
Mathematics Course 421, Trinity Term 1995.

Worked Solutions

1. (a) (BOOKWORK) A topological space X is said to be compact if
and only if every open cover of X possesses a finite subcover.

(b) (BOOKWORK) Let x ∈ V . For each y ∈ K there exist open
subsets Dy and Ey of X and Y respectively such that (x, y) ∈ Dy×
Ey and Dy×Ey ⊂ U . Now there exists a finite set {y1, y2, . . . , yk}
of points of K such that

K ⊂ Ey1 ∪ Ey2 ∪ · · · ∪ Eyk ,

since K is compact. Set

Nx = Dy1 ∩Dy2 ∩ · · · ∩Dyk .

Then Nx is an open set in X. Moreover

Nx ×K ⊂
k⋃
i=1

(Nx × Eyi) ⊂
k⋃
i=1

(Dyi × Eyi) ⊂ U,

so that Nx ⊂ V . It follows that V is the union of the open sets Nx

for all x ∈ V . Thus V is itself an open set in X, as required.

(c) (BOOKWORK) Let X and Y be topological spaces, and let U
be an open cover of X × Y . We must show that this open cover
possesses a finite subcover.

Let x be a point of X. The set {x} × Y is a compact subset of
X × Y , since it is the image of the compact space Y under the
continuous map from Y to X × Y which sends y ∈ Y to (x, y),
and the image of any compact set under a continuous map is itself
compact. Therefore there exists a finite collection U1, U2, . . . , Ur
of open sets belonging to the open cover U such that

{x} × Y ⊂ U1 ∪ U2 ∪ · · · ∪ Ur.

Let
Vx = {x′ ∈ X : {x′} × Y ⊂ U1 ∪ U2 ∪ · · · ∪ Ur}.

It follows from (b) that Vx is an open set in X. We have therefore
shown that, for each point x in X, there exists an open set Vx
in X containing the point x such that Vx×Y is covered by finitely
many of the open sets belonging to the open cover U .
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Now {Vx : x ∈ X} is an open cover of the space X. It follows from
the compactness of X that there exists a finite set {x1, x2, . . . , xr}
of points of X such that

X = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr .

Now X × Y is the union of the sets Vxj × Y for j = 1, 2, . . . , r,
and each of these sets can be covered by a finite collection of open
sets belonging to the open cover U . On combining these finite
collections, we obtain a finite collection of open sets belonging to
U which covers X × Y . This shows that X × Y is compact.
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2. (a) (BOOKWORK) A topological space X is said to be connected if
the empty set ∅ and the whole space X are the only subsets of X
that are both open and closed. A topological space X is said to
be path-connected if and only if, given any two points x0 and x1
of X, there exists a path in X from x0 to x1.

(b) (BOOKWORK) Suppose that X is connected. Let f :X → Z
be a continuous function. Choose n ∈ f(X), and let

U = {x ∈ X : f(x) = n}, V = {x ∈ X : f(x) 6= n}.

Then U and V are the preimages of the open subsets {n} and
Z\{n} of Z, and therefore both U and V are open in X. Moreover
U ∩ V = ∅, and X = U ∪ V . It follows that V = X \ U , and
thus U is both open and closed. Moreover U is non-empty, since
n ∈ f(X). It follows from the connectedness of X that U = X,
so that f :X → Z is constant, with value n.

Conversely suppose that every continuous function f :X → Z is
constant. Let S be a subset of X which is both open and closed.
Let f :X → Z be defined by

f(x) =

{
1 if x ∈ S;
0 if x 6∈ S.

Now the preimage of any subset of Z under f is one of the open
sets ∅, S, X \ S and X. Therefore the function f is continuous.
It follows from (iii) that the function f is constant, so that either
S = ∅ or S = X. This shows that X is connected.

(c) (BOOKWORK) Let X be a path-connected topological space,
and let f :X → Z be a continuous integer-valued function on X.
If x0 and x1 are any two points of X then there exists a path
γ: [0, 1] → X such that γ(0) = x0 and γ(1) = x1. But then
f ◦ γ: [0, 1] → Z is a continuous integer-valued function on [0, 1].
But [0, 1] is connected, therefore f ◦ γ is constant. It follows that
f(x0) = f(x1). Thus every continuous integer-valued function
on X is constant. Therefore X is connected, by (b)

(d) Let b be a point of X and let Y be the set of all points of X that
are endpoints of paths starting at b. Let y be a point of Y . Now
X is open in Rn, and therefore there exists some δ > 0 such that
B(y, δ) ⊂ X, where B(y, δ) = {x ∈ Rn : |x − y| < δ}. But then
B(y, δ) ⊂ Y , since a path in X from b to any point z of B(y, δ)
can be constructed by concatenating a path in X from b to y with
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a path along the straight line segment joining y to z. Therefore
Y is open in Rn.

Now let w be a point of X \Y . There exists some δ > 0 such that
B(w, δ) ⊂ X. Now there is no path in X that joins b to w, since
w ∈ X \ Y . It follows that there cannot exist a path joining b to
any point z in B(w, δ), since any such path could be concatenated
with a path along the line segment joining z to w to obtain a path
in X from b to w. Thus B(w, δ) ⊂ X \Y . Therefore X \Y is open
in Rn.

A connected topological space cannot be expressed as the union of
two disjoint open sets unless one of those sets is the whole space
and the other is the empty set. Therefore Y = X, and therefore
any point of X can be joined to b by a path in X. It follows that
X is path-connected, as required.
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3. (a) (BOOKWORK) An open subset U of X is said to be evenly
covered by the map p if and only if p−1(U) is a disjoint union of
open sets of X̃ each of which is mapped homeomorphically onto U
by p. The map p: X̃ → X is said to be a covering map if p: X̃ → X
is surjective and in addition every point of X is contained in some
open set that is evenly covered by the map p.

(b) (BOOKWORK) Let V be open in X̃, and let x ∈ p(V ). Then
x = p(v) for some v ∈ V . Now there exists an open set U contain-
ing the point x which is evenly covered by the covering map p.
Then p−1(U) is a disjoint union of open sets, each of which is
mapped homeomorphically onto U by the covering map p. One
of these open sets contains v; let Ũ be this open set, and let
Nx = p(V ∩ Ũ). Now Nx is open in X, since V ∩ Ũ is open in
Ũ and p|Ũ is a homeomorphism from Ũ to U . Also x ∈ Nx and
Nx ⊂ p(V ). It follows that p(V ) is the union of the open sets Nx

as x ranges over all points of p(V ), and thus p(V ) is itself an open
set, as required.

(c) (BOOKWORK) Let Z0 = {z ∈ Z : g(z) = h(z)}. Note that Z0

is non-empty, by hypothesis. We show that Z0 is both open and
closed in Z.

Let z be a point of Z. There exists an open set U in X containing
the point p(g(z)) which is evenly covered by the covering map p.
Then p−1(U) is a disjoint union of open sets, each of which is
mapped homeomorphically onto U by the covering map p. One of
these open sets contains g(z); let this set be denoted by Ũ . Also
one of these open sets contains h(z); let this open set be denoted
by Ṽ . Let Nz = g−1(Ũ) ∩ h−1(Ṽ ). Then Nz is an open set in Z
containing z.

Consider the case when z ∈ Z0. Then g(z) = h(z), and therefore
Ṽ = Ũ . It follows from this that both g and h map the open set Nz

into Ũ . But p ◦ g = p ◦ h, and p|Ũ : Ũ → U is a homeomorphism.
Therefore g|Nz = h|Nz, and thus Nz ⊂ Z0. We have thus shown
that, for each z ∈ Z0, there exists an open set Nz such that z ∈ Nz

and Nz ⊂ Z0. We conclude that Z0 is open.

Next consider the case when z ∈ Z \ Z0. In this case Ũ ∩ Ṽ = ∅,
since g(z) 6= h(z). But g(Nz) ⊂ Ũ and h(Nz) ⊂ Ṽ . Therefore
g(z′) 6= h(z′) for all z′ ∈ Nz, and thus Nz ⊂ Z \Z0. We have thus
shown that, for each z ∈ Z \ Z0, there exists an open set Nz such
that z ∈ Nz and Nz ⊂ Z \ Z0. We conclude that Z \ Z0 is open.

The subset Z0 of Z is therefore both open and closed. Also Z0

5



is non-empty by hypothesis. We deduce that Z0 = Z, since Z is
connected. Thus g = h, as required.

(d) The map f :H → C \ {0} defined by f(z) = z4 is not a covering
map. One way of verifying this is to observe that the continuous
path γ: [0, 1] → C \ {0} defined by γ(t) = exp(4πit) does not lift
to a path in H. Indeed a lift of γ would have to be of the form
t 7→ exp(πit), and such a path leaves H when t ≥ 1

2
.
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4. (a) (BOOKWORK) There exists a continuous path γ̃: [0, 1] → C
in C such that γ(t) − w = exp(γ̃(t)) for all t ∈ [0, 1]. (This is
a consequence of the Path Lifting Theorem, applied to the expo-
nential map from C to C \ {0}. We define

n(γ, w) =
γ̃(1)− γ̃(0)

2πi
.

(b) Let γ̃: [0, 1]→ C be a continuous path such that γ(t) = exp(γ̃(t))
for all t ∈ [0, 1]. Then η(t) = exp(−γ̃(t)) for all t ∈ [0, 1], and
hence

n(η, 0) =
−γ̃(1)− (−γ̃(0))

2πi
= − γ̃(1)− γ̃(0)

2πi
= −n(γ, 0).

(c) (BOOKWORK) Let H: [0, 1] × [0, 1] → C \ {0} be defined by
H(t, τ) = γτ (t) − w. It follows from the Monodromy Theorem
that there exists a continuous map H̃: [0, 1]× [0, 1]→ C such that
H = exp ◦H̃. But then

H̃(1, τ)− H̃(0, τ) = 2πin(γτ , w)

for all τ ∈ [0, 1], and therefore the function τ 7→ n(γτ , w) is a con-
tinuous function on the interval [0, 1] taking values in the set Z of
integers. But such a function must be constant on [0, 1], since the
interval [0, 1] is connected. Thus n(γ0, w) = n(γ1, w), as required.

(d) (BOOKWORK) Let γτ (t) = (1−τ)γ0(t)+τγ1(t) for all t ∈ [0, 1]
and τ ∈ [0, 1]. Then

|γτ (t)− γ0(t)| = τ |γ1(t)− γ0(t)| < |w − γ0(t)|,

for all t ∈ [0, 1] and τ ∈ [0, 1], and thus the closed curve γτ does
not pass through w. The result therefore follows from (c).

(e) (BOOKWORK)

The Fundamental Theorem of Algebra
Let P :C→ C be a non-constant polynomial with complex
coefficients. Then there exists some complex number z0
such that P (z0) = 0.

Proof: The result is trivial if P (0) = 0. Thus it suffices to prove
the result when P (0) 6= 0.

For any r > 0, let the closed curve σr denote the circle about zero
of radius r, traversed once in the anticlockwise direction, given by
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σr(t) = r exp(2πit) for all t ∈ [0, 1]. Consider the winding number
n(P ◦ σr, 0) of P ◦ σr about zero. We claim that this winding
number is equal to m for large values of r, where m is the degree
of the polynomial P .

Let P (z) = a0+a1z+ · · ·+amz
m, where a1, a2, . . . , an are complex

numbers, and where am 6= 0. We write P (z) = Pm(z) + Q(z),
where Pm(z) = amz

m and

Q(z) = a0 + a1z + · · ·+ am−1z
m−1.

Let

R =
|a0|+ |a1|+ · · ·+ |am|

|am|
.

If |z| > R then∣∣∣∣ Q(z)

Pm(z)

∣∣∣∣ =
1

|amz|

∣∣∣ a0
zm−1

+
a1
zm−2

+ · · ·+ am−1

∣∣∣ < 1,

since R ≥ 1, and thus |P (z) − Pm(z)| < |Pm(z)|. It follows from
(d) that n(P ◦ σr, 0) = n(Pm ◦ σr, 0) = m for all r > R.

Given r > 0, let γτ = P ◦ στr for all τ ∈ [0, 1]. Then n(γ0, 0) = 0,
since γ0 is a constant curve with value P (0). Thus if the polyno-
mial P were everywhere non-zero, then it would follow from (c)
that n(γ1, 0) = n(γ0, 0) = 0. But n(γ1, 0) = n(P ◦ σr, 0) = m for
all r > R, and m > 0. Therefore the polynomial P must have at
least one zero in the complex plane.
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5. (a) (BOOKWORK) A topological space X is said to be simply-
connected if it is path-connected, and any continuous map f : ∂D →
X mapping the boundary circle ∂D of a closed disc D into X can
be extended continuously over the whole of the disk.

(b) (BOOKWORK) We must show that any continuous function
f : ∂D → X defined on the unit circle ∂D can be extended contin-
uously over the closed unit disk D. Now the preimages f−1(U) and
f−1(V ) of U and V are open in ∂D (since f is continuous), and
∂D = f−1(U)∪f−1(V ). It follows from the Lebesgue Lemma that
there exists some δ > 0 such that any arc in ∂D whose length is
less than δ is entirely contained in one or other of the sets f−1(U)
and f−1(V ). Choose points z1, z2, . . . , zn around ∂D such that
each point zi is within a distance δ of its neighbours zi−1 and zi+1,
where z0 = zn. Then, for each i, the short arc joining zi−1 to zi is
mapped by f into one or other of the open sets U and V .

Let x0 be some point of U ∩ V . Now the sets U , V and U ∩ V are
all path-connected. Therefore we can choose paths αi: [0, 1]→ X
for i = 1, 2, . . . , n such that αi(0) = x0, αi(1) = f(zi), αi([0, 1]) ⊂
U whenever zi ∈ U , and αi([0, 1]) ⊂ V whenever zi ∈ V . For
convenience let α0 = αn.

Now, for each i, consider the sector Ti of the closed unit disk
bounded by the line segments joining the centre of the disk to the
points zi−1 and zi and by the short arc joining zi−1 to zi. Now this
sector is homeomorphic to the closed unit disk, and therefore any
continuous function mapping the boundary ∂Ti of Ti into a simply-
connected space can be extended continuously over the whole of
Ti. In particular, let Fi be the function on ∂Ti defined by

Fi(z) =

 f(z) if z ∈ Ti ∩ ∂D,
αi−1(t) if z = tzi−1 for any t ∈ [0, 1],
αi(t) if z = tzi for any t ∈ [0, 1],

Note that Fi(∂Ti) ⊂ U whenever the short arc joining zi−1 to zi
is mapped by f into U , and Fi(∂Ti) ⊂ V whenever this short arc
is mapped into V . But U and V are both simply-connected. It
follows that each of the functions Fi can be extended continuously
over the whole of the sector Ti. Moreover the functions defined in
this fashion on each of the sectors Ti agree with one another wher-
ever the sectors intersect, and can therefore be pieced together to
yield a continuous map defined over the the whole of the closed
disk D which extends the map f , as required.
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(c) (BOOKWORK) Let U = {x ∈ Sn : xn+1 > −1
2
} and V =

{x ∈ Sn : xn+1 <
1
2
}. Then U and V are homeomorphic to an

n-dimensional ball, and are therefore simply-connected. Moreover
U ∩ V is path-connected, provided that n > 1. It follows that Sn

is simply-connected for all n > 1.
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6. (BOOKWORK) We regard S1 as the unit circle in R2. Without
loss of generality, we can take b = (1, 0). Now the map p:R → S1

which sends t ∈ R to (cos 2πt, sin 2πt) is a covering map, and b = p(0).
Moreover p(t1) = p(t2) if and only if t1 − t2 is an integer; in particular
p(t) = b if and only if t is an integer.

Let α and β be loops in S1 based at b, and let α̃ and β̃ be paths
in R that satisfy p ◦ α̃ = α and p ◦ β̃ = β. Suppose that α and β
represent the same element of π1(S

1, b). Then there exists a homotopy
F : [0, 1] × [0, 1] → S1 such that F (t, 0) = α(t) and F (t, 1) = β(t)
for all t ∈ [0, 1], and F (0, τ) = F (1, τ) = b for all τ ∈ [0, 1]. It follows
from the Monodromy Theorem that this homotopy lifts to a continuous
map G: [0, 1] × [0, 1] → R satisfying p ◦ G = F . Moreover G(0, τ) and
G(1, τ) are integers for all τ ∈ [0, 1], since p(G(0, τ)) = b = p(G(1, τ)).
Also G(t, 0) − α̃(t) and G(t, 1) − β̃(t) are integers for all t ∈ [0, 1],
since p(G(t, 0)) = α(t) = p(α̃(t)) and p(G(t, 1)) = β(t) = p(β̃(t)).
Now any continuous integer-valued function on [0, 1] is constant, by
the Intermediate Value Theorem. In particular the functions sending
τ ∈ [0, 1] to G(0, τ) and G(1, τ) are constant, as are the functions
sending t ∈ [0, 1] to G(t, 0)− α̃(t) and G(t, 1)− β̃(t). Thus

G(0, 0) = G(0, 1), G(1, 0) = G(1, 1),

G(1, 0)− α̃(1) = G(0, 0)− ˜α(0), G(1, 1)− β̃(1) = G(0, 1)− ˜β(0).

On combining these results, we see that

α̃(1)− α̃(0) = G(1, 0)−G(0, 0) = G(1, 1)−G(0, 1) = β̃(1)− β̃(0).

We conclude from this that there exists a well-defined function λ: π1(S
1, b)→

Z characterized by the property that λ([α]) = α̃(1)− α̃(0) for all loops
α based at b, where α̃: [0, 1]→ R is any path in R satisfying p ◦ α̃ = α.

Next we show that λ is a homomorphism. Let α and β be any loops
based at b, and let α̃ and β̃ be lifts of α and β. The element [α][β] of
π1(S

1, b) is represented by the product path α.β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Define a continuous path σ: [0, 1]→ R by

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

β̃(2t− 1) + α̃(1)− β̃(0) if 1
2
≤ t ≤ 1.
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(Note that σ(t) is well-defined when t = 1
2
.) Then p◦σ = α.β and thus

λ([α][β]) = λ([α.β]) = σ(1)−σ(0) = α̃(1)−α̃(0)+β̃(1)−β̃(0) = λ([α])+λ([β]).

Thus λ: π1(S
1, b)→ Z is a homomorphism.

Now suppose that λ([α]) = λ([β]). Let F : [0, 1] × [0, 1] → S1 be the
homotopy between α and β defined by

F (t, τ) = p
(

(1− τ)α̃(t) + τ β̃(t)
)
,

where α̃ and β̃ are the lifts of α and β respectively starting at 0. Now
β̃(1) = λ([β]) = λ([α]) = α̃(1), and β̃(0) = α̃(0) = 0. Therefore
F (0, τ) = b = p(α̃(1)) = F (1, τ) for all τ ∈ [0, 1]. Thus α ' β rel {0, 1},
and therefore [α] = [β]. This shows that λ: π1(S

1, b)→ Z is injective.

The homomorphism λ is surjective, since n = λ([γn]) for all n ∈ Z,
where the loop γn: [0, 1]→ S1 is given by γn(t) = p(nt) = (cos 2πnt, sin 2πnt)
for all t ∈ [0, 1]. We conclude that λ: π1(S

1, b)→ Z is an isomorphism,
as required.
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7. (a) (BOOKWORK) The points v0,v1, . . . ,vq are said to be geomet-
rically independent if the only solution of the linear system{ ∑q

j=0 λjvj = 0,∑q
j=0 λj = 0

is the trivial solution λ0 = λ1 = · · · = λq = 0.

(b) (BOOKWORK) A q-simplex in Rk is defined to be a set of the
form{

q∑
j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

}
,

where v0,v1, . . . ,vq are geometrically independent points of Rk.

A finite collection K of simplices in Rk is said to be a simplicial
complex if the following two conditions are satisfied:—

(i) if σ is a simplex belonging to K then every face of σ also
belongs to K,

(ii) if σ1 and σ2 are simplices belonging to K then either σ1∩σ2 =
∅ or else σ1 ∩ σ2 is a common face of both σ1 and σ2. The
polyhedron of a simplicial complex is the topological space
that is the union of all the simplices of the complex.

(c) (BOOKWORK) We must show that if |K| is connected then
any two vertices of K can be joined by an edge path. Choose a
vertex v0 of K. It suffices to verify that every vertex of K can be
joined to v0 by an edge path.

Let K0 be the collection of all of the simplices of K having the
property that one (and hence all) of the vertices of that simplex
can be joined to v0 by an edge path. If σ is a simplex belonging
to K0 then every vertex of σ can be joined to v0 by an edge
path, and therefore every face of σ belongs to K0. Thus K0 is
a subcomplex of K. Clearly the collection K1 of all simplices
of K which do not belong to K0 is also a subcomplex of K. Thus
K = K0 ∪K1, where K0 ∩K1 = ∅, and hence |K| = |K0| ∪ |K1|,
where |K0|∩ |K1| = ∅. But the polyhedra |K0| and |K1| of K0 and
K1 are closed subsets of |K|. It follows from the connectedness
of |K| that either |K0| = ∅ or |K1| = ∅. But v0 ∈ K0. Thus
K1 = ∅ and K0 = K, showing that every vertex of K can be
joined to v0 by an edge path, as required.
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8. (a) (BOOKWORK) Let K be a simplicial complex, and let x ∈ |K|.
The star stK(x) of x in K is the union of the interiors of all
simplices of K that contain the point x.

(b) (BOOKWORK) Every point of |K| belongs to the interior of a
unique simplex of K. It follows that the complement |K| \ stK(x)
of stK(x) in |K| is the union of the interiors of those simplices
of K that do not contain the point x. But if a simplex of K
does not contain the point x, then the same is true of its faces.
Moreover the union of the interiors of all the faces of some simplex
is the simplex itself. It follows that |K| \ stK(x) is the union of all
simplices of K that do not contain the point x. But each simplex
of K is closed in |K|. It follows that |K| \ stK(x) is a finite union
of closed sets, and is thus itself closed in |K|. We deduce that
stK(x) is open in |K|. Also x ∈ stK(x), since x belongs to the
interior of at least one simplex of K.

(c) (BOOKWORK) Let s:K → L be a simplicial approximation
to f : |K| → |L|, let v be a vertex of K, and let x ∈ stK(v). Then
x and f(x) belong to the interiors of unique simplices σ ∈ K and
τ ∈ L. Moreover v must be a vertex of σ, by definition of stK(v).
Now s(x) must belong to τ (since s is a simplicial approximation
to the map f), and therefore s(x) must belong to the interior of
some face of τ . But s(x) must belong to the interior of s(σ), since
x is in the interior of σ. It follows that s(σ) must be a face of τ ,
and therefore s(v) must be a vertex of τ . Thus f(x) ∈ stL(s(v)).
We conclude that if s:K → L is a simplicial approximation to
f : |K| → |L|, then f (stK(v)) ⊂ stL (s(v)).

Conversely let s: VertK → VertL be a function with the prop-
erty that f (stK(v)) ⊂ stL (s(v)) for all vertices v of K. Let
x be a point in the interior of some simplex of K with vertices
v0,v1, . . . ,vq. Then x ∈ stK(vj) and hence f(x) ∈ stL (s(vj))
for j = 0, 1, . . . , q. It follows that each vertex s(vj) must be a
vertex of the unique simplex τ ∈ L that contains f(x) in its in-
terior. In particular, s(v0), s(v1), . . . , s(vq) span a face of τ , and
s(x) ∈ τ . We conclude that the function s: VertK → VertL rep-
resents a simplicial map which is a simplicial approximation to
f : |K| → |L|, as required.

(d) (BOOKWORK)

Simplicial Approximation Theorem
Let K and L be simplicial complexes, and let f : |K| → |L|
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be a continuous map. Then, for some sufficiently large in-
teger j, there exists a simplicial approximation s:K(j) →
L to f defined on the jth barycentric subdivision K(j) of
K.

Proof. The collection consisting of the stars stL(w) of all ver-
tices w of L is an open cover of |L|, since each star stL(w) is open
in |L| and the interior of any simplex of L is contained in stL(w)
whenever v is a vertex of that simplex. It follows from the con-
tinuity of the map f : |K| → |L| that the collection consisting of
the preimages f−1(stL(w)) of the stars of all vertices w of L is
an open cover of |K|. It then follows from the Lebesgue Lemma
that there exists some δ > 0 with the property that every subset
of |K| whose diameter is less than δ is mapped by f into stL(w)
for some vertex w of L.

Now the mesh µ(K(j)) of the jth barycentric subdivision of K
tends to zero as j → +∞, since

µ(K(j)) ≤
(

dimK

dimK + 1

)j
µ(K)

for all j. Thus we can choose j such that µ(K(j)) < 1
2
δ. If v is

a vertex of K(j) then each point of stK(j)(v) is within a distance
1
2
δ of v, and hence the diameter of stK(j)(v) is at most δ. We can

therefore choose, for each vertex v of K(j) a vertex s(v) of L such
that f(stK(j)(v)) ⊂ stL(s(v)). In this way we obtain a function
s: VertK(j) → VertL from the vertices of K(j) to the vertices of L.
It follows from (c) that this is the desired simplicial approximation
to f .
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9. (a) (BOOKWORK) ∂q(〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉,

where 〈v0, . . . , v̂j, . . . ,vq〉 = 〈v0, . . . ,vj−1,vj+1, . . . ,vq〉.
We now show that ∂q−1 ◦ ∂q = 0, where 2 ≤ q ≤ dimK. Let
v0,v1, . . . ,vq be vertices spanning a simplex of K. Then

∂q−1∂q (〈v0,v1, . . . ,vq〉)

=

q∑
j=0

(−1)j∂q−1 (〈v0, . . . , v̂j, . . . ,vq〉)

=

q∑
j=0

j−1∑
k=0

(−1)j+k〈v0, . . . , v̂k, . . . , v̂j, . . . ,vq〉

+

q∑
j=0

q∑
k=j+1

(−1)j+k−1〈v0, . . . , v̂j, . . . , v̂k, . . . ,vq〉

= 0

(since each term in this summation over j and k cancels with
the corresponding term with j and k interchanged). The result
now follows from the fact that the homomorphism ∂q−1 ◦ ∂q is
determined by its values on all oriented q-simplices of K.

(b) (BOOKWORK) Zq(K) = ker(∂q:Cq(K)→ Cq−1(K)), Bq(K) =
∂q+1(Cq(K)), Hq(K) = Zq(K)/Bq(K).

(c) (BOOKWORK) There is a well-defined homomorphism

Dq:Cq(K)→ Cq+1(K)

characterized by the property thatDq(〈v0,v1, . . . ,vq〉) = 〈w,v0,v1, . . . ,vq〉
whenever v0,v1, . . . ,vq span a simplex of K. Now ∂1(D0(v)) =
v−w for all vertices v of K. It follows that

s∑
r=1

nr〈vr〉 −

(
s∑
r=1

nr

)
〈w〉 =

s∑
r=1

nr(〈vr〉 − 〈w〉) ∈ B0(K)

for all
s∑
r=1

nr〈vr〉 ∈ C0(K). But Z0(K) = C0(K) (since ∂0 = 0

by definition), and thus H0(K) = C0(K)/B0(K). It follows that
there is a well-defined surjective homomorphism from H0(K) to
Z induced by the homomorphism from C0(K) to Z that sends
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s∑
r=1

nr〈vr〉 ∈ C0(K) to
s∑
r=1

nr. Moreover this induced homomor-

phism is an isomorphism from H0(K) to Z.

Now let q > 0. Then

∂q+1(Dq(〈v0,v1, . . . ,vq〉))
= ∂q+1(〈w,v0,v1, . . . ,vq〉)

= 〈v0,v1, . . . ,vq〉+

q∑
j=0

(−1)j+1〈w,v0, . . . , v̂j, . . . ,vq〉

= 〈v0,v1, . . . ,vq〉 −Dq−1(∂q(〈v0,v1, . . . ,vq〉))

whenever v0,v1, . . . ,vq span a simplex of K. Thus ∂q+1(Dq(c)) +
Dq−1(∂q(c)) = c for all c ∈ Cq(K). In particular z = ∂q+1(Dq(z))
for all z ∈ Zq(K), and hence Zq(K) = Bq(K). It follows that
Hq(K) is the zero group for all q > 0, as required.
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10. (a) By inspection the boundary of the 2-chain is given by

(a+ d+ g)〈v1v2〉+ (b+ e+ g)〈v2v3〉+ (c+ f + g)〈v3v1〉
+ (c− a)〈v1v4〉+ (a− b)〈v2v4〉+ (b− c)〈v3v4〉
+ (f − d)〈v1v4〉+ (d− e)〈v2v4〉+ (e− f)〈v3v4〉

Thus the boundary of the 2-chain is zero if and only if a = b = c,
d = e = f and a + d + g = 0. It follows that the 2-chain is a
2-cycle if and only if it is of the form mz1 + nz2 for some integers
m and n. (Indeed z1 and z2 are 2-cycles, and if the 2-chain of (a)
is a 2-cycle then it is of the form mz1 + nz2 with a = b = c = m,
d = e = f = n and g = −m− n.)

Now H2(K) = Z2(K) since B2(K) = 0. The function sending
mz1 + nz2 to (m,n) is an isomorphism from Z2(K) to Z ⊕ Z.
Thus H2(K) ∼= Z⊕ Z.

(b) The 1-chain 〈v1v2〉 + 〈v2v4〉 + 〈v4v3〉 + 〈v3v5〉 + 〈v5v1〉 is the
boundary of

〈v1v2v3〉 − 〈v2v3v4〉 − 〈v3v1v5〉.

The 1-chain 2〈v1v2〉+ 3〈v2v3〉+ 〈v3v1〉 is not a 1-boundary since
it is not a 1-cycle:

∂1(2〈v1v2〉+ 3〈v2v3〉+ 〈v3v1〉) = 2〈v3〉 − 〈v1〉 − 〈v2〉.
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11. (a) (BOOKWORK) The sequence F
p−→G q−→H of Abelian groups

and homomorphisms is said to be exact atG if and only if image(p:F →
G) = ker(q:G → H). A sequence of Abelian groups and homo-
morphisms is said to be exact if it is exact at each Abelian group
occurring in the sequence (so that the image of each homomor-
phism is the kernel of the succeeding homomorphism).

A chain complex C∗ is a (doubly infinite) sequence (Ci : i ∈ Z) of
Abelian groups, together with homomorphisms ∂i:Ci → Ci−1 for
each i ∈ Z, such that ∂i ◦ ∂i+1 = 0 for all integers i.

The ith homology group Hi(C∗) of the complex C∗ is the quotient
group Zi(C∗)/Bi(C∗), where Zi(C∗) is the kernel of ∂i:Ci → Ci−1
and Bi(C∗) is the image of ∂i+1:Ci+1 → Ci.

Let C∗ and D∗ be chain complexes. A chain map f :C∗ → D∗
is a sequence fi:Ci → Di of homomorphisms which satisfy the
commutativity condition ∂i ◦ fi = fi−1 ◦ ∂i for all i ∈ Z.

A short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of chain com-
plexes consists of chain complexes A∗, B∗ and C∗ and chain maps
p∗:A∗ → B∗ and q∗:B∗ → C∗ such that the sequence

0−→Ai
pi−→Bi

qi−→Ci−→0

is exact for each integer i.

We see that 0−→A∗
p∗−→B∗

q∗−→C∗−→0 is a short exact sequence of
chain complexes if and only if the diagram

...
...

...y∂i+2

y∂i+2

y∂i+2

0 −→ Ai+1
pi+1−→ Bi+1

qi+1−→ Ci+1 −→ 0y∂i+1

y∂i+1

y∂i+1

0 −→ Ai
pi−→ Bi

qi−→ Ci −→ 0y∂i y∂i y∂i
0 −→ Ai−1

pi−1−→ Bi−1
qi−1−→ Ci−1 −→ 0y∂i−1

y∂i−1

y∂i−1

...
...

...

.

is a commutative diagram whose rows are exact sequences and
whose columns are chain complexes.
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(b) (BOOKWORK) Let z ∈ Zi(C∗). Then there exists b ∈ Bi

satisfying qi(b) = z, since qi:Bi → Ci is surjective. Moreover

qi−1(∂i(b)) = ∂i(qi(b)) = ∂i(z) = 0.

But pi−1:Ai−1 → Bi−1 is injective and pi−1(Ai−1) = ker qi−1, since
the sequence

0−→Ai−1
pi−1−→Bi−1

qi−1−→Ci−1
is exact. Therefore there exists a unique element w of Ai−1 such
that ∂i(b) = pi−1(w). Moreover

pi−2(∂i−1(w)) = ∂i−1(pi−1(w)) = ∂i−1(∂i(b)) = 0

(since ∂i−1 ◦∂i = 0), and therefore ∂i−1(w) = 0 (since pi−2:Ai−2 →
Bi−2 is injective). Thus w ∈ Zi−1(A∗).
Now let b, b′ ∈ Bi satisfy qi(b) = qi(b

′) = z, and let w,w′ ∈
Zi−1(A∗) satisfy pi−1(w) = ∂i(b) and pi−1(w

′) = ∂i(b
′). Then

qi(b − b′) = 0, and hence b′ − b = pi(a) for some a ∈ Ai−1, by
exactness. But then

pi−1(w + ∂i(a)) = pi−1(w) + ∂i(pi(a)) = ∂i(b) + ∂i(b
′ − b) = ∂i(b

′)

= pi−1(w
′),

and pi−1:Ai−1 → Bi−1 is injective. Therefore w + ∂a(a) = w′,
and hence [w] = [w′] in Hi−1(A∗). Thus there is a well-defined
function α̃i:Zi(C∗) → Hi−1(A∗) which sends z ∈ Zi(C∗) to [w] ∈
Hi−1(A∗), where w ∈ Zi−1(A∗) is chosen such that pi−1(w) = ∂i(b)
for some b ∈ Bi satisfying qi(b) = z. This function is clearly a
homomorphism from Zi(C∗) to Hi−1(A∗).

Suppose that elements z and z′ of Zi(C∗) represent the same ho-
mology class in Hi(C∗). Then z′ = z + ∂i+1c for some c ∈ Ci+1.
Moreover c = qi+1(d) for some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1

is surjective. Choose b ∈ Bi such that qi(b) = z, and let b′ =
b+ ∂i+1(d). Then

qi(b
′) = z + qi(∂i+1(d)) = z + ∂i+1(qi+1(d)) = z + ∂i+1(c) = z′.

Moreover ∂i(b
′) = ∂i(b + ∂i+1(d)) = ∂i(b) (since ∂i ◦ ∂i+1 = 0).

Therefore α̃i(z) = α̃i(z
′). It follows that the homomorphism

α̃i:Zi(C∗)→ Hi−1(A∗) induces a well-defined homomorphism

αi:Hi(C∗)→ Hi−1(A∗),

as required.
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