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Course Type

This examination does not relate to any course of lectures given in the current
academic year. Instead ‘Course 421’ is a reading course, and candidates are
examined on the majority of the material on the course notes dating from the
time the course was last taught, in the academic year 2004–05, and also on
material on the topological classification of closed surfaces, that was included
in the course in previous years.

In consequence, there is an even greater proportion of ‘bookwork’ in the
examination. (Note that, in particular, the students will not have had the
tutorials on, for example, applications of the Mayer-Vietoris Exact Sequence
that students in previous years would have received.)

Course Website

The course website, with online lecture notes, problem sets. etc. is located
at

http://www.maths.tcd.ie/~dwilkins/Courses/421/

Course Outline

2. Homotopies and Covering Maps

2.1 Homotopies

2.2 Covering Maps

2.3 Path Lifting and the Monodromy Theorem

3. The Fundamental Group

3.1 The Fundamental Group of a Topological Space

3.2 Simply-Connected Topological Spaces

3.3 The Fundamental Group of the Circle

4. Simplicial Complexes

4.1 Geometrical Independence

4.2 Simplicial Complexes in Euclidean Spaces

4.3 Simplicial Maps

4.4 Barycentric Subdivision of a Simplicial Complex
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4.5 The Simplicial Approximation Theorem

4.6 The Brouwer Fixed Point Theorem

4.7 The Existence of Equilibria in an Exchange Economy

5. Simplicial Homology Groups

5.1 The Chain Groups of a Simplicial Complex

5.2 Boundary Homomorphisms

5.3 The Homology Groups of a Simplicial Complex

5.4 Simplicial Maps and Induced Homomorphisms

5.5 Connectedness and H0(K)

6. Introduction to Homological Algebra

6.1 Exact Sequences

6.2 Chain Complexes

6.3 The Mayer-Vietoris Sequence

7. The Topological Invariance of Simplicial Homology Groups

7.1 Contiguous Simplicial Maps

7.2 The Homology of Barycentric Subdivisions

7.3 Continuous Maps and Induced Homomorphisms

7.4 Homotopy Equivalence

8. The Topological Classification of Closed Surfaces
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Style of questions

1. (a), (b) and (c) bookwork, (c) not bookwork.

2. Bookwork

3. Bookwork

4. Bookwork.

5. (a) and (b) bookwork, (c) and (d) not bookwork.

6. Bookwork.

7. Bookwork.

8. Bookwork.

9. Candidates to select suitable material relevant to the topological clas-
sification of closed surfaces (almost certainly utilizing material from
printed lecture notes).

4



1. (a) [From printed lecture notes.] Let X and X̃ be topological spaces
and let p: X̃ → X be a continuous map. An open subset U of X
is said to be evenly covered by the map p if and only if p−1(U)
is a disjoint union of open sets of X̃ each of which is mapped
homeomorphically onto U by p. The map p: X̃ → X is said to be
a covering map if p: X̃ → X is surjective and in addition every
point of X is contained in some open set that is evenly covered by
the map p.

(b) [From printed lecture notes.] The map p:C→ C \ {0} defined by
p(z) = exp(z) is a covering map. Indeed, given any θ ∈ [−π, π]
let us define

Uθ = {z ∈ C \ {0} : arg(−z) 6= θ}.

Then p−1(Uθ) is the disjoint union of the open sets

{z ∈ C : |Im z − θ − 2πn| < π} ,

for all integers n, and p maps each of these open sets homeomor-
phically onto Uθ. Thus Uθ is evenly covered by the map p.

(c) [From printed lecture notes.] Let Z0 = {z ∈ Z : g(z) = h(z)}.
Note that Z0 is non-empty, by hypothesis. We show that Z0 is
both open and closed in Z.

Let z be a point of Z. There exists an open set U in X containing
the point p(g(z)) which is evenly covered by the covering map p.
Then p−1(U) is a disjoint union of open sets, each of which is
mapped homeomorphically onto U by the covering map p. One of
these open sets contains g(z); let this set be denoted by Ũ . Also
one of these open sets contains h(z); let this open set be denoted
by Ṽ . Let Nz = g−1(Ũ) ∩ h−1(Ṽ ). Then Nz is an open set in Z
containing z.

Consider the case when z ∈ Z0. Then g(z) = h(z), and therefore
Ṽ = Ũ . It follows from this that both g and h map the open set Nz

into Ũ . But p ◦ g = p ◦ h, and p|Ũ : Ũ → U is a homeomorphism.
Therefore g|Nz = h|Nz, and thus Nz ⊂ Z0. We have thus shown
that, for each z ∈ Z0, there exists an open set Nz such that z ∈ Nz

and Nz ⊂ Z0. We conclude that Z0 is open.

Next consider the case when z ∈ Z \ Z0. In this case Ũ ∩ Ṽ = ∅,
since g(z) 6= h(z). But g(Nz) ⊂ Ũ and h(Nz) ⊂ Ṽ . Therefore
g(z′) 6= h(z′) for all z′ ∈ Nz, and thus Nz ⊂ Z \Z0. We have thus
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shown that, for each z ∈ Z \ Z0, there exists an open set Nz such
that z ∈ Nz and Nz ⊂ Z \ Z0. We conclude that Z \ Z0 is open.

The subset Z0 of Z is therefore both open and closed. Also Z0

is non-empty by hypothesis. We deduce that Z0 = Z, since Z is
connected. Thus g = h, as required.

(d) This is not a covering map. Let E = S2 ∩ {(x, y, z) ∈ R3 : z = 0}.
Then no point of E has an open neighbourhood evenly covered by
the map p. One way to see this is to note that the map p violates
the conclusions of the path-lifting theorem. If γ: [a, b] → D2 is
a path with γ(a) ∈ E, if γ̃: [a, b] → S2 is a lift of γ satisfying
p ◦ γ̃ = γ, and if ρ:R3 → R

3 is the map sending (x, y, z) ∈ R3

to (x, y,−z), then ρ ◦ γ̃ is also a lift of γ. Thus if γ([a, b]) is not
wholly contained in the set E then γ̃ and ρ ◦ γ̃ are distinct lifts of
γ. This could not happen were p:S2 → D2 a covering map.
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2. (a) A topological space X is said to be simply-connected if it is path-
connected, and any continuous map f : ∂D → X mapping the
boundary circle ∂D of a closed disc D into X can be extended
continuously over the whole of the disk.

(b) [From printed lecture notes, with U and V replaced by V and
W respectively.] We must show that any continuous function
f : ∂D → X defined on the unit circle ∂D can be extended continu-
ously over the closed unit disk D. Now the preimages f−1(V ) and
f−1(W ) of V and W are open in ∂D (since f is continuous), and
∂D = f−1(V )∪f−1(W ). It follows from the Lebesgue Lemma that
there exists some δ > 0 such that any arc in ∂D whose length is
less than δ is entirely contained in one or other of the sets f−1(V )
and f−1(W ). Choose points z1, z2, . . . , zn around ∂D such that
the distance from zi to zi+1 is less than δ for i = 1, 2, . . . , n − 1
and the distance from zn to z1 is also less than δ. Then, for each i,
the short arc joining zi−1 to zi is mapped by f into one or other
of the open sets V and W .

Let x0 be some point of V ∩W . Now the sets V , W and V ∩W are
all path-connected. Therefore we can choose paths αi: [0, 1]→ X
for i = 1, 2, . . . , n such that αi(0) = x0, αi(1) = f(zi), αi([0, 1]) ⊂
V whenever f(zi) ∈ V , and αi([0, 1]) ⊂ W whenever f(zi) ∈ W .
For convenience let α0 = αn.

Now, for each i, consider the sector Ti of the closed unit disk
bounded by the line segments joining the centre of the disk to the
points zi−1 and zi and by the short arc joining zi−1 to zi. Now this
sector is homeomorphic to the closed unit disk, and therefore any
continuous function mapping the boundary ∂Ti of Ti into a simply-
connected space can be extended continuously over the whole of
Ti. In particular, let Fi be the function on ∂Ti defined by

Fi(z) =

 f(z) if z ∈ Ti ∩ ∂D,
αi−1(t) if z = tzi−1 for any t ∈ [0, 1],
αi(t) if z = tzi for any t ∈ [0, 1],

Note that Fi(∂Ti) ⊂ V whenever the short arc joining zi−1 to zi
is mapped by f into V , and Fi(∂Ti) ⊂ W whenever this short arc
is mapped into W . But V and W are both simply-connected. It
follows that each of the functions Fi can be extended continuously
over the whole of the sector Ti. Moreover the functions defined in
this fashion on each of the sectors Ti agree with one another wher-
ever the sectors intersect, and can therefore be pieced together to
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yield a continuous map defined over the the whole of the closed
disk D which extends the map f , as required.

(c) [From printed lecture notes, with U and V replaced by V and W
respectively.] The n-dimensional sphere Sn is simply-connected
for all n > 1, where Sn = {x ∈ Rn+1 : |x| = 1}. Indeed let
V = {x ∈ Sn : xn+1 > −1

2
} and W = {x ∈ Sn : xn+1 <

1
2
}. Then

V and W are homeomorphic to an n-dimensional ball, and are
therefore simply-connected. Moreover V ∩W is path-connected,
provided that n > 1. It follows that Sn is simply-connected for
all n > 1.
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3. [Based on lecture notes.] Let X be a topological space, and let x0

and x1 be points of X. A path in X from x0 to x1 is defined to be a
continuous map γ: [0, 1] → X for which γ(0) = x0 and γ(1) = x1. A
loop in X based at x0 is defined to be a continuous map γ: [0, 1]→ X
for which γ(0) = γ(1) = x0.

We can concatenate paths. Let γ1: [0, 1] → X and γ2: [0, 1] → X be
paths in some topological space X. Suppose that γ1(1) = γ2(0). We
define the product path γ1.γ2: [0, 1]→ X by

(γ1.γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2
;

γ2(2t− 1) if 1
2
≤ t ≤ 1.

If γ: [0, 1]→ X is a path inX then we define the inverse path γ−1: [0, 1]→
X by γ−1(t) = γ(1− t).
Let X be a topological space, and let x0 ∈ X be some chosen point
of X. We define an equivalence relation on the set of all (continuous)
loops based at the basepoint x0 ofX, where two such loops γ0 and γ1 are
equivalent if and only if γ0 ' γ1 rel {0, 1}. We denote the equivalence
class of a loop γ: [0, 1]→ X based at x0 by [γ]. This equivalence class
is referred to as the based homotopy class of the loop γ. The set of
equivalence classes of loops based at x0 is denoted by π1(X, x0).

Let X be a topological space, let x0 be some chosen point of X, and
let π1(X, x0) be the set of all based homotopy classes of loops based at
the point x0. We show π1(X, x0) is a group, the group multiplication
on π1(X, x0) being defined according to the rule [γ1][γ2] = [γ1.γ2] for
all loops γ1 and γ2 based at x0. This group is the fundamental group
of the topological space X based at x0.

First we show that the group operation on π1(X, x0) is well-defined.
Let γ1, γ′1, γ2 and γ′2 be loops in X based at the point x0. Suppose
that [γ1] = [γ′1] and [γ2] = [γ′2]. Let the map F : [0, 1] × [0, 1] → X be
defined by

F (t, τ) =

{
F1(2t, τ) if 0 ≤ t ≤ 1

2
,

F2(2t− 1, τ) if 1
2
≤ t ≤ 1,

where F1: [0, 1]×[0, 1]→ X is a homotopy between γ1 and γ′1, F2: [0, 1]×
[0, 1]→ X is a homotopy between γ2 and γ′2, and where the homotopies
F1 and F2 map (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Then F is itself
a homotopy from γ1.γ2 to γ′1.γ

′
2, and maps (0, τ) and (1, τ) to x0 for all
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τ ∈ [0, 1]. Thus [γ1.γ2] = [γ′1.γ
′
2], showing that the group operation on

π1(X, x0) is well-defined.

Next we show that the group operation on π1(X, x0) is associative.
Let γ1, γ2 and γ3 be loops based at x0, and let α = (γ1.γ2).γ3. Then
γ1.(γ2.γ3) = α ◦ θ, where

θ(t) =


1
2
t if 0 ≤ t ≤ 1

2
;

t− 1
4

if 1
2
≤ t ≤ 3

4
;

2t− 1 if 3
4
≤ t ≤ 1.

Thus the map G: [0, 1] × [0, 1] → X defined by G(t, τ) = α((1 − τ)t +
τθ(t)) is a homotopy between (γ1.γ2).γ3 and γ1.(γ2.γ3), and moreover
this homotopy maps (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. It fol-
lows that (γ1.γ2).γ3 ' γ1.(γ2.γ3) rel {0, 1} and hence ([γ1][γ2])[γ3] =
[γ1]([γ2][γ3]). This shows that the group operation on π1(X, x0) is as-
sociative.

Let ε: [0, 1] → X denote the constant loop at x0, defined by ε(t) = x0

for all t ∈ [0, 1]. Then ε.γ = γ ◦θ0 and γ.ε = γ ◦θ1 for any loop γ based
at x0, where

θ0(t) =

{
0 if 0 ≤ t ≤ 1

2
,

2t− 1 if 1
2
≤ t ≤ 1,

θ1(t) =

{
2t if 0 ≤ t ≤ 1

2
,

1 if 1
2
≤ t ≤ 1,

for all t ∈ [0, 1]. But the continuous map (t, τ) 7→ γ((1− τ)t + τθj(t))
is a homotopy between γ and γ ◦ θj for j = 0, 1 which sends (0, τ) and
(1, τ) to x0 for all τ ∈ [0, 1]. Therefore ε.γ ' γ ' γ.ε rel {0, 1}, and
hence [ε][γ] = [γ] = [γ][ε]. We conclude that [ε] represents the identity
element of π1(X, x0).

It only remains to verify the existence of inverses. Now the map
K: [0, 1]× [0, 1]→ X defined by

K(t, τ) =

{
γ(2τt) if 0 ≤ t ≤ 1

2
;

γ(2τ(1− t)) if 1
2
≤ t ≤ 1.

is a homotopy between the loops γ.γ−1 and ε, and moreover this ho-
motopy sends (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Therefore
γ.γ−1 ' ε rel{0, 1}, and thus [γ][γ−1] = [γ.γ−1] = [ε]. On replacing
γ by γ−1, we see also that [γ−1][γ] = [ε], and thus [γ−1] = [γ]−1, as
required.
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4. (a) [From printed lecture notes.] Let K be a simplicial complex which
is a subdivision of some n-dimensional simplex ∆. We define a
Sperner labelling of the vertices of K to be a function, labelling
each vertex of K with an integer between 0 and n, with the fol-
lowing properties:—

• for each j ∈ {0, 1, . . . , n}, there is exactly one vertex of ∆
labelled by j,

• if a vertex v of K belongs to some face of ∆, then some vertex
of that face has the same label as v.

(b) [From printed lecture notes.] Sperner’s Lemma. Let K be
a simplicial complex which is a subdivision of an n-simplex ∆.
Then, for any Sperner labelling of the vertices of K, the number
of n-simplices of K whose vertices are labelled by 0, 1, . . . , n is odd.

Given integers i0, i1, . . . , iq between 0 and n, let N(i0, i1, . . . , iq)
denote the number of q-simplices of K whose vertices are labelled
by i0, i1, . . . , iq (where an integer occurring k times in the list
labels exactly k vertices of the simplex). We must show that
N(0, 1, . . . , n) is odd.

We prove the result by induction on the dimension n of the sim-
plex ∆; it is clearly true when n = 0. Suppose that the result
holds in dimensions less than n. For each simplex σ of K of di-
mension n, let p(σ) denote the number of (n−1)-faces of σ labelled
by 0, 1, . . . , n − 1. If σ is labelled by 0, 1, . . . , n then p(σ) = 1; if
σ is labelled by 0, 1, . . . , n − 1, j, where j < n, then p(σ) = 2; in
all other cases p(σ) = 0. Therefore

∑
σ∈K

dimσ=n

p(σ) = N(0, 1, . . . , n) + 2
n−1∑
j=0

N(0, 1, . . . , n− 1, j).

Now the definition of Sperner labellings ensures that the only (n−
1)-face of ∆ containing simplices of K labelled by 0, 1, . . . , n − 1
is that with vertices labelled by 0, 1, . . . , n − 1. Thus if M is the
number of (n−1)-simplices of K labelled by 0, 1, . . . , n−1 that are
contained in this face, then N(0, 1, . . . , n− 1)−M is the number
of (n − 1)-simplices labelled by 0, 1, . . . , n − 1 that intersect the
interior of ∆. It follows that∑

σ∈K
dimσ=n

p(σ) = M + 2(N(0, 1, . . . , n− 1)−M),
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since any (n−1)-simplex of K that is contained in a proper face of
∆ must be a face of exactly one n-simplex of K, and any (n− 1)-
simplex that intersects the interior of ∆ must be a face of exactly
two n-simplices of K. On combining these equalities, we see that
N(0, 1, . . . , n)−M is an even integer. But the induction hypothesis
ensures that Sperner’s Lemma holds in dimension n− 1, and thus
M is odd. It follows that N(0, 1, . . . , n) is odd, as required.

(c) [From printed lecture notes.] Suppose that such a map r: ∆→ ∂∆
were to exist. It would then follow from the Simplicial Approxima-
tion Theorem that there would exist a simplicial approximation
s:K → L to the map r, where L is the simplicial complex consist-
ing of all of the proper faces of ∆, and K is the jth barycentric
subdivision, for some sufficiently large j, of the simplicial complex
consisting of the simplex ∆ together with all of its faces.

If v is a vertex of K belonging to some proper face Σ of ∆ then
r(v) = v, and hence s(v) must be a vertex of Σ, since s:K → L is
a simplicial approximation to r: ∆→ ∂∆. In particular s(v) = v
for all vertices v of ∆. Thus if v 7→ m(v) is a labelling of the
vertices of ∆ by the integers 0, 1, . . . , n, then v 7→ m(s(v)) is a
Sperner labelling of the vertices of K. Thus Sperner’s Lemma
guarantees the existence of at least one n-simplex σ of K labelled
by 0, 1, . . . , n. But then s(σ) = ∆, which is impossible, since ∆
is not a simplex of L. We conclude therefore that there cannot
exist any continuous map r: ∆ → ∂∆ satisfying r(x) = x for all
x ∈ ∂∆.
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5. (a) [From printed lecture notes.]

∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq.〉

We show that ∂q−1 ◦ ∂q = 0 when 2 ≤ q ≤ dimK.

Let v0,v1, . . . ,vq be vertices spanning a simplex of K. Then

∂q−1∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j∂q−1 (〈v0, . . . , v̂j, . . . ,vq〉)

=

q∑
j=0

j−1∑
k=0

(−1)j+k〈v0, . . . , v̂k, . . . , v̂j, . . . ,vq〉

+

q∑
j=0

q∑
k=j+1

(−1)j+k−1〈v0, . . . , v̂j, . . . , v̂k, . . . ,vq〉

= 0

(since each term in this summation over j and k cancels with
the corresponding term with j and k interchanged). The result
now follows from the fact that the homomorphism ∂q−1 ◦ ∂q is
determined by its values on all oriented q-simplices of K.

(b) [From printed lecture notes.] Let K be a simplicial complex. A
q-chain z is said to be a q-cycle if ∂qz = 0. A q-chain b is said
to be a q-boundary if b = ∂q+1c

′ for some (q + 1)-chain c′. The
group of q-cycles of K is denoted by Zq(K), and the group of q-
boundaries of K is denoted by Bq(K). Thus Zq(K) is the kernel of
the boundary homomorphism ∂q:Cq(K) → Cq−1(K), and Bq(K)
is the image of the boundary homomorphism ∂q+1:Cq+1(K) →
Cq(K). However ∂q ◦ ∂q+1 = 0. Therefore Bq(K) ⊂ Zq(K).
But these groups are subgroups of the Abelian group Cq(K). We
can therefore form the quotient group Hq(K), where Hq(K) =
Zq(K)/Bq(K). The group Hq(K) is referred to as the qth homol-
ogy group of the simplicial complex K. Note that Hq(K) = 0 if
q < 0 or q > dimK (since Zq(K) = 0 and Bq(K) = 0 in these
cases). It can be shown that the homology groups of a simpli-
cial complex are topological invariants of the polyhedron of that
complex.

(c) Let p be this chain. Then

∂2p = a (〈v2 v4〉 − 〈v1 v4〉+ 〈v1 v2〉)
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+ b (〈v3 v4〉 − 〈v2 v4〉+ 〈v2 v3〉)
+ c (〈v1 v4〉 − 〈v3 v4〉+ 〈v3 v1〉)
+ d (〈v2 v5〉 − 〈v1 v5〉+ 〈v1 v2〉)
+ e (〈v3 v5〉 − 〈v2 v5〉+ 〈v2 v3〉)
+ f (〈v1 v5〉 − 〈v3 v5〉+ 〈v3 v1〉)

= (a+ d)〈v1 v2〉+ (b+ e)〈v2 v3〉+ (c+ f)〈v3 v1〉
+ (c− a)〈v1 v4〉+ (a− b)〈v2 v4〉+ (b− c)〈v3 v4〉
+ (f − d)〈v1 v5〉+ (d− e)〈v2 v5〉+ (e− f)〈v3 v5〉

(d) Let p be the 2-chain of c. Then ∂2p = 0 if and only if a = b = c =
−d = −e = −f . But a, b, c, d, e and f are integers. It follows
that ∂2p = 0 if and only if p = mz for some integer m. Thus
Z2(K) = {mz : m ∈ Z}. There are no 3-chains, and therefore
B2(K) = 0. It follows that H2(K) = Z2(K)/B2(K) ∼= Z2(K) ∼=
Z, as required.
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6. (a) [Quoted from lecture notes.] Let K be a simplicial complex, and let
y and z be vertices of K. We say that y and z can be joined by an
edge path if there exists a sequence v0,v1, . . . ,vm of vertices of K
with v0 = y and vm = z such that the line segment with endpoints
vj−1 and vj is an edge belonging to K for j = 1, 2, . . . ,m.

(b) [Quoted from lecture notes.] It is easy to verify that if any two
vertices of K can be joined by an edge path then |K| is path-
connected and is thus connected. (Indeed any two points of |K|
can be joined by a path made up of a finite number of straight
line segments.)

We must show that if |K| is connected then any two vertices of K
can be joined by an edge path. Choose a vertex v0 of K. It suffices
to verify that every vertex of K can be joined to v0 by an edge
path.

Let K0 be the collection of all of the simplices of K having the
property that one (and hence all) of the vertices of that simplex
can be joined to v0 by an edge path. If σ is a simplex belonging
to K0 then every vertex of σ can be joined to v0 by an edge
path, and therefore every face of σ belongs to K0. Thus K0 is
a subcomplex of K. Clearly the collection K1 of all simplices
of K which do not belong to K0 is also a subcomplex of K. Thus
K = K0 ∪K1, where K0 ∩K1 = ∅, and hence |K| = |K0| ∪ |K1|,
where |K0|∩ |K1| = ∅. But the polyhedra |K0| and |K1| of K0 and
K1 are closed subsets of |K|. It follows from the connectedness
of |K| that either |K0| = ∅ or |K1| = ∅. But v0 ∈ K0. Thus
K1 = ∅ and K0 = K, showing that every vertex of K can be
joined to v0 by an edge path, as required.

(c) [Quoted from lecture notes.] Let u1,u2, . . . ,ur be the vertices of
the simplicial complex K. Every 0-chain of K can be expressed
uniquely as a formal sum of the form

n1〈u1〉+ n2〈u2〉+ · · ·+ nr〈ur〉

for some integers n1, n2, . . . , nr. It follows that there is a well-
defined homomorphism ε:C0(K)→ Z defined by

ε (n1〈u1〉+ n2〈u2〉+ · · ·+ nr〈ur〉) = n1 + n2 + · · ·+ nr.

Now ε(∂1(〈y, z〉)) = ε(〈z〉 − 〈y〉) = 0 whenever y and z are end-
points of an edge of K. It follows that ε ◦ ∂1 = 0, and hence
B0(K) ⊂ ker ε.
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Let v0,v1, . . . ,vm be vertices of K determining an edge path.
Then

〈vm〉 − 〈v0〉 = ∂1

(
m∑
j=1

〈vj−1,vj〉

)
∈ B0(K).

Now |K| is connected, and therefore any pair of vertices of K
can be joined by an edge path. We deduce that 〈z〉 − 〈y〉 ∈
B0(K) for all vertices y and z of K. Thus if c ∈ ker ε, where

c =
r∑
j=1

nj〈uj〉, then
r∑
j=1

nj = 0, and hence c =
r∑
j=2

nj(〈uj〉 − 〈u1〉).

But 〈uj〉−〈u1〉 ∈ B0(K). It follows that c ∈ B0(K). We conclude
that ker ε ⊂ B0(K), and hence ker ε = B0(K).

Now the homomorphism ε:C0(K)→ Z is surjective and its kernel
isB0(K). Therefore it induces an isomorphism from C0(K)/B0(K)
to Z. However Z0(K) = C0(K) (since ∂0 = 0 by definition). Thus
H0(K) ≡ C0(K)/B0(K) ∼= Z, as required.
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7. (a) [From printed lecture notes.] A sequence F
p−→G q−→H of Abelian

groups and homomorphisms is said to be exact at G if and only
if image(p:F → G) = ker(q:G → H). A sequence of Abelian
groups and homomorphisms is said to be exact if it is exact at each
Abelian group occurring in the sequence (so that the image of each
homomorphism is the kernel of the succeeding homomorphism).

(b) φ ◦ ψ1 = ψ2 ◦ θ
(c) [Based on printed lecture notes.] First we prove that if ψ2 and

ψ4 are monomorphisms and if ψ1 is a epimorphism then ψ3 is
an monomorphism, Suppose that ψ2 and ψ4 are monomorphisms
and that ψ1 is an epimorphism. We wish to show that ψ3 is a
monomorphism. Let x ∈ G3 be such that ψ3(x) = 0. Then
ψ4 (θ3(x)) = φ3 (ψ3(x)) = 0, and hence θ3(x) = 0. But then
x = θ2(y) for some y ∈ G2, by exactness. Moreover

φ2 (ψ2(y)) = ψ3 (θ2(y)) = ψ3(x) = 0,

hence ψ2(y) = φ1(z) for some z ∈ H1, by exactness. But z =
ψ1(w) for some w ∈ G1, since ψ1 is an epimorphism. Then

ψ2 (θ1(w)) = φ1 (ψ1(w)) = ψ2(y),

and hence θ1(w) = y, since ψ2 is a monomorphism. But then

x = θ2(y) = θ2 (θ1(w)) = 0

by exactness. Thus ψ3 is a monomorphism.

Next we prove that if ψ2 and ψ4 are epimorphisms and if ψ5 is
a monomorphism then ψ3 is an epimorphism. Thus suppose that
ψ2 and ψ4 are epimorphisms and that ψ5 is a monomorphism. We
wish to show that ψ3 is an epimorphism. Let a be an element
of H3. Then φ3(a) = ψ4(b) for some b ∈ G4, since ψ4 is an
epimorphism. Now

ψ5 (θ4(b)) = φ4 (ψ4(b)) = φ4 (φ3(a)) = 0,

hence θ4(b) = 0, since ψ5 is a monomorphism. Hence there exists
c ∈ G3 such that θ3(c) = b, by exactness. Then

φ3 (ψ3(c)) = ψ4 (θ3(c)) = ψ4(b),

hence φ3 (a− ψ3(c)) = 0, and thus a − ψ3(c) = φ2(d) for some
d ∈ H2, by exactness. But ψ2 is an epimorphism, hence there
exists e ∈ G2 such that ψ2(e) = d. But then

ψ3 (θ2(e)) = φ2 (ψ2(e)) = a− ψ3(c).
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Hence a = ψ3 (c+ θ2(e)), and thus a is in the image of ψ3. This
shows that ψ3 is an epimorphism.

It follows that if ψ1, ψ2, ψ4 and ψ5 are isomorphisms, then so is
ψ3.
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8. (a) [Quoted from from printed lecture notes.] Two simplicial maps
s:K → L and t:K → L between simplicial complexes K and L
are said to be contiguous if, given any simplex σ of K, there exists
a simplex τ of L such that s(v) and t(v) are vertices of τ for each
vertex v of σ.

(b) [Quoted from from printed lecture notes.] Let x be a point in the
interior of some simplex σ of K. Then f(x) belongs to the interior
of a unique simplex τ of L, and moreover s(x) ∈ τ and t(x) ∈ τ ,
since s and t are simplicial approximations to the map f . But
s(x) and t(x) are contained in the interior of the simplices s(σ)
and t(σ) of L. It follows that s(σ) and t(σ) are faces of τ , and
hence s(v) and t(v) are vertices of τ for each vertex v of σ, as
required.

(c) [Quoted from from printed lecture notes.] Choose an ordering of
the vertices of K. Then there are well-defined homomorphisms
Dq:Cq(K)→ Cq+1(L) characterized by the property that

Dq(〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈s(v0), . . . , s(vj), t(vj), . . . , t(vq)〉.

whenever v0,v1, . . .vq are the vertices of a q-simplex of K listed
in increasing order (with respect to the chosen ordering of the
vertices of K). Then

∂1(D0(〈v〉)) = ∂1(〈s(v), t(v)〉) = 〈t(v)〉 − 〈s(v)〉,

and thus ∂1 ◦D0 = t0 − s0. Also

Dq−1(∂q(〈v0, . . . ,vq〉))

=

q∑
i=0

(−1)iDq−1(〈v0, . . . , v̂i, . . . ,vq〉)

=

q∑
i=0

i−1∑
j=0

(−1)i+j〈s(v0), . . . , s(vj), t(vj), . . . ,̂t(vi), . . . , t(vq)〉

+

q∑
i=0

q∑
j=i+1

(−1)i+j−1〈s(v0), . . . ,̂s(vi), . . . , s(vj), t(vj), . . . , t(vq)〉

and

∂q+1(Dq(〈v0, . . .vq〉))
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=

q∑
j=0

(−1)j∂q+1(〈s(v0), . . . , s(vj), t(vj), . . . , t(vq)〉)

=

q∑
j=0

j−1∑
i=0

(−1)i+j〈s(v0), . . . ,̂s(vi), . . . , s(vj), t(vj), . . . , t(vq)〉

+〈t(v0), . . . , t(vq)〉+

q∑
j=1

〈s(v0), . . . , s(vj−1), t(vj), . . . , t(vq)〉

−
q−1∑
j=0

〈s(v0), . . . , s(vj), t(vj+1), . . . , t(vq)〉 − 〈s(v0), . . . , s(vq)〉

+

q∑
j=0

q∑
i=j+1

(−1)i+j+1〈s(v0), . . . , s(vj), t(vj), . . . ,̂t(vi), . . . , t(vq)〉

= −Dq−1(∂q(〈v0, . . . ,vq〉)) + 〈t(v0), . . . , t(vq)〉 − 〈s(v0), . . . , s(vq)〉

and thus
∂q+1 ◦Dq +Dq−1 ◦ ∂q = tq − sq

for all q > 0. It follows that tq(z) − sq(z) = ∂q+1 (Dq(z)) for any
q-cycle z of K, and therefore s∗([z]) = t∗([z]). Thus s∗ = t∗ as
homomorphisms from Hq(K) to Hq(L), as required.
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