
Course 421 Examination, June 1993: Worked
Solutions

Structure of the examination

Question
1. bookwork
2. (a) definition (b) exercise (c) (i) problem set (ii) exercise
3. bookwork
4. (a) definition (b) definition (c) exercise
5. (a) definition (b) bookwork (c) bookwork
6. bookwork
7. (a) definition (b) definition (c) exercise
8. (a) definition (b) bookwork (c) bookwork
9. (a) definition (b) exercise (c) bookwork (d) bookwork

10. (a) definition (b) exercise (c) exercise
11. (a) definition (b) bookwork (c) problem set
12. (a) problem set (b) problem set (c) exercise

where

‘definition’= definition taken from lecture notes;
‘bookwork’= result included in lecture notes;

‘problem set’= problem taken from problem set;
‘exercise’= not bookwork, and not included in any problem set.
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Solutions

1. The fundamental group π1(X,x0) is defined to be the set of equivalence
classes of loops γ: [0, 1] → X in X based at x0 (i.e., satisfying γ(0) =
γ(1) = x0), where two such loops γ0 and γ1 are deemed to be equivalent if
and only if γ0 ' γ1 rel{0, 1} (i.e., there exists a homotopy F : [0, 1]×[0, 1]→
X with the properties that F (t, 0) = γ0(t) and F (t, 1) = γ1(t) for all
t ∈ [0, 1] and F (0, τ) = F (1, τ) = x0 for all τ ∈ [0, 1]). We denote the
equivalence class of a loop γ by [γ].

The group operation on π1(X,x0) is defined according to the rule [γ1][γ2] =
[γ1.γ2], where the product loop γ1.γ2 is defined by the formula

(γ1.γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2 ;

γ2(2t− 1) if 1
2 ≤ t ≤ 1.

First we show that the group operation on π1(X,x0) is well-defined. Let
γ1, γ′1, γ2 and γ′2 be loops in X based at the point x0. Suppose that
[γ1] = [γ′1] and [γ2] = [γ′2]. Let the map F : [0, 1] × [0, 1] → X be defined
by

F (t, τ) =

{
F1(2t, τ) if 0 ≤ t ≤ 1

2 ,

F2(2t− 1, τ) if 1
2 ≤ t ≤ 1,

where F1: [0, 1]× [0, 1]→ X is a homotopy between γ1 and γ′1,

2. between γ2 and γ′2, and where the homotopies F1 and F2 map (0, τ) and
(1, τ) to x0 for all τ ∈ [0, 1]. Then F is itself a homotopy from γ1.γ2 to
γ′1.γ

′
2, and maps (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Thus [γ1.γ2] =

[γ′1.γ
′
2], showing that the group operation on π1(X,x0) is well-defined.

Next we show that the group operation on π1(X,x0) is assocative. Let γ1,
γ2 and γ3 be loops based at x0, and let α = (γ1.γ2).γ3. Then γ1.(γ2.γ3) =
α ◦ η, where

η(t) =


1
2 t if 0 ≤ t ≤ 1

2 ;

t− 1
4 if 1

2 ≤ t ≤
3
4 ;

2t− 1 if 3
4 ≤ t ≤ 1.

Thus the map G: [0, 1] × [0, 1] → X defined by G(t, τ) = α((1 − τ)t +
τθ(t)) is a homotopy between (γ1.γ2).γ3 and γ1.(γ2.γ3), and moreover this
homotopy maps (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. It follows that
(γ1.γ2).γ3 ' γ1.(γ2.γ3) rel {0, 1} and hence ([γ1][γ2])[γ3] = [γ1]([γ2][γ3]).
This shows that the group operation on π1(X,x0) is associative.

Let ε: [0, 1]→ X denote the constant loop at x0, defined by ε(t) = x0 for
all t ∈ [0, 1]. Then ε.γ = γ ◦ θ0 and γ.ε = γ ◦ θ1 for any loop γ based at
x0, where

θ0(t) =

{
0 if 0 ≤ t ≤ 1

2 ,
2t− 1 if 1

2 ≤ t ≤ 1,
θ1(t) =

{
2t if 0 ≤ t ≤ 1

2 ,
1 if 1

2 ≤ t ≤ 1,

for all t ∈ [0, 1]. But the continuous map (t, τ) 7→ γ(τθj(t) + (1 − τ)t)
is a homotopy between γ and γ ◦ θj for j = 0, 1 which sends (0, τ) and
(1, τ) to x0 for all τ ∈ [0, 1]. Therefore ε.γ ' γ ' γ.ε rel {0, 1}, and hence
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[ε][γ] = [γ] = [γ][ε]. We conclude that [ε] represents the identity element
of π1(X,x0).

It only remains to verify the existence of inverses. Given a loop γ: [0, 1]→
X based at x0, we let γ−1(t) = γ(1 − t) for all t ∈ [0, 1] We claim that
[γ−1] = [γ]−1. Now the map K: [0, 1]× [0, 1]→ X defined by

K(t, τ) =

{
γ(2τt) if 0 ≤ t ≤ 1

2 ;

γ(2τ(1− t)) if 1
2 ≤ t ≤ 1.

is a homotopy between the loops γ.γ−1 and ε, and moreover this homotopy
sends (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Therefore γ.γ−1 ' ε rel{0, 1},
and thus [γ][γ−1] = [γ.γ−1] = [ε]. On replacing γ by γ−1, we see also that
[γ−1][γ] = [ε], and thus [γ−1] = [γ]−1, as required.
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3. (a) An open subset U of X is said to be evenly covered by the map p if
and only if p−1(U) is a disjoint union of open sets of X̃ each of which
is mapped homeomorphically onto U by p. The map p: X̃ → X is
said to be a covering map if p: X̃ → X is surjective and in addition
every point of X is contained in some open set that is evenly covered
by the map p.

(b) For each x ∈ X, let ν(x) be the number of elements in p−1({x}),
when this set is finite, and let ν(x) = 0 when p−1({x}) is infinite. If
U is an evenly covered open set in X then p−1(U) is a disjoint union
of open sets of X̃, each of which is mapped bijectively onto U under
the map p. It follows that the function ν:X → Z is constant over
each open set in X that is evenly covered by the map p. But each
point of X belongs to some evenly-covered open set. It follows that
ν:X → Z is continuous. But X is connected, by hypothesis. We
deduce that ν:X → Z is constant. The value of this function is the
required integer n.

(c)

(i) This is a covering map. The map is clearly surjective, and, given
any point v of S1, the set S1 \ {v} is open in S1 and is evenly
covered by the map q. Indeed the preimage of this set has m con-
nected components, each of which is mapped homeomorphically
onto the given set.

(ii) This map is not a covering map. This can easily be deduced
on applying (b). Indeed the preimage of (0, 0) has two elements,
whereas the preimage of (1, 0) has only one element.
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4. We regard S1 as the unit circle in R2. Without loss of generality, we
can take b = (1, 0). Now the map p:R → S1 which sends t ∈ R to
(cos 2πt, sin 2πt) is a covering map, and b = p(0). Moreover p(t1) = p(t2)
if and only if t1 − t2 is an integer; in particular p(t) = b if and only if t is
an integer.

Let α and β be loops in S1 based at b, and let α̃ and β̃ be paths in R that
satisfy p ◦ α̃ = α and p ◦ β̃ = β. Suppose that α and β represent the same
element of π1(S1, b). Then there exists a homotopy F : [0, 1]× [0, 1]→ S1

such that F (t, 0) = α(t) and F (t, 1) = β(t) for all t ∈ [0, 1], and F (0, τ) =
F (1, τ) = b for all τ ∈ [0, 1]. It follows from the Monodromy Theorem that
this homotopy lifts to a continuous map G: [0, 1] × [0, 1] → R satisfying
p ◦ G = F . Moreover G(0, τ) and G(1, τ) are integers for all τ ∈ [0, 1],
since p(G(0, τ)) = b = p(G(1, τ)). Also G(t, 0)−α̃(t) and G(t, 1)− β̃(t) are
integers for all t ∈ [0, 1], since p(G(t, 0)) = α(t) = p(α̃(t)) and p(G(t, 1)) =
β(t) = p(β̃(t)). Now any continuous integer-valued function on [0, 1] is
constant, by the Intermediate Value Theorem. In particular the functions
sending τ ∈ [0, 1] to G(0, τ) and G(1, τ) are constant, as are the functions
sending t ∈ [0, 1] to G(t, 0)− α̃(t) and G(t, 1)− β̃(t). Thus

G(0, 0) = G(0, 1), G(1, 0) = G(1, 1),

G(1, 0)− α̃(1) = G(0, 0)− ˜α(0), G(1, 1)− β̃(1) = G(0, 1)− ˜β(0).

On combining these results, we see that

α̃(1)− α̃(0) = G(1, 0)−G(0, 0) = G(1, 1)−G(0, 1) = β̃(1)− β̃(0).

We conclude from this that there exists a well-defined function λ:π1(S1, b)→
Z characterized by the property that λ([α]) = α̃(1)− α̃(0) for all loops α
based at b, where α̃: [0, 1]→ R is any path in R satisfying p ◦ α̃ = α.

Next we show that λ is a homomorphism. Let α and β be any loops based
at b, and let α̃ and β̃ be lifts of α and β. The element [α][β] of π1(S1, b)
is represented by the product path α.β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2 ;
β(2t− 1) if 1

2 ≤ t ≤ 1.

Define a continuous path σ: [0, 1]→ R by

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2 ;

β̃(2t− 1) + α̃(1)− β̃(0) if 1
2 ≤ t ≤ 1.

(Note that σ(t) is well-defined when t = 1
2 .) Then p ◦ σ = α.β and thus

λ([α][β]) = λ([α.β]) = σ(1)−σ(0) = α̃(1)−α̃(0)+β̃(1)−β̃(0) = λ([α])+λ([β]).

Thus λ:π1(S1, b)→ Z is a homomorphism.

Now suppose that λ([α]) = λ([β]). Let F : [0, 1] × [0, 1] → S1 be the
homotopy between α and β defined by

F (t, τ) = p
(

(1− τ)α̃(t) + τ β̃(t)
)
,
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where α̃ and β̃ are the lifts of α and β respectively starting at 0. Now
β̃(1) = λ([β]) = λ([α]) = α̃(1), and β̃(0) = α̃(0) = 0. Therefore F (0, τ) =
b = p(α̃(1)) = F (1, τ) for all τ ∈ [0, 1]. Thus α ' β rel {0, 1}, and
therefore [α] = [β]. This shows that λ:π1(S1, b)→ Z is injective.

The homomorphism λ is surjective, since n = λ([γn]) for all n ∈ Z, where
the loop γn: [0, 1] → S1 is given by γn(t) = p(nt) = (cos 2πnt, sin 2πnt)
for all t ∈ [0, 1]. We conclude that λ:π1(S1, b)→ Z is an isomorphism, as
required.
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5. (a) The points v0,v1, . . . ,vq are said to be geometrically independent if
the only solution of the linear system{ ∑q

j=0 λjvj = 0,∑q
j=0 λj = 0

is the trivial solution λ0 = λ1 = · · · = λq = 0.

(b) A q-simplex in Rk is defined to be a set of the form
q∑
j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

 ,

where v0,v1, . . . ,vq are geometrically independent points of Rk.

A finite collection K of simplices in Rk is said to be a simplicial
complex if the following two conditions are satisfied:—

(i) if σ is a simplex belonging to K then every face of σ also belongs
to K,

(ii) if σ1 and σ2 are simplices belonging to K then either σ1∩σ2 = ∅
or else σ1 ∩ σ2 is a common face of both σ1 and σ2.

(c) Let x,y ∈ σ. Then there exist real numbers s0, s1, . . . , sq and t0, t1, . . . , tq,

where 0 ≤ sj ≤ 1 and 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q, and
q∑
j=0

sj =

q∑
j=0

tj = 1, such that
q∑
j=0

sjvj = x and
q∑
j=0

tjvj = y. Let uj =

(1 − λ)sj + λtj . Then
q∑
j=0

ujvj = λx + (1 − λ)y and moreover

0 ≤ uj ≤ 1 for j = 0, 1, . . . , q (since the interval [0, 1] is convex)

and
q∑
j=0

uj = (1− λ) + λ = 1. It follows that λx + (1− λ)y ∈ σ. We

conclude that the simplex σ is convex.

Let K be a convex subset of Rk containing v0,v1, . . . ,vq. We show,
by induction on m, that K contains the m-face of σm of σ spanned by
the vertices v0,v1, . . . ,vm for m = 0, 1, . . . , q. The result is clearly
true when m = 0, since σ0 = {v0}. Suppose that it has been shown
that σm−1 ⊂ K. Let x ∈ σm. Then there exist real numbers

t0, t1, . . . , tm, where 0 ≤ tj ≤ 1 for j = 0, 1 . . . ,m and
m∑
j=0

tj = 1,

such that x =
m∑
j=0

tjvj . But then x = (1− tm)y + tmvm, where

y =

m−1∑
j=0

tj
1− tm

vj .

Moreover y ∈ σm−1, since 0 ≤ tj/(1− tm) ≤ 1 for j = 0, 1, . . . ,m− 1
and

m−1∑
j=0

tj
1− tm

=
1

1− tm

 m∑
j=0

tj − tm

 = 1,
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and σm−1 ⊂ K. It follows that y ∈ K. Also vm ∈ K, by hypothesis.
It therefore follows from the convexity of K that x ∈ K, since 0 ≤
tm ≤ 1. This shows that σm ⊂ K for all m between 0 and q. In
particular σ ⊂ K, since σ = σq, as required
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6. (a) A Sperner labelling of the vertices of K is a function, labelling each
vertex of v with an integer between 0 and n, with the following
properties:—

(i) for each j ∈ {0, 1, . . . , n}, there is exactly one vertex of ∆ labelled
by j,

(ii) if a vertex v of K belongs to some face of ∆, then some vertex
of that face has the same label as v.

(b) Sperner’s Lemma. Let K be a simplicial complex which is a sub-
division of an n-simplex ∆. Then, for any Sperner labelling of the
vertices of K, the number of n-simplices of K whose vertices are
labelled by 0, 1, . . . , n is odd.

Proof. Given integers i0, i1, . . . , iq between 0 and n, letN(i0, i1, . . . , iq)
denote the number of q-simplices of K whose vertices are labelled by
i0, i1, . . . , iq (where an integer occuring k times in the list labels ex-
actly k vertices of the simplex). We must show that N(0, 1, . . . , n) is
odd.

We prove the result by induction on the dimension n of the simplex ∆;
it is clearly true when n = 0. Suppose that the result holds in
dimensions less than n. For each simplex σ of K of dimension n, let
p(σ) denote the number of (n− 1)-faces of σ labelled by 0, 1, . . . , n−
1. If σ is labelled by 0, 1, . . . , n then p(σ) = 1; if σ is labelled by
0, 1, . . . , n − 1, j, where j < n, then p(σ) = 2; in all other cases
p(σ) = 0. Therefore

∑
σ∈K

dim σ=n

p(σ) = N(0, 1, . . . , n) + 2

n−1∑
j=0

N(0, 1, . . . , n− 1, j).

Now the definition of Sperner labellings ensures that the only (n−1)-
face of ∆ containing simplices of K labelled by 0, 1, . . . , n− 1 is that
with vertices labelled by 0, 1, . . . , n− 1. Thus if M is the number of
(n − 1)-simplices of K labelled by 0, 1, . . . , n − 1 that are contained
in this face, then N(0, 1, . . . , n − 1) −M is the number of (n − 1)-
simplices labelled by 0, 1, . . . , n − 1 that intersect the interior of ∆.
It follows that∑

σ∈K
dim σ=n

p(σ) = M + 2
(
N(0, 1, . . . , n− 1)−M

)
,

since any (n− 1)-simplex of K that is contained in a face of ∆ must
be a face of exactly one n-simplex of K, and any (n−1)-simplex that
intersects the interior of ∆ must be a face of exactly two n-simplices
of K. On combining these equalities, we see that N(0, 1, . . . , n)−M is
an even integer. But the induction hypothesis ensures that Sperner’s
Lemma holds in dimension n− 1, and thus M is odd. It follows that
N(0, 1, . . . , n) is odd, as required.

(c) Suppose that such a map r: ∆ → ∂∆ were to exist. It would then
follow from the Simplicial Approximation Theorem that there would
exist a simplicial approximation s:K → L to the map r, where L is
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the simplicial complex consisting of all of the proper faces of ∆, and
K is the jth barycentric subdivision, for some sufficiently large j, of
the simplicial complex consisting of the simplex ∆ together with all
of its faces.

If v is a vertex of K belonging to some proper face Σ of ∆ then
r(v) = v, and hence s(v) must be a vertex of Σ, since s:K → L is a
simplicial approximation to r: ∆→ ∂∆. In particular s(v) = v for all
vertices v of ∆. Thus if v 7→ m(v) is a labelling of the vertices of ∆ by
the integers 0, 1, . . . , n, then v 7→ m(s(v)) is a Sperner labelling of the
vertices of K. Thus Sperner’s Lemma guarantees the existence of at
least one n-simplex σ of K labelled by 0, 1, . . . , n. But then s(σ) = ∆,
which is impossible, since ∆ is not a simplex of L. We conclude
therefore that there cannot exist any continuous map r: ∆ → ∂∆
satisfying r(x) = x for all x ∈ ∂∆.
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7. Let our exchange economy consist of n commodities and m households.
We suppose that household h is provided with an initial endowment xhi of
commodity i, where xhi ≥ 0. Thus the initial endowment of household h
can be represented by a vector xh in Rn whose ith component is xhi.
The prices of the commodities are given by a price vector p whose ith
component pi specifies the price of a unit of the ith commodity: a price
vector p is required to satisfy pi ≥ 0 for all i. Then the value of the initial
endowment of household h at the given prices is p.xh. Let xhi(p) be the
quantity of commodity i that household h seeks to purchase at prices p,
and let xh(p) ∈ Rn be the vector whose ith component is xhi(p). The
budget constraint certainly ensures that p.(xh(p)−xh) ≤ 0 (i.e., the value
of the goods purchased cannot exceed the value of the initial endowment at
the given prices). We assume that the value of the commodities that each
household seeks to purchase is equal to the value of its initial endowment,
and thus p.xh(p) = p.xh. Also the preferences of the household will only
depend on the relative prices of the commodities, and therefore xh(λp) =
xh(p) for all λ > 0.

Now the total supply of each commodity in the economy is represented
by the vector

∑
h xh, and the total demand at prices p is represented by∑

h xh(p). The excess demand in the economy at prices p is therefore
represented by the vector z(p), where z(p) =

∑
h(xh(p)− xh). Let zi(p)

be the ith component of z(p). Then zi(p) > 0 when the demand for the
ith commodity exceeds supply, whereas zi(p) < 0 when the supply exceeds
demand. Note that p.z(p) = 0 for any price vector p. This identity, known
as Walras’ Law, follows immediately on summing the budget constraint
p.xh(p) = p.xh over all households.

Consider an exchange economy consisting of a finite number of
infinitely divisible commodities and a finite number of house-
holds. Let the excess demand in the economy at prices p be
given by z(p), where

(i) the excess demand vector z(p) is well-defined for any price
vector p, and depends continuously on p,

(ii) p.z(p) = 0 for any price vector p (Walras’ Law).

Then there exist equilibrium prices p∗ at which zi(p
∗) ≤ 0 for

all i.

Proof. Let ∆ be the (n− 1)-dimensional simplex in Rn consisting of all
points (p1, p2, . . . , pn) in Rn satisfying 0 ≤ pi ≤ 1 for i = 1, 2, . . . , n and∑n
i=1 pi = 1, and let v: ∆ → Rn be the function with ith component vi

given by

vi(p) =

{
pi + zi(p) if zi(p) > 0;
pi if zi(p) ≤ 0.

Note that v(p) 6= 0 and the components of v(p) are non-negative for all
p ∈ ∆. It follows that there is a well-defined map ϕ: ∆→ ∆ given by

ϕ(p) =
1

n∑
i=1

vi(p)
v(p),
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The Brouwer Fixed Point Theorem ensures that there exists p∗ ∈ ∆ sat-
isfying ϕ(p∗) = p∗. Then v(p∗) = λp∗ for some λ ≥ 1. We claim that
λ = 1.

Suppose that it were the case that λ > 1. Then vi(p
∗) > p∗i , and thus

zi(p
∗) > 0 whenever p∗i > 0. But p∗i ≥ 0 for all i, and p∗i > 0 for at

least one value of i, since p∗ ∈ ∆. It would follow that p∗.z(p∗) > 0,
contradicting Walras’ Law. We conclude that λ = 1, and thus vi = p∗i and
zi(p

∗) ≤ 0 for all i, as required.

Note that if zi(p
∗) ≤ 0 for all i and p∗.z(p∗) = 0, then p∗i zi(p

∗) ≤ 0 for
all i, and zi(p

∗) = 0 whenever pi > 0. Thus, at equilibrium prices, supply
always equals or exceeds demand, and supply equals demand for those
commodities with positive prices.
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8. (a) ∂q(〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j , . . . ,vq〉,

where 〈v0, . . . , v̂j , . . . ,vq〉 = 〈v0, . . . ,vj−1,vj+1, . . . ,vq〉.
(b) Zq(K) = ker(∂q:Cq(K)→ Cq−1(K)), Bq(K) = ∂q+1(Cq(K)), Hq(K) =

Zq(K)/Bq(K).

(c) ∂2(α) = (n2 + n3)ρ01 + (n1 − n3)ρ02 − (n1 + n2)ρ03 + (n0 + n3)ρ12 +
(n2 − n0)ρ13 + (n0 + n1)ρ23. Therefore ∂2(α) = 0 if and only if
n0 = −n1 = n2 = −n3.

∂1(β) = −(m01 +m02 +m03)〈P0〉+ (m01 −m12 −m13)〈P1〉
+ (m02 +m12 −m23)〈P2〉+ (m03 +m13 +m23)〈P3〉.

Therefore ∂1(β) = 0 if and only if

m01 +m02 +m03 = 0, m01 −m12 −m13 = 0,

m02 +m12 −m23 = 0, m03 +m13 +m23 = 0.

Substituting for mij in terms of ni shows that ∂1(∂2(α)) = 0. Con-
versely if ∂1(β) = 0 then β = ∂2(α), where the coefficients ni of α
are given in terms of the coeffients mij of β by the formulae

n0 = 0, n1 = m23, n2 = m13, n3 = m12.

Observe also that the coefficients of 〈Pi〉 in ∂1(β) sum to zero, and,
conversely,

j0〈P0〉+j1〈P1〉+j2〈P2〉+j2〈P3〉 = ∂1 (j1ρ01 + j2ρ02 + j3ρ03) when j0+j1+j2+j3 = 0.

Putting all these results together, we see that

Z2(K) = {n(τ0 − τ1 + τ2 − τ3)},
B2(K) = 0,

Z1(K) = {(n2 + n3)ρ01 + (n1 − n3)ρ02 − (n1 + n2)ρ03 + n1ρ23 + n2ρ13 + n3ρ12},
B1(K) = Z1(K),

Z0(K) = C0(K) = {j0〈P0〉+ j1〈P1〉+ j2〈P2〉+ j3〈P3〉},
B0(K) = {j0〈P0〉+ j1〈P1〉+ j2〈P2〉+ j3〈P3〉}.

where the coefficients ni and ji are integers. It follows that H2(K) =
Z2(K) ∼= Z, H1(K) = 0, and H0(K) = C0(K)/B0(K) ∼= Z. Indeed
the function sending the homology class of j0〈P0〉+ j1〈P1〉+ j2〈P2〉+
j3〈P3〉 to j0 + j1 + j2 + j3 is an isomorphism from H0(K) to Z.
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9. (a) Vertices y and z of K can be joined by an edge path if there exists
a sequence v0,v1, . . . ,vm of vertices of K with v0 = y and vm = z
such that the line segment with endpoints vj−1 and vj is an edge
belonging to K for j = 1, 2, . . . ,m.

(b) It is easy to verify that if any two vertices of K can be joined by an
edge path then |K| is path-connected and is thus connected. (Indeed
any two points of |K| can be joined by a path made up of a finite
number of straight line segments.)

We must show that if |K| is connected then any two vertices of K
can be joined by an edge path. Choose a vertex v0 of K. It suffices
to verify that every vertex of K can be joined to v0 by an edge path.

Let K0 be the collection of all of the simplices of K having the prop-
erty that one (and hence all) of the vertices of that simplex can be
joined to v0 by an edge path. If σ is a simplex belonging to K0

then every vertex of σ can be joined to v0 by an edge path, and
therefore every face of σ belongs to K0. Thus K0 is a subcomplex
of K. Clearly the collection K1 of all simplices of K which do not
belong to K0 is also a subcomplex of K. Thus K = K0 ∪K1, where
K0 ∩K1 = ∅, and hence |K| = |K0| ∪ |K1|, where |K0| ∩ |K1| = ∅.
But the polyhedra |K0| and |K1| of K0 and K1 are closed subsets
of |K|. It follows from the connectedness of |K| that either |K0| = ∅
or |K1| = ∅. But v0 ∈ K0. Thus K1 = ∅ and K0 = K, showing that
every vertex of K can be joined to v0 by an edge path, as required.

(c) Let u1,u2, . . . ,ur be the vertices of the simplicial complex K. Every
0-chain of K can be expressed uniquely as a formal sum of the form

n1〈u1〉+ n2〈u2〉+ · · ·+ nr〈ur〉

for some integers n1, n2, . . . , nr. There is therefore a well-defined
homomorphism ε:C0(K)→ Z defined by

ε (n1〈u1〉+ n2〈u2〉+ · · ·+ nr〈ur〉) = n1 + n2 + · · ·+ nr.

Now ε(∂1(〈y, z〉)) = ε(〈z〉−〈y〉) = 0 whenever y and z are endpoints
of an edge of K. It follows that ε ◦ ∂1 = 0, and hence B0(K) ⊂ ker ε.

Let v0,v1, . . . ,vm be vertices of K determining an edge path. Then

〈vm〉 − 〈v0〉 = ∂1

 m∑
j=1

〈vj−1,vj〉

 ∈ B0(K).

Now K is connected, and therefore any pair of vertices of K can be
joined by an edge path. We deduce that 〈z〉 − 〈y〉 ∈ B0(K) for all

vertices y and z of K. Thus if c ∈ ker ε, where c =
r∑
j=1

nj〈uj〉, then

r∑
j=1

nj = 0, and hence c =
r∑
j=2

nj(〈uj〉 − 〈u1〉). But (〈uj〉 − 〈u1〉) ∈

B0(K). It follows that c ∈ B0(K). Thus We conclude that that
ker ε ⊂ B0(K), and hence ker ε = B0(K).

Now the homomorphism ε:C0(K) → Z is surjective and its kernel
is B0(K). It follows from this that it induces an isomorphism from
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C0(K)/B0(K) to Z. However Z0(K) = C0(K) (since ∂0 = 0 by
definition). Thus H0(K) ≡ C0(K)/B0(K) ∼= Z, as required.
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10. (a) A sequence of groups and homomorphisms is said to be exact if
the image of each homomorphism is the kernel of the succeeding
homomorphism in the sequence.

(b) Let z ∈ H. Then there exists x ∈ G satisfying β(x) = z, since
β:G → H is surjective. If x and y are elements of G satisfying
β(x) = z and β(y) = z then β(x − y) = 0, hence x − y = α(w)
for some w ∈ F . But then θ(x − y) = θ(α(w)) = 0, and hence
θ(x) = θ(y). It follows that there is a well-defined element ϕ(z) of K
such that θ(x) = ϕ(z) for all x ∈ G satisfying β(x) = z.

We must show that ϕ:H → K is a homomorphism. Let z1 and z2
be elements of H. Then ϕ(z1) = θ(x1) and ϕ(z2) = θ(x2), where
x1, x2 ∈ G are chosen to satisfy β(x1) = z1 and β(x2) = z2. But
then θ(x1 + x2) = θ(x1) + θ(x2) and β(x1 + x2) = z1 + z2. It fol-
lows that ϕ(z1 + z2) = ϕ(z1) + ϕ(z2). Thus ϕ:H → K is indeed a
homomorphism, and ϕ ◦ β = θ. Moreover the homomorphism ϕ is
uniquely determined since β(G) = H.

(c) Let x ∈ G3 be such that ψ3(x) = 0. Then ψ4 (θ3(x)) = φ3 (ψ3(x)) = 0,
and hence θ3(x) = 0. But then x = θ2(y) for some y ∈ G2, by
exactness. Moreover

φ2 (ψ2(y)) = ψ3 (θ2(y)) = ψ3(x) = 0,

hence ψ2(y) = φ1(z) for some z ∈ H1, by exactness. But z = ψ1(w)
for some w ∈ G1, since ψ1 is an epimorphism. Then

ψ2 (θ1(w)) = φ1 (ψ1(w)) = ψ2(y),

and hence θ1(w) = y, since ψ2 is a monomorphism. But then

x = θ2(y) = θ2 (θ1(w)) = 0

by exactness. Thus ψ3 is a monomorphism.

(d) Let a be an element of H3. Then φ3(a) = ψ4(b) for some b ∈ G4,
since ψ4 is an epimorphism. Now

ψ5 (θ4(b)) = φ4 (ψ4(b)) = φ4 (φ3(a)) = 0,

hence θ4(b) = 0, since ψ5 is a monomorphism. Hence there exists
c ∈ G3 such that θ3(c) = b, by exactness. Then

φ3 (ψ3(c)) = ψ4 (θ3(c)) = ψ4(b),

hence φ3 (a− ψ3(c)) = 0, and thus a−ψ3(c) = φ2(d) for some d ∈ H2,
by exactness. But ψ2 is an epimorphism, hence there exists e ∈ G2

such that ψ2(e) = d. But then

ψ3 (θ2(e)) = φ2 (ψ2(e)) = a− ψ3(c).

Hence a = ψ3 (c+ θ2(e)), and thus a is in the image of ψ3. This
shows that ψ3 is an epimorphism, as required.
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11. (a) Let

iq:Cq(L ∩M)→ Cq(L), jq:Cq(L ∩M)→ Cq(M),

uq:Cq(L)→ Cq(K), vq:Cq(M)→ Cq(K)

be the inclusion homomorphisms induced by the inclusion maps i:L∩
M ↪→ L, j:L ∩M ↪→ M , u:L ↪→ K and v:M ↪→ K. The Mayer-
Vietoris exact sequence is the sequence

· · · αq+1−→Hq(L∩M)
k∗−→Hq(L)⊕Hq(M)

w∗−→Hq(K)
αq−→Hq−1(L∩M)

k∗−→· · · ,

of homology groups, where

k∗(β) = (i∗(β),−j∗(β)), w∗(β
′, β′′) = u∗(β

′) + v∗(β
′′),

and αq([z]) = [∂q(c
′)] for any z ∈ Zq(K), where c′ ∈ Cq(L) and

c′′ ∈ Cq(M) satisfy c′ + c′′ = z.

(b) The homomorphism k:G→ Z is surjective, by exactness, hence there
exists g0 ∈ G satisfying k(g0) = 1. Let s(n) = ng0 (where ng0 is the
sum of n copies of g0). Then s:Z → G is a well-defined homomor-
phism, and k(s(n)) = k(ng0) = nk(g0) = n for all n ∈ Z.

Let q(m,n) = h(m) + s(n) for all (m,n) ∈ Z⊕Z. If q(m,n) = 0 then

0 = k(q(m,n)) = k(h(m)) + k(s(n)) = n,

since k◦h = 0 (by exactness) and k◦s is the identity homomorphism.
But then 0 = q(m,n) = h(m) and h:Z→ G is injective, hence m = 0.
Thus m = n = 0 whenever q(m,n) = 0. This shows that q:Z⊕Z→ G
is injective.

Let g ∈ G. We must show that there exists (m,n) ∈ Z⊕Z satisfying
q(m,n) = g. Let n = k(g). Then k(g − s(n)) = k(g)− n = 0, hence
g−s(n) = h(m) for some m ∈ Z, by exactness. But then g = q(m,n).
Therefore q:Z ⊕ Z → G is injective, and is thus an isomorphism, as
required.

(c) The union of the 2-sphere and the given disk is homeomorphic to
the polyhedron of some simplicial complex K which is the union of
subcomplexes L and M , where L is homeomorphic to the disk, M is
homeomorphic to the 2-sphere, and L ∩M is homeomorphic to the
unit circle. Then

H0(L ∩M) ∼= H0(L) ∼= H0(M) ∼= Z,

H1(L) = 0, H1(M) = 0, H1(L ∩M) ∼= Z,

H2(L) = 0, H2(M) ∼= Z, H2(L ∩M) = 0.

Now H0(K) ∼= Z, since |K| is connected.

Next note that the homomorphisms i∗:H0(L ∩ M) → H0(L) and
j∗:H0(L ∩M)→ H0(M) are isomorphisms, hence k∗:H0(L ∩M)→
H0(L) ⊕ H0(M) is injective. It follows from the exactness of the
Mayer-Vietoris sequence that α1:H1(K) → H0(L ∩M) is the zero
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homomorphism, and hence w∗:H1(L) ⊕H1(M) → H1(K) is surjec-
tive. But H1(L) = 0 and H1(M) = 0. It follows that H1(K) = 0.

Using the exactness of the Mayer-Vietoris sequence, and the facts
that

H2(L ∩M) = 0, H2(L) = 0, H1(L) = 0, H1(M) = 0,

we see that

0−→H2(M)
v∗−→H2(K)

α2−→H1(L ∩M)−→0

is exact. But H2(M) ∼= Z and H1(L ∩M) ∼= Z. It follows from (c)
that H2(K) ∼= Z⊕ Z.

Finally we note that Hq(K) = 0 for q > 2, since dimK = 2. We have
thus shown that

H0(K) ∼= Z, H1(K) = 0, H2(K) ∼= Z⊕ Z.

This completes the calculation of the homology groups of K.

18



12. (a) Two simplicial maps s:K → L and t:K → L are said to be contiguous
if, given any simplex σ of K, there exists a simplex τ of L such that
s(v) and t(v) are vertices of τ for each vertex v of σ.

(b) Let x be a point in the interior of some simplex σ of K. Then f(x)
belongs to the interior of a unique simplex τ of L, and moreover
s(x) ∈ τ and t(x) ∈ τ , since s and t are simplicial approximations
to the map f . But s(x) and t(x) are contained in the interior of the
simplices s(σ) and t(σ) of L. It follows that s(σ) and t(σ) are faces
of τ , and hence s(v) and t(v) are vertices of τ for each vertex v of
σ, as required.

(c) D1(〈v〉) = 〈s(v), t(v)〉 for each vertex v of K, hence ∂1(D1(〈v〉)) =
〈t(v)〉 − 〈s(v)〉. Thus ∂1 ◦D0 = t0 − s0.

Now let q > 0. Then

(∂q+1(Dq(〈v0,v1, . . . ,vq〉))

= ∂q+1

 q∑
j=0

(−1)j〈s(v0), . . . , s(vj), t(vj), . . . , t(vq)〉


=

∑
k<j

(−1)j+k〈s(v0), . . . , ŝ(vk), . . . s(vj), t(vj), . . . , t(vq)〉

+

q∑
j=0

〈s(v0), . . . , s(vj−1), t(vj), . . . , t(vq)〉

−
q∑
j=0

〈s(v0), . . . , s(vj), t(vj+1), . . . , t(vq)〉

+
∑
k>j

(−1)j+k+1〈s(v0), . . . , s(vj), t(vj), . . . , t̂(vk), . . . , t(vq)〉

and

(Dq−1(∂q(〈v0,v1, . . . ,vq〉))

= Dq−1

(
q∑

k=0

(−1)kv0, . . . v̂k, . . . ,vq〉

)
=

∑
j<k

(−1)j+k〈s(v0), . . . , s(vj), t(vj), . . . , t̂(vk), . . . , t(vq)〉

+
∑
j>k

(−1)j+k−1〈s(v0), . . . , ŝ(vk), . . . s(vj), t(vj), . . . , t(vq)〉,

hence

(∂q+1 ◦Dq +Dq−1 ◦ ∂q)(〈v0,v1, . . . ,vq〉)

=

q∑
j=0

(
〈s(v0), . . . , s(vj−1), t(vj), . . . , t(vq)〉

− 〈s(v0), . . . , s(vj), t(vj+1), . . . , t(vq)〉
)

= 〈t(v0), . . . , t(vq)〉 − 〈s(v0), . . . , s(vq)〉.
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Thus ∂q+1 ◦ Dq + Dq−1 ◦ ∂q = tq − sq for all q > 0. It follows that
tq(z) − sq(z) = ∂q+1 (Dq(z)) for any q-cycle z of K, and therefore
s∗([z]) = t∗([z]). Thus s∗ = t∗ as homomorphisms from Hq(K) to
Hq(L), as required.
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13. (a) Let f :S1 →M be defined by

f(cos 2πs, sin 2πs) = q(s, 12 ),

where q: [0, 1]× [0, 1]→M is the identification map, and let g:M →
S1 be defined such that

g(q(s, t)) = (cos 2πs, sin 2πs).

Then g ◦ f is the identity map of S1, and f ◦ g is homotopic to the
identity map of M by means of the the homotopy

q((s, t), τ)) 7→ q(s, (1− t)τ + 1
2τ).

It follows that f :S1 →M induces isomorphisms of homology groups.
Indeed g∗:Hq(M) → Hq(S

1) is the inverse of f∗:Hq(S
1) → Hq(M).

It follows that H0(M) ∼= Z, H1(M) ∼= Z and Hq(M) = 0 for all q ≥ 2.

(b) The boundary ∂M of M is homeomorphic to S1, and the map g ◦
i: ∂M → S1 has winding number 2. It follows that (g ◦ i)∗([w]) =
2([z0]), where [z0] is some generator of H1(S1). Thus i∗([w]) = 2[z],
where [z] = f∗[z0]. Moreover the generators of H1(M) are ±[z]. The
result follows.

(c) Let us write RP 2 = M ∪ D, where RP 2 denotes the real projective
plane, M is the Möbius strip, D is the closed disk. Then ∂M =
M ∩D = ∂D, M ∩D is homeomorphic to S1, and the Mayer-Vietoris
sequence

· · · αq+1−→Hq(M∩D)
k∗−→Hq(M)⊕Hq(D)

w∗−→Hq(RP 2)
αq−→Hq−1(M∩D)

k∗−→· · ·

is exact.

Now H0(RP 2) ∼= Z, since RP 2 is connected. Also Hq(RP 2) = 0 if
q < 0 or q > 2, since the real projective plane is triangulated by a
simplicial complex of dimension 2.

Now the components of k∗:H0(M∩D)→ H0(M)⊕H0(D) are isomor-
phisms, since M ∩D, M and D are connected. Therefore this homo-
morphism is injective. It follows from exactness that α1:H1(RP 2)→
H0(M ∩D) is the zero homomorphism. Also H1(D) = 0. It follows
that the sequence

H1(∂M)
i∗−→H1(M)−→H1(RP 2)

is exact. It follows from (b) that

H1(RP 2) ∼= H1(M)/i∗(H1(∂M)) ∼= Z2.

Also the sequence

0−→H2(RP 2)−→H1(∂M)
i∗−→H1(M)

is exact, and therefore

H2(RP 2) ∼= ker(i∗:H1(∂M)→ H1(M)).

But it follows from (b) that i∗:H1(∂M) → H1(M) is injective. It
follows that H2(RP 2) = 0. This completes the calculation of the
homology groups of RP 2.
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