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1. (a) [Definitions. From printed lecture notes.] A topological space X
consists of a set X together with a collection of subsets, referred to
as open sets, such that the following conditions are satisfied:—

(i) the empty set ∅ and the whole set X are open sets,

(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself
an open set.

The collection consisting of all the open sets in a topological
space X is referred to as a topology on the set X.

A function f :X → Y from a topological space X to a topological
space Y is said to be continuous if f−1(V ) is an open set in X for
every open set V in Y , where

f−1(V ) ≡ {x ∈ X : f(x) ∈ V }.

(b) [Result is mentioned in the printed lecture notes, but a proof is
not written out in the notes.] Let x ∈ X. Then

x ∈
⋃

α∈A
q−1(Vα) ⇐⇒ there exists α ∈ A such that x ∈ q−1(Vα)

⇐⇒ there exists α ∈ A such that q(x) ∈ Vα
⇐⇒ q(x) ∈

⋃
α∈A

Vα

⇐⇒ x ∈ q−1
(⋃

α∈A
Vα

)
x ∈

⋂
α∈A

q−1(Vα) ⇐⇒ for all α ∈ A, x ∈ q−1(Vα)

⇐⇒ for all α ∈ A, q(x) ∈ Vα
⇐⇒ q(x) ∈

⋂
α∈A

Vα

⇐⇒ x ∈ q−1
(⋂

α∈A
Vα

)
The result now follows from the basic principle that two sets are
equal if and only if they have the same elements.

(c) [Definition. From printed lecture notes.] Let X and Y be topo-
logical spaces and let q:X → Y be a function from X to Y . The
function q is said to be an identification map if and only if the
following conditions are satisfied:

• the function q:X → Y is surjective,

• a subset U of Y is open in Y if and only if q−1(U) is open
in X.
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(d) [Bookwork adapted from printed lecture notes] Let τ be the col-
lection consisting of all subsets U of Y for which q−1(U) is open
in X. Now q−1(∅) = ∅, and q−1(Y ) = X, so that ∅ ∈ τ and Y ∈ τ .

It follows directly from (b) that, given any collection of subsets of
Y , the union of the preimages of the sets is the preimage of the
union of those sets, and the intersection of the preimages of the
sets is the preimage of the intersection of those sets. Therefore
unions and finite intersections of sets belonging to τ must them-
selves belong to τ . Thus τ is a topology on Y , and the function
q:X → Y is an identification map with respect to the topology τ .
Moreover the definition of identification maps ensures that the
open subsets of Y must be the subsets belonging to τ , and thus τ
is the unique topology on Y for which the function q:X → Y is
an identification map.

(e) [From printed lecture notes.] Suppose that f is continuous. Then
the composition function f ◦q is a composition of continuous func-
tions and hence is itself continuous.

Conversely suppose that f ◦ q is continuous. Let U be an open
set in Z. Then q−1(f−1(U)) is open in X (since f ◦ q is continu-
ous), and hence f−1(U) is open in Y (since the function q is an
identification map). Therefore the function f is continuous, as
required.
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2. (a) [Definitions. From printed lecture notes.] A topological space X is
said to be connected if the empty set ∅ and the whole space X are
the only subsets of X that are both open and closed. A topological
space X is said to be path-connected if and only if, given any two
points x0 and x1 of X, there exists a path in X from x0 to x1.

(b) [Not bookwork. However the special case when D = Z is book-
work.] Suppose that X is connected. Let f :X → D be a contin-
uous function. Choose d ∈ f(X), and let

U = {x ∈ X : f(x) = d}, V = {x ∈ X : f(x) 6= d}.

Then U and V are the preimages of the open subsets {d} and
D\{d} of D, and therefore both U and V are open in X. Moreover
U ∩ V = ∅, and X = U ∪ V . It follows that V = X \ U , and
thus U is both open and closed. Moreover U is non-empty, since
d ∈ f(X). It follows from the connectedness of X that U = X, so
that f :X → D is constant, with value d.

Conversely suppose that every continuous function f :X → D is
constant. Let S be a subset of X which is both open and closed.
Let u and v be distinct elements of D, and let f :X → D be
defined by

f(x) =

{
u if x ∈ S;
v if x 6∈ S.

Now the preimage of any subset of D under f is one of the open
sets ∅, S, X \ S and X. Therefore the function f is continuous.
But then the function f is constant, so that either S = ∅ or S = X.
This shows that X is connected.

(c) [From printed lecture notes.] Choose a point x0 of X. Let Z be
the subset of X consisting of all points x of X with the property
that x can be joined to x0 by a path. We show that the subset Z
is both open and closed in X.

Now, given any point x of X there exists a path connected open
set Nx in X such that x ∈ Nx. We claim that if x ∈ Z then
Nx ⊂ Z, and if x 6∈ Z then Nx ∩ Z = ∅.
Suppose that x ∈ Z. Then, given any point x′ of Nx, there exists
a path in Nx from x′ to x. Moreover it follows from the definition
of the set Z that there exists a path in X from x to x0. These
two paths can be concatenated to yield a path in X from x′ to x0,
and therefore x′ ∈ Z. This shows that Nx ⊂ Z whenever x ∈ Z.
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Next suppose that x 6∈ Z. Let x′ ∈ Nx. If it were the case that
x′ ∈ Z, then we would be able to concatenate a path in Nx from
x to x′ with a path in X from x′ to x0 in order to obtain a path
in X from x to x0. But this is impossible, as x 6∈ Z. Therefore
Nx ∩ Z = ∅ whenever x 6∈ Z.

Now the set Z is the union of the open sets Nx as x ranges over
all points of Z. It follows that Z is itself an open set. Similarly
X \Z is the union of the open sets Nx as x ranges over all points
of X \Z, and therefore X \Z is itself an open set. It follows that
Z is a subset of X that is both open and closed. Moreover x0 ∈ Z,
and therefore Z is non-empty. But the only subsets of X that are
both open and closed are ∅ and X itself, since X is connected.
Therefore Z = X, and thus every point of X can be joined to the
point x0 by a path in X. We conclude that X is path-connected,
as required.
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3. (a) [Definitions. From printed lecture notes.] Let X and X̃ be topo-
logical spaces and let p: X̃ → X be a continuous map. An open
subset U of X is said to be evenly covered by the map p if and
only if p−1(U) is a disjoint union of open sets of X̃ each of which
is mapped homeomorphically onto U by p. The map p: X̃ → X is
said to be a covering map if p: X̃ → X is surjective and in addi-
tion every point of X is contained in some open set that is evenly
covered by the map p.

(b) [Not so far discussed, but result might be mentioned in Trinity
Term.] Given x ∈ X, let f(x) denote the number of elements in
p−1({x}). Then f :X → Z is a function on X whose values are
positive integers. Let x0 ∈ X. Then x0 ∈ U for some open set U
in X which is evenly covered by the covering map p. Then p−1(U)
is a disjoint union of open sets, where each of these open sets is
mapped homeomorphically (and thus bijectively) onto U by the
covering map p. The number of such open sets must be f(x0), and
moreover f(x) = f(x0) for all x ∈ U . Therefore the function f is
constant around x0. It follows that the function f is continuous on
X. But every continuous integer-valued function on a connected
topological space is constant. Therefore f is constant, and its
value is the required positive integer n.

(c) [Example. Not bookwork.] If (x, y, u, v) ∈ S then u2 − v2 = x
and u2 + v2 =

√
x2 + y2, and therefore 2u2 =

√
x2 + y2 + x, and

2v2 =
√
x2 + y2 − x. It follows that u = 0 if and only if y = 0

and x ≤ 0, and v = 0 if and only if y = 0 and x ≥ 0. Therefore
(x, y, u, v) ∈ S satisfies u 6= 0 if and only if (x, y, u, v) ∈ U . Also
(x, y, u, v) ∈ S satisfies v 6= 0 if and only if (x, y, u, v) ∈ V .

Now p−1(U) = Ũ+ ∪ Ũ−, where

Ũ+ = {(x, y, u, v) ∈ S : u > 0}, Ũ− = {(x, y, u, v) ∈ S : u < 0}.

The sets Ũ+ and Ũ− are disjoint and are open in S. Also (x, y, u, v) ∈
Ũ± if and only if (x, y) ∈ U , u = ±1

2
(
√
x2 + y2 +x) and v = y/2u.

It follows from this that p maps each of Ũ+ and Ũ− homeomoph-
ically onto U . Thus U is evenly covered by the map p.

Similarly V is evenly covered by the map p, and p−1(V ) = Ṽ+∪Ṽ−,
where

Ṽ+ = {(x, y, u, v) ∈ S : v > 0}, Ṽ− = {(x, y, u, v) ∈ S : v < 0}.

Indeed (x, y, u, v) ∈ Ṽ± if and only if (x, y) ∈ V , v = ±1
2
(
√
x2 + y2−
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x) and u = y/2v. It follows each of the sets Ṽ± is mapped home-
omorphically onto V by p.

(d) [Not bookwork.] The map p0 is a covering map, since its codomain
is the union of the evenly-covered open sets U and V . The map
p is not a covering map. Indeed let f(x, y) denote the number
of elements in p−1{(x, y)} for all (x, y) ∈ R2. Then f(0, 0) = 1,
whereas f(x, y) = 2 when (x, y) 6= (0, 0). Thus the result of (b)
doesn’t hold for the map p, and therefore p is not a covering map.
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4. (a) [Extracted from non-contiguous material in lecture notes.] Let X
be a topological space, and let x0 ∈ X be some chosen point of X.
We define an equivalence relation on the set of all (continuous)
loops based at the basepoint x0 of X, where two such loops γ0

and γ1 are equivalent if and only if γ0 ' γ1 rel {0, 1}. We denote
the equivalence class of a loop γ: [0, 1] → X based at x0 by [γ].
This equivalence class is referred to as the based homotopy class
of the loop γ. The set of equivalence classes of loops based at x0

is denoted by π1(X, x0). Thus two loops γ0 and γ1 represent the
same element of π1(X, x0) if and only if γ0 ' γ1 rel {0, 1} (i.e.,
there exists a homotopy F : [0, 1] × [0, 1] → X between γ0 and
γ1 which maps (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]). Then
π1(X, x0) is a group, the group multiplication on π1(X, x0) being
defined according to the rule [γ1][γ2] = [γ1.γ2] for all loops γ1 and
γ2 based at x0. This group π1(X, x0) is the fundamental group of
the topological space X based at the point x0.

(b) [Definition. From printed lecture notes.] A topological space X
is said to be simply-connected if it is path-connected, and any
continuous map f : ∂D → X mapping the boundary circle ∂D of a
closed disc D into X can be extended continuously over the whole
of the disk.

(c) [From printed lecture notes.] We must show that any continuous
function f : ∂D → X defined on the unit circle ∂D can be ex-
tended continuously over the closed unit disk D. Now the preim-
ages f−1(U) and f−1(V ) of U and V are open in ∂D (since f
is continuous), and ∂D = f−1(U) ∪ f−1(V ). It follows from the
Lebesgue Lemma that there exists some δ > 0 such that any arc
in ∂D whose length is less than δ is entirely contained in one or
other of the sets f−1(U) and f−1(V ). Choose points z1, z2, . . . , zn
around ∂D such that the distance from zi to zi+1 is less than δ for
i = 1, 2, . . . , n− 1 and the distance from zn to z1 is also less than
δ. Then, for each i, the short arc joining zi−1 to zi is mapped by f
into one or other of the open sets U and V .

Let x0 be some point of U∩V . Now the sets U , V and U∩V are all
path-connected. Therefore we can choose paths αi: [0, 1]→ X for
i = 1, 2, . . . , n such that αi(0) = x0, αi(1) = f(zi), αi([0, 1]) ⊂ U
whenever f(zi) ∈ U , and αi([0, 1]) ⊂ V whenever f(zi) ∈ V . For
convenience let α0 = αn.

Now, for each i, consider the sector Ti of the closed unit disk
bounded by the line segments joining the centre of the disk to the
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points zi−1 and zi and by the short arc joining zi−1 to zi. Now this
sector is homeomorphic to the closed unit disk, and therefore any
continuous function mapping the boundary ∂Ti of Ti into a simply-
connected space can be extended continuously over the whole of
Ti. In particular, let Fi be the function on ∂Ti defined by

Fi(z) =

 f(z) if z ∈ Ti ∩ ∂D,
αi−1(t) if z = tzi−1 for any t ∈ [0, 1],
αi(t) if z = tzi for any t ∈ [0, 1],

Note that Fi(∂Ti) ⊂ U whenever the short arc joining zi−1 to zi
is mapped by f into U , and Fi(∂Ti) ⊂ V whenever this short arc
is mapped into V . But U and V are both simply-connected. It
follows that each of the functions Fi can be extended continuously
over the whole of the sector Ti. Moreover the functions defined in
this fashion on each of the sectors Ti agree with one another wher-
ever the sectors intersect, and can therefore be pieced together to
yield a continuous map defined over the the whole of the closed
disk D which extends the map f , as required.
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5. (a) [Definition. From printed lecture notes.] Let G be a group with
identity element e, and let X be a topological space. The group G
is said to act freely and properly discontinuously on X if each ele-
ment g of G determines a corresponding continuous map θg:X →
X, where the following conditions are satisfied:

(i) θgh = θg ◦ θh for all g, h ∈ G;

(ii) the continuous map θe determined by the identity element e
of G is the identity map of X;

(iii) given any point x of X, there exists an open set U in X such
that x ∈ U and θg(U) ∩ U = ∅ for all g ∈ G satisfying g 6= e.

(b) [From printed lecture notes.] Let x0 and x1 be the points of X
given by

x0 = α(0) = β(0), x1 = α(1) = β(1).

Now α ' β rel {0, 1}, and therefore there exists a homotopy
F : [0, 1]× [0, 1]→ X such that

F (t, 0) = α(t) and F (t, 1) = β(t) for all t ∈ [0, 1],

F (0, τ) = x0 and F (1, τ) = x1 for all τ ∈ [0, 1].

It then follows from the Monodromy Theorem that there exists a
continuous map G: [0, 1] × [0, 1] → X̃ such that p ◦ G = F and
G(0, 0) = α̃(0). Then p(G(0, τ)) = x0 and p(G(1, τ)) = x1 for all
τ ∈ [0, 1]. Now any continuous lift of a constant path must itself
be a constant path. Therefore G(0, τ) = x̃0 and G(1, τ) = x̃1 for
all τ ∈ [0, 1], where

x̃0 = G(0, 0) = α̃(0), x̃1 = G(1, 0).

However
G(0, 0) = G(0, 1) = x̃0 = α̃(0) = β̃(0),

p(G(t, 0)) = F (t, 0) = α(t) = p(α̃(t))

and
p(G(t, 1)) = F (t, 1) = β(t) = p(β̃(t))

for all t ∈ [0, 1]. Now the lifts α̃ and β̃ of the paths α and β
are uniquely determined by their starting points. It follows that
G(t, 0) = α̃(t) and G(t, 1) = β̃(t) for all t ∈ [0, 1]. In particular,

α̃(1) = G(0, 1) = x̃1 = G(1, 1) = β̃(1).
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Moreover the map G: [0, 1] × [0, 1] → X̃ is a homotopy between
the paths α̃ and β̃ which satisfies G(0, τ) = x̃0 and G(1, τ) = x̃1

for all τ ∈ [0, 1]. It follows that α̃ ' β̃ rel {0, 1}, as required.

(c) [From printed lecture notes.] Let γ: [0, 1]→ X/G be a loop in the
orbit space with γ(0) = γ(1) = q(x0). It follows from the Path
Lifting Theorem for covering maps that there exists a unique path
γ̃: [0, 1] → X for which γ̃(0) = x0 and q ◦ γ̃ = γ. Now γ̃(0) and
γ̃(1) must belong to the same orbit, since q(γ̃(0)) = γ(0) = γ(1) =
q(γ̃(1)). Therefore there exists some element g of G such that
γ̃(1) = θg(x0). This element g is uniquely determined, since the
group G acts freely on X. Moreover the value of g is determined
by the based homotopy class [γ] of γ in π1(X, q(x0)). Indeed if
σ is a loop in X/G based at q(x0), if σ̃ is the lift of σ starting
at x0 (so that q ◦ σ̃ = σ and σ̃(0) = x0), and if [γ] = [σ] in
π1(X/G, q(x0)) (so that γ ' σ rel {0, 1}), then γ̃(1) = σ̃(1). We
conclude therefore that there exists a well-defined function

λ: π1(X/G, q(x0))→ G,

which is characterized by the property that γ̃(1) = θλ([γ])(x0) for
any loop γ in X/G based at q(x0), where γ̃ denotes the unique
path in X for which γ̃(0) = x0 and q ◦ γ̃ = γ.

14



6. (a) [From printed lecture notes.] The homomorphism ∂q:Cq(K) →
Cq−1(K), is characterized by the property that

∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉

whenever v0,v1, . . . ,vq span a simplex of K.

Let v0,v1, . . . ,vq be vertices spanning a simplex of K. Then

∂q−1∂q (〈v0,v1, . . . ,vq〉)

=

q∑
j=0

(−1)j∂q−1 (〈v0, . . . , v̂j, . . . ,vq〉)

=

q∑
j=0

j−1∑
k=0

(−1)j+k〈v0, . . . , v̂k, . . . , v̂j, . . . ,vq〉

+

q∑
j=0

q∑
k=j+1

(−1)j+k−1〈v0, . . . , v̂j, . . . , v̂k, . . . ,vq〉

= 0

(since each term in this summation over j and k cancels with
the corresponding term with j and k interchanged). The result
now follows from the fact that the homomorphism ∂q−1 ◦ ∂q is
determined by its values on all oriented q-simplices of K.

(b) [Definitions. From printed lecture notes.] Let K be a simpli-
cial complex. A q-chain z is said to be a q-cycle if ∂qz = 0.
A q-chain b is said to be a q-boundary if b = ∂q+1c

′ for some
(q + 1)-chain c′. The group of q-cycles of K is denoted by Zq(K),
and the group of q-boundaries of K is denoted by Bq(K). Thus
Zq(K) is the kernel of the boundary homomorphism ∂q:Cq(K)→
Cq−1(K), and Bq(K) is the image of the boundary homomorphism
∂q+1:Cq+1(K) → Cq(K). However ∂q ◦ ∂q+1 = 0, and there-
fore Bq(K) ⊂ Zq(K). We can therefore form the quotient group
Hq(K), where Hq(K) = Zq(K)/Bq(K). The group Hq(K) is re-
ferred to as the qth homology group of the simplicial complex K.

(c) [From printed lecture notes.] There is a well-defined homomor-
phism Dq:Cq(K)→ Cq+1(K) characterized by the property that

Dq(〈v0,v1, . . . ,vq〉) = 〈w,v0,v1, . . . ,vq〉

15



whenever v0,v1, . . . ,vq span a simplex of K. Now ∂1(D0(v)) =
v −w for all vertices v of K. It follows that

s∑
r=1

nr〈vr〉 −

(
s∑
r=1

nr

)
〈w〉 =

s∑
r=1

nr(〈vr〉 − 〈w〉) ∈ B0(K)

for all
s∑
r=1

nr〈vr〉 ∈ C0(K). But Z0(K) = C0(K) (since ∂0 = 0

by definition), and thus H0(K) = C0(K)/B0(K). It follows that
there is a well-defined surjective homomorphism from H0(K) to
Z induced by the homomorphism from C0(K) to Z that sends
s∑
r=1

nr〈vr〉 ∈ C0(K) to
s∑
r=1

nr. Moreover this induced homomor-

phism is an isomorphism from H0(K) to Z.

Now let q > 0. Then

∂q+1(Dq(〈v0,v1, . . . ,vq〉))
= ∂q+1(〈w,v0,v1, . . . ,vq〉)

= 〈v0,v1, . . . ,vq〉+

q∑
j=0

(−1)j+1〈w,v0, . . . , v̂j, . . . ,vq〉

= 〈v0,v1, . . . ,vq〉 −Dq−1(∂q(〈v0,v1, . . . ,vq〉))

whenever v0,v1, . . . ,vq span a simplex of K. Thus

∂q+1(Dq(c)) +Dq−1(∂q(c)) = c

for all c ∈ Cq(K). In particular z = ∂q+1(Dq(z)) for all z ∈ Zq(K),
and hence Zq(K) = Bq(K). It follows that Hq(K) is the zero
group for all q > 0, as required.
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7. (a) [Adapted from more general result in lecture notes.] We may
restrict our attention to the case when 0 ≤ q ≤ dimK, since
Hq(K) = {0} if q < 0 or q > dimK. Now any q-chain c of K can
be expressed uniquely as a sum of the form c = c1 + c2, where c1

is a q-chain of L and c2 is a q-chain of M for j = 1, 2, . . . , r. It
follows that

Cq(K) ∼= Cq(L)⊕ Cq(M).

Now let z be a q-cycle of K (i.e., z ∈ Cq(K) satisfies ∂q(z) = 0).
We can express z uniquely in the form z = z1 + z2, where z1 is a
q-chain of L and z2 is a q-chain of M . Now

0 = ∂q(z) = ∂q(z1) + ∂q(z2).

Moreover ∂q(z1) is a (q−1)-chain of L, and ∂q(z2) is a (q−1)-chain
of M . It follows that ∂q(z1) = ∂q(z2) = 0. Hence z1 is a q-cycle of
L and z2 is a q-cycle of M , and thus

Zq(K) ∼= Zq(L)⊕ Zq(M).

Now let b be a q-boundary of K. Then b = ∂q+1(c) for some
(q + 1)-chain c of K. Moreover c = c1 + c2, where c1 ∈ Cq+1(L)
and c2 ∈ Cq+1(M). Thus b = b1 + b2, where b1 ∈ Bq(L) and
b2 ∈ Bq(M) are given by b1 = ∂q+1c1 and b2 = ∂q+1c2. We deduce
that

Bq(K) ∼= Bq(L)⊕Bq(M).

It follows from these observations that there is a well-defined iso-
morphism

ν:Hq(K1)⊕Hq(K2)→ Hq(K)

which maps ([z1], [z2]) to [z1 + z2] for all z1 ∈ Zq(L) and z2 ∈
Zq(M), where [z1] and [z2] denote the homology classes of z1 and
z2 in Hq(L) and Hq(M) respectively.

(b) [Example. Not bookwork. Similar examples discussed in class.]
Let p be this chain. Then

∂2p = n1 (〈v2 v4〉 − 〈v1 v4〉+ 〈v1 v2〉)
+ n2 (〈v3 v4〉 − 〈v2 v4〉+ 〈v2 v3〉)
+ n3 (〈v1 v4〉 − 〈v3 v4〉+ 〈v3 v1〉)
+ n4 (〈v2 v5〉 − 〈v1 v5〉+ 〈v1 v2〉)
+ n5 (〈v3 v5〉 − 〈v2 v5〉+ 〈v2 v3〉)
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+ n6 (〈v1 v5〉 − 〈v3 v5〉+ 〈v3 v1〉)
+ n7 (〈v4 v5〉 − 〈v1 v5〉+ 〈v1 v4〉)
+ n8 (〈v4 v5〉 − 〈v2 v5〉+ 〈v2 v4〉)
+ n7 (〈v4 v5〉 − 〈v3 v5〉+ 〈v3 v4〉)

= (n1 + n4)〈v1 v2〉+ (n2 + n5)〈v2 v3〉+ (n3 + n6)〈v3 v1〉
+ (n3 − n1 + n7)〈v1 v4〉+ (n1 − n2 + n8)〈v2 v4〉
+ (n2 − n3 + n9)〈v3 v4〉+ (n6 − n4 − n7)〈v1 v5〉
+ (n7 − n5 − n8)〈v2 v5〉+ (n8 − n6 − n9)〈v3 v5〉
+ (n7 + n8 + n9)〈v4 v5〉

(c) [Example. Not bookwork.] Let p be the 2-chain of K defined in
(c). Then ∂2p = 0 if and only if

n4 = −n1, n5 = −n2, n6 = −n3,

n7 = n1 − n3, n8 = n2 − n1, n9 = n3 − n2.

Now the simplicial complex K is 2-dimensional, and therefore
B2(K) = 0. It follows that

H2(K) ∼= Z2(K) = {n1z1 + n2z2 + n3z3 : n1, n2, n3 ∈ Z} ∼= Z
3,

where

z1 = 〈v1 v2 v4〉 − 〈v1 v2 v5〉+ 〈v1 v4 v5〉 − 〈v2 v4 v5〉.
z2 = 〈v2 v3 v4〉 − 〈v3 v3 v5〉+ 〈v2 v4 v5〉 − 〈v3 v4 v5〉,
z3 = 〈v3 v1 v4〉 − 〈v3 v1 v5〉+ 〈v3 v4 v5〉 − 〈v1 v4 v5〉.
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8. (a) [Definitions. From printed lecture notes.] A chain complex C∗ is
a (doubly infinite) sequence (Ci : i ∈ Z) of R-modules, together
with homomorphisms ∂i:Ci → Ci−1 for each i ∈ Z, such that
∂i ◦ ∂i+1 = 0 for all integers i.

The ith homology group Hi(C∗) of the complex C∗ is defined to be
the quotient module Zi(C∗)/Bi(C∗), where Zi(C∗) is the kernel of
∂i:Ci → Ci−1 and Bi(C∗) is the image of ∂i+1:Ci+1 → Ci.

Let C∗ and D∗ be chain complexes. A chain map f :C∗ → D∗
is a sequence fi:Ci → Di of homomorphisms which satisfy the
commutativity condition ∂i ◦ fi = fi−1 ◦ ∂i for all i ∈ Z.

A short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of chain com-
plexes consists of chain complexes A∗, B∗ and C∗ and chain maps
p∗:A∗ → B∗ and q∗:B∗ → C∗ such that the sequence

0−→Ai
pi−→Bi

qi−→Ci−→0

is exact for each integer i.

(b) [From printed lecture notes.] Let z ∈ Zi(C∗). Then there exists b ∈
Bi satisfying qi(b) = z, since qi:Bi → Ci is surjective. Moreover

qi−1(∂i(b)) = ∂i(qi(b)) = ∂i(z) = 0.

But pi−1:Ai−1 → Bi−1 is injective and pi−1(Ai−1) = ker qi−1, since
the sequence

0−→Ai−1
pi−1−→Bi−1

qi−1−→Ci−1

is exact. Therefore there exists a unique element w of Ai−1 such
that ∂i(b) = pi−1(w). Moreover

pi−2(∂i−1(w)) = ∂i−1(pi−1(w)) = ∂i−1(∂i(b)) = 0

(since ∂i−1 ◦∂i = 0), and therefore ∂i−1(w) = 0 (since pi−2:Ai−2 →
Bi−2 is injective). Thus w ∈ Zi−1(A∗).

Now let b, b′ ∈ Bi satisfy qi(b) = qi(b
′) = z, and let w,w′ ∈

Zi−1(A∗) satisfy pi−1(w) = ∂i(b) and pi−1(w′) = ∂i(b
′). Then

qi(b − b′) = 0, and hence b′ − b = pi(a) for some a ∈ Ai, by
exactness. But then

pi−1(w + ∂i(a)) = pi−1(w) + ∂i(pi(a)) = ∂i(b) + ∂i(b
′ − b)

= ∂i(b
′) = pi−1(w′),

and pi−1:Ai−1 → Bi−1 is injective. Therefore w + ∂i(a) = w′,
and hence [w] = [w′] in Hi−1(A∗). Thus there is a well-defined
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function α̃i:Zi(C∗) → Hi−1(A∗) which sends z ∈ Zi(C∗) to [w] ∈
Hi−1(A∗), where w ∈ Zi−1(A∗) is chosen such that pi−1(w) = ∂i(b)
for some b ∈ Bi satisfying qi(b) = z. This function α̃i is clearly a
homomorphism from Zi(C∗) to Hi−1(A∗).

Suppose that elements z and z′ of Zi(C∗) represent the same ho-
mology class in Hi(C∗). Then z′ = z + ∂i+1c for some c ∈ Ci+1.
Moreover c = qi+1(d) for some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1

is surjective. Choose b ∈ Bi such that qi(b) = z, and let b′ =
b+ ∂i+1(d). Then

qi(b
′) = z + qi(∂i+1(d)) = z + ∂i+1(qi+1(d)) = z + ∂i+1(c) = z′.

Moreover ∂i(b
′) = ∂i(b + ∂i+1(d)) = ∂i(b) (since ∂i ◦ ∂i+1 = 0).

Therefore α̃i(z) = α̃i(z
′). It follows that the homomorphism

α̃i:Zi(C∗)→ Hi−1(A∗) induces a well-defined homomorphism

αi:Hi(C∗)→ Hi−1(A∗),

as required.

20



9. (a) [Based on lecture notes.] The qth chain group Cq(K,L) of the
simplicial pair is defined to be the quotient group Cq(K)/Cq(L),
where Cq(K) and Cq(L) denote the groups of q-chains of K and
L respectively.

The boundary homomorphism ∂q:Cq(K) → Cq−1(L) maps the
subgroup Cq(L) into Cq−1(L), and therefore induces a homomor-
phism ∂q:Cq(K,L)→ Cq−1(K,L). We define

Hq(K,L) = Zq(K,L)/Bq(K,L),

where

Zq(K,L) = ker(∂q:Cq(K,L)→ Cq−1(K,L))

= {c+ Cq(L) : c ∈ Cq(K) and ∂qc ∈ Cq−1(L)},
Bq(K,L) = image(∂q+1:Cq+1(K,L)→ Cq(K,L))

= {∂q+1(e) + Cq(L) : e ∈ Cq+1(K)}.

(b) [Based on lecture notes.] The homology exact sequence of the
simplicial pair (K,L) is the exact sequence

· · · ∂∗−→Hq(L)
i∗−→Hq(K)

u∗−→Hq(K,L)
∂∗−→Hq−1(L)

i∗−→Hq−1(K)
u∗−→· · ·

of homology groups is exact, where the homomorphism i∗, u∗ and
∂∗ are defined as in the examination question.

(c) [The essentials of the following argument may be covered in Trin-
ity Term lectures, not yet delivered.] H0(L) ∼= Z, since |L| is
connected. Moreover H0(L) is an infinite cyclic group generated
by the homology class α determined by some vertex v of L. Also
H0(K) ∼= Z

r, where r is the number of connected components of
|K|. Now ni∗(α) 6= 0 for all n ∈ Z \ {0}. Therefore nα ∈ ker i∗
if and only if n = 0. We conclude that i∗:H0(L) → H0(K) is
injective.

(d) [Not bookwork. Related examples will be discussed.] The image
of the homomorphism ∂∗:H1(K,L) → H0(L) is the kernel of the
homomorphism i∗:H0(L)→ H0(K), by exactness of the homology
exact sequence of the simplicial pair (K,L), and is therefore the
zero group. Therefore ∂∗:H1(K,L) → H0(L) is the zero homo-
morphism. It follows from exactness that u∗:H1(K) → H1(K,L)
is surjective. We then have the following exact sequence:

H2(K,L)
∂∗−→H1(L)

i∗−→H1(K)
u∗−→H1(K,L)−→0
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Now the kernel of i∗:H1(L) → H1(K) is the image ∂∗(H2(K,L))
of ∂∗:H2(K,L)→ H1(l), by exactness. Therefore

ker(u∗:H1(K)→ H1(K,L)) = i∗(H1(L))
∼= H1(L)/∂∗(H2(K,L)) = F.

We thus have an exact sequence

0−→F−→H1(K)
u∗−→H2(K,L)−→.0

Now H2(K,L) ∼= Z ⊕ Z, and thus there exist α1, α2 ∈ H1(K,L)
such that

H2(K,L) = {n1α1 + n2α2 : n1, n2 ∈ Z}.

Also the homomorphism u∗:H1(K) → H1(K,L) is surjective. It
follows that there exists a homomorphism θ:H1(K,L) → H1(K)
such that u∗ ◦ θ is the identity automorphism of H1(K,L). Thus
the exact sequence

0−→F−→H1(K)
u∗−→H2(K,L)−→.0

splits, and H1(K) ∼= F ⊕H1(K,L) ∼= F ⊕ Z⊕ Z, as required.

(e) [Not bookwork.] The image of u∗:H2(K)→ H2(K,L) is the kernel
of ∂∗:H2(K,L) → H1(L). It follows that u∗:H2(K) → H2(K,L)
is surjective. Also H3(K,L) = 0, because K is a 2-dimensional
simplicial complex. Therefore the sequence

0−→H2(L)
i∗−→H2(K)

u∗−→H2(K,L)−→0

is exact. Also H2(K,L) ∼= Z. It follows that the above short exact
sequence splits, and therefore

H2(K) ∼= H2(L)⊕H2(K,L) ∼= H2(L)⊕ Z.
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