;_; to z; is
mapped by f into one or other of the open sets U and V.
Let zy be some point of U NV. Now the sets U, V and UNV are
all path-connected. Therefore we can choose paths «;: [0,1] = X
for i =1,2,...,n such that a;(0) = o, a;(1) = f(z), ;([0,1]) C
U whenever z; € U, and «;([0,1]) C V whenever z; € V. For
convenience let ap = a,.

Now, for each 7, consider the sector T; of the closed unit disk
bounded by the line segments joining the centre of the disk to the
points z;_1 and z; and by the short arc joining z;_1 to z;. Now this
sector is homeomorphic to the closed unit disk, and therefore any
continuous function mapping the boundary 97; of T; into a simply-
connected space can be extended continuously over the whole of
T;. In particular, let F; be the function on 07; defined by

f(2) if zeT;NoD,
Fi(z) =< a;_1(t) if z =tz for any t € [0,1],
a;(t) if z = tz; for any t € [0, 1],

Note that F;(0T;) C U whenever the short arc joining z;_; to z;
is mapped by f into U, and F;(0T;) C V whenever this short arc
is mapped into V. But U and V are both simply-connected. It
follows that each of the functions F; can be extended continuously
over the whole of the sector T;. Moreover the functions defined in
this fashion on each of the sectors T} agree with one another wher-
ever the sectors intersect, and can therefore be pieced together to
yield a continuous map defined over the the whole of the closed
disk D which extends the map f, as required.
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(c) (BOOKWORK) Let U = {x € 8" : x4y > —3} and V =
{x € 8" : #,41 < 3}. Then U and V are homeomorphic to an
n-dimensional ball, and are therefore simply-connected. Moreover
U NV is path-connected, provided that n > 1. It follows that S™
is simply-connected for all n > 1.
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6. (BOOKWORK) We regard S' as the unit circle in R%. Without
loss of generality, we can take b = (1,0). Now the map p:R — S!
which sends t € R to (cos 27t, sin 27t) is a covering map, and b = p(0).
Moreover p(t1) = p(to) if and only if t; — ¢5 is an integer; in particular
p(t) = b if and only if ¢ is an integer.

Let a and A be loops in S based at b, and let & and 3 be paths
in R that satisfy poa = « and po B = . Suppose that o and [
represent the same element of 7, (S*, ). Then there exists a homotopy
F:10,1] x [0,1] — S! such that F(¢,0) = a(t) and F(t,1) = B(t)
for all t € [0,1], and F(0,7) = F(1,7) = b for all 7 € [0, 1]. It follows
from the Monodromy Theorem that this homotopy lifts to a continuous
map G:[0,1] x [0,1] — R satisfying po G = F. Moreover G(0,7) and
G(1,7) are integers for all 7 € [0, 1], since p(G(0,7)) = b = p(G(1,7)).
Also G(t,0) — &(t) and G(t,1) — (t) are integers for all ¢ € [0,1],
since p(G(1,0)) = a(t) = p(a(t)) and p(G(L,1)) = B(t) = p(5(1)).
Now any continuous integer-valued function on [0, 1] is constant, by
the Intermediate Value Theorem. In particular the functions sending
7 € [0,1] to G(0,7) and G(1,7) are constant, as are the functions
sending ¢ € [0,1] to G(t,0) — a(t) and G(t,1) — 5(t). Thus

G(0,0)=G(0,1),  G(1,0) = G(1,1),

G(1,0) — &(1) = G(0,0) — a(0),  G(1,1) = B(1) = G(0,1) — B(0).

On combining these results, we see that

a(1) — a(0) = G(1,0) — G(0,0) = G(1,1) — G(0,1) = B(1) — B(0).

We conclude from this that there exists a well-defined function \: 7y (S*, b) —

Z characterized by the property that A([a]) = @(1) — @(0) for all loops
« based at b, where a: [0, 1] — R is any path in R satisfying po & = a.

Next we show that A is a homomorphism. Let o and 3 be any loops
based at b, and let & and § be lifts of @ and 3. The element [a][f] of
m1(SY, b) is represented by the product path .3, where

a(2t) if
@O ={ 50, i

Define a continuous path o:[0,1] — R by

a(2t) if 0 <t<3;
dﬂ={3@p4)+ﬂh—3@)ﬁ%§tﬁl

0<t
1
1<y

I/\ |/\

1.
2
1

11



(Note that o(t) is well-defined when ¢ = 3.) Then poo = a. and thus

Mall8]) = A[e.f]) = o(1)~0(0) = &(1)~a(0)+5(1)~(0) = A(la])+A([8)-

Thus \: (S, b) — Z is a homomorphism.

Now suppose that A([a]) = A([8]). Let F:[0,1] x [0,1] — S* be the
homotopy between o and 3 defined by

Ft,7) = p (1= 7)al) +50)) .

where & and § are the lifts of a and j respectively starting at 0. Now
B(1) = M[8) = Mla]) = a(1), and B(0) = @&(0) = 0. Therefore
F(0,7) =b=p(a(1)) = F(1,7) forall 7 € [0,1]. Thus o ~ g rel {0, 1},

and therefore [a] = [3]. This shows that \: (S, 0) — Z is injective.

The homomorphism A is surjective, since n = A([y,]) for all n € Z,
where the loop 7,: [0, 1] — S is given by 7,,(t) = p(nt) = (cos 2wnt, sin 27nt)
for all ¢ € [0,1]. We conclude that A:7;(S*,b) — Z is an isomorphism,

as required.
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7. (a) (BOOKWORK) The points vg, vy, ..., v, are said to be geomet-

rically independent if the only solution of the linear system

2= Avi =0,
g )‘j =0

J=0

is the trivial solution \g = A\ =--- =\, = 0.

(b) (BOOKWORK) A ¢-simplex in R is defined to be a set of the

form

q q
{thvj:Ogtjglforj:(),l,...,qand thzl},
=0

Jj=0

where vg, vy, ..., v, are geometrically independent points of R.

A finite collection K of simplices in R* is said to be a simplicial
complez if the following two conditions are satisfied:—

(i) if o is a simplex belonging to K then every face of o also
belongs to K,

(i) if oy and o9 are simplices belonging to K then either o1Noy =
0 or else o0 N oy is a common face of both o; and oy. The
polyhedron of a simplicial complex is the topological space
that is the union of all the simplices of the complex.

(BOOKWORK) We must show that if |K| is connected then
any two vertices of K can be joined by an edge path. Choose a
vertex vo of K. It suffices to verify that every vertex of K can be
joined to vy by an edge path.

Let Ky be the collection of all of the simplices of K having the
property that one (and hence all) of the vertices of that simplex
can be joined to vy by an edge path. If ¢ is a simplex belonging
to Ky then every vertex of o can be joined to vy by an edge
path, and therefore every face of o belongs to Ky. Thus Kj is
a subcomplex of K. Clearly the collection K; of all simplices
of K which do not belong to Kj is also a subcomplex of K. Thus
K = Ky U Ky, where Ko N K; = (0, and hence |K| = |Ko| U | K],
where |Ko|N|K;| = 0. But the polyhedra |Ko| and |K;| of Ky and
K, are closed subsets of |K|. It follows from the connectedness
of |K| that either |Ky| = 0 or |K{| = (). But vo € K,. Thus
K, = () and K, = K, showing that every vertex of K can be
joined to vy by an edge path, as required.
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8. (a) (BOOKWORK) Let K be a simplicial complex, and let x € |K]|.
The star sty (x) of x in K is the union of the interiors of all
simplices of K that contain the point x.

(b) (BOOKWORK) Every point of |K| belongs to the interior of a
unique simplex of K. It follows that the complement |K|\ stg(x)
of stg(x) in |K] is the union of the interiors of those simplices
of K that do not contain the point x. But if a simplex of K
does not contain the point x, then the same is true of its faces.
Moreover the union of the interiors of all the faces of some simplex
is the simplex itself. It follows that | K|\ stx(x) is the union of all
simplices of K that do not contain the point x. But each simplex
of K is closed in |K|. Tt follows that | K|\ stx(x) is a finite union
of closed sets, and is thus itself closed in |K|. We deduce that
stx(x) is open in |K|. Also x € stx(x), since x belongs to the
interior of at least one simplex of K.

(c) (BOOKWORK) Let s: K — L be a simplicial approximation

to f:|K| — |L]|, let v be a vertex of K, and let x € stx(v). Then
x and f(x) belong to the interiors of unique simplices 0 € K and
7 € L. Moreover v must be a vertex of o, by definition of sty (v).
Now s(x) must belong to 7 (since s is a simplicial approximation
to the map f), and therefore s(x) must belong to the interior of
some face of 7. But s(x) must belong to the interior of s(¢), since
x is in the interior of o. It follows that s(o) must be a face of 7,
and therefore s(v) must be a vertex of 7. Thus f(x) € sty (s(v)).
We conclude that if s: K — L is a simplicial approximation to
f:1K| — |L|, then f (stx(v)) C sty (s(v)).
Conversely let s: Vert K — Vert L be a function with the prop-
erty that f (stx(v)) C sty (s(v)) for all vertices v of K. Let
X be a point in the interior of some simplex of K with vertices
Vo, V1,...,Vg. Then x € stg(v;) and hence f(x) € sty (s(v;))
for j = 0,1,...,q. It follows that each vertex s(v;) must be a
vertex of the unique simplex 7 € L that contains f(x) in its in-
terior. In particular, s(vy), s(v1),...,s(v,) span a face of 7, and
s(x) € 7. We conclude that the function s: Vert X' — Vert L rep-
resents a simplicial map which is a simplicial approximation to
f:1K| — |L|, as required.

(d) (BOOKWORK)

Simplicial Approximation Theorem
Let K and L be simplicial complezes, and let f:|K| — |L]|
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be a continuous map. Then, for some sufficiently large in-
teger j, there exists a simplicial approzimation s: KU) —
L to f defined on the jth barycentric subdivision K9 of
K.

Proof. The collection consisting of the stars sty (w) of all ver-
tices w of L is an open cover of |L|, since each star sty (w) is open
in |L| and the interior of any simplex of L is contained in stz (w)
whenever v is a vertex of that simplex. It follows from the con-
tinuity of the map f:|K| — |L| that the collection consisting of
the preimages f~!(stz(w)) of the stars of all vertices w of L is
an open cover of |K|. It then follows from the Lebesgue Lemma
that there exists some § > 0 with the property that every subset
of | K| whose diameter is less than § is mapped by f into sty (w)
for some vertex w of L.

Now the mesh p(K) of the jth barycentric subdivision of K
tends to zero as j — 400, since

. dim K\’
" ) < (dimK—i—l) )

for all j. Thus we can choose j such that p(KW) < 16, If v is
a vertex of K then each point of sty (v) is within a distance
%5 of v, and hence the diameter of st (V) is at most 6. We can
therefore choose, for each vertex v of KU a vertex s(v) of L such
that f(stxo) (v)) C str(s(v)). In this way we obtain a function
s: Vert KU) — Vert L from the vertices of K9 to the vertices of L.
It follows from (¢) that this is the desired simplicial approximation

to f.
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9.

(a) (BOOKWORK) 9, ((vo,v1,...,vg)) = > (1) (Vo, ..., V..., V),

§=0
where (vo,...,Vj,..., V) = (Vo, ..., Vj_1,Vjt1, ..., Vg).
We now show that 0,_1 0 J, = 0, where 2 < ¢ < dim K. Let
Vo, V1, ...,V be vertices spanning a simplex of K. Then
8q,18q (<V0, Vi,... ,Vq>>
q
= D (=101 ((Vo, -, V5, Vy))
§=0
q Jj—1
= Z ( 1>j+k<v07 ' Vi, Vi 7Vq>
§=0 k=0
q q
+ (—1)7 vy, Vs Vi o, V)
J=0 k=j+1
= 0

(since each term in this summation over j and k cancels with
the corresponding term with j and k interchanged). The result
now follows from the fact that the homomorphism d,_; o 9, is
determined by its values on all oriented g-simplices of K.

(b) (BOOKWORK) Z,(K) = ker(0,: Cy(K) = Cy1(K)), By(K) =

0q11(Co(K), Hy(K) = Z4(K)/By(K).

(c) (BOOKWORK) There is a well-defined homomorphism

Dy: Cy(K) = Cor(K)

characterized by the property that D,((vo, V1,...,V,)) = (W, Vg, Vi, ...

whenever vy, vy,...,Vv, span a simplex of K. NOW 01(Dy(v)) =
v —w for all vertlces v of K. It follows that

an A’ (Z nr> an v,) — (W)) € By(K)

for all Y n.(v,) € Co(K). But Zy(K) = Cy(K) (since dy = 0
r=1
by definition), and thus Hy(K) = Co(K)/By(K). It follows that

there is a well-defined surjective homomorphism from Hy(K) to
Z induced by the homomorphism from Cy(K) to Z that sends
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> ng(v,) € Co(K) to > n,.. Moreover this induced homomor-
r=1 r=1
phism is an isomorphism from Hy(K) to Z.

Now let ¢ > 0. Then

8q+1(Dq(<VO>V17 B qu>))
= Ogr1((W,vo,v1,...,vy))

(—1)j+1(w, Vo, -5 Vs ety Vg)

\gE

= <V0,V1,...,Vq>—|—

<.
I
o

= (Vvo, V1, ..., Vg) — Dg_1(0g((Vo, V1,...,Vg)))

whenever vg,vy,...,v, span a simplex of K. Thus 9,.1(D,(c)) +
D,_1(04(c)) = cfor all ¢ € Cy(K). In particular z = Jy11(Dy(2))
for all z € Z,(K), and hence Z,(K) = B,(K). It follows that

H,(K) is the zero group for all ¢ > 0, as required.
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10.

(a) By inspection the boundary of the 2-chain is given by

(a+d+ g)(vive) + (b+ e+ g)(vavs) + (c+ f + g){(vsvy)
+ (¢ — a)(viva) + (a — b)(vava) + (b — c){vzVy)
+ (f = d)(viva) + (d — e){vavy) + (e — f)(V3Va)

Thus the boundary of the 2-chain is zero if and only if a = b = ¢,
d=e= fand a+d+ g = 0. It follows that the 2-chain is a
2-cycle if and only if it is of the form mz; + nzy for some integers
m and n. (Indeed z; and 2z are 2-cycles, and if the 2-chain of (a)
is a 2-cycle then it is of the form mz; + nze with a = b = ¢ =m,
d=e=f=nand g=—-m—n.)

Now Hy(K) = Zy(K) since By(K) = 0. The function sending
mz; + nze to (m,n) is an isomorphism from Zy(K) to Z & Z.
Thus Hy(K) =2 Z & Z.

The 1-chain (viva) + (vovy) + (vavs) + (vavs) + (vsvy) is the
boundary of

<V1V2V3> — <V2V3V4> — <V3V1V5>.

The 1-chain 2(v;vy) + 3(vavs) + (V3vy) is not a 1-boundary since
it is not a 1-cycle:

01(2(v1va) + 3(vavs) + (v3vy)) = 2(v3) — (vq) — (va).

18



11. (a) (BOOKWORK) The sequence F—*+G—+H of Abelian groups
and homomorphisms is said to be ezact at G if and only if image(p: F' —
G) = ker(¢:G — H). A sequence of Abelian groups and homo-
morphisms is said to be ezxact if it is exact at each Abelian group
occurring in the sequence (so that the image of each homomor-
phism is the kernel of the succeeding homomorphism).
A chain complex C, is a (doubly infinite) sequence (C; : ¢ € Z) of
Abelian groups, together with homomorphisms 0;: C; — C;_; for
each ¢ € Z, such that 9; o 9;,1 = 0 for all integers 1.

The ith homology group H;(C.) of the complex C, is the quotient
group Z;(C.)/B;(Cy), where Z;(C,) is the kernel of 0;: C; — C;_4
and B;(C.) is the image of 0;41: Cip1 — C;.

Let C, and D, be chain complexes. A chain map f:C, — D,
is a sequence f;: C; — D; of homomorphisms which satisfy the
commutativity condition 0; o f; = f;_1 o 0; for all 1 € Z.

A short ezact sequence 0— A, 2B, -25C,—0 of chain com-
plexes consists of chain complexes A,, B, and C, and chain maps
pe: Ay — B, and ¢,.: B, — C, such that the sequence

is exact for each integer .

We see that 0— A, 25 B,-5C,—0 is a short exact sequence of
chain complexes if and only if the diagram

Diyo Oiy2 Oiy2
0 A Pit+1 B qi+1 C 0
— i+1 i+1 i+l T
Oit1 Oit1 Oit1

0; 0; 0;
Pi—1 qi—1
0 — Az—l ’ B;_4 ’ Cz—l — 0
Bi-1 i1 Oi—1

is a commutative diagram whose rows are exact sequences and
whose columns are chain complexes.
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(b) (BOOKWORK) Let z € Z;(C,). Then there exists b € B;
satisfying ¢;(b) = z, since ¢;: B; — C; is surjective. Moreover

¢i-1(0i(b)) = 0i(qs(b)) = 05(z) = 0.
But p;_1: A;—1 — B;_1 is injective and p;_1(A;_1) = ker ¢;_1, since
the sequence
0—>Ai_1pi—_l>Bi_1E>Ci_1
is exact. Therefore there exists a unique element w of A;_; such
that 0;(b) = p;_1(w). Moreover

pi—2(0i-1(w)) = 0;—1(pi—1(w)) = 0;-1(0(b)) = 0
(since 0;—100; = 0), and therefore 0;_1(w) = 0 (since p;_9: A;—o —
B;_5 is injective). Thus w € Z;_1(A,).
Now let b0 € B; satisfy ¢;(b) = (V') = z, and let w,w" €
Zi—1(Ay) satisty p;_1(w) = 0;(b) and p;—1(w') = 0;(V'). Then
¢;(b—0') = 0, and hence b’ — b = p;(a) for some a € A;_;, by
exactness. But then

pi-i(w + 95(a)) = pi1(w) + Gi(pi(a)) = 0i(b) + 0i(V' — b) = (V)
= pia(w),
and p;_1: A;_1 — Bj;_; is injective. Therefore w + 9,(a) = w',
and hence [w] = [w'] in H;_1(A,). Thus there is a well-defined
function &;: Z;(Cy) — H;—1(A.) which sends z € Z;(C,) to [w] €
H;1(A.), where w € Z;_1(A.) is chosen such that p;_; (w) = 9;(b)
for some b € B; satisfying ¢;(b) = z. This function is clearly a
homomorphism from Z;(C,) to H;_1(A,).
Suppose that elements z and 2’ of Z;(C,) represent the same ho-
mology class in H;(Cy). Then 2z’ = z + 0;1c for some ¢ € Cyyq.
Moreover ¢ = ¢;41(d) for some d € B;1, since gi11: Biv1 — Ciyq
is surjective. Choose b € B; such that ¢;(b) = z, and let 0/ =
b+ 0i4+1(d). Then

(V) = 2z + ¢i(0141(d)) = 2 + 9i41(4i+1(d)) = 2 + Oy (c) = 2.
Moreover 0;(0') = 0;(b + 0i11(d)) = 0i(b) (since J; o J;11 = 0).

Therefore &;(z) = &;(2'). It follows that the homomorphism
&;: Z;(Cy) — H;—1(A,) induces a well-defined homomorphism

a;: Hy(C) — Hi_1(A,),

as required.
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