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Provisional marking scheme

Each question is marked out of 20. The marks of the best six questions
are then added together. The resultant mark is then either converted to
a percentage as it stands, or else a piecewise linear transformation of the
mark will be applied, if this is considered appropriate after reviewing all the
marked scripts.

1. (a) 3 marks, (b) 3 marks, (c) 4 marks (d) 6 marks (e) 4 marks

2. (a) 4 marks, (b) 8 marks, (c) 4 marks (d) 4 marks

3. (a) 6 marks, (b) 10 marks, (c) 4 marks

4. 8 marks for showing the existence of a well-defined function λ: π1(S1, b)→
Z; 4 marks for showing that it is a homomorphism, 4 marks for showing
that it is injective, 4 marks for showing that it is surjective.

5. (a) 3 marks, (b) 10 marks, (c) 7 marks

6. (a) 6 marks, (b) 4 marks, (c) 10 marks

7. (a) 10 marks, (b) 5 marks, (c) 5 marks

8. (a) 6 marks, (b) 14 marks

9. (a) 6 marks, (b) 14 marks
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Style of questions

1. (a)–(d) bookwork, (e) not bookwork

2. (a)–(c) bookwork, (d) not bookwork

3. (a) bookwork, (b) and (c) not bookwork

4. bookwork

5. bookwork

6. bookwork

7. not bookwork—problems of this general type have been discussed in
class

8. bookwork

9. partially bookwork—the homology groups of torus, Klein bottle and
real projective plane have been discussed in class, but presented some-
what differently. (Essentially, I gave a simultaneous treatment of the
torus, Klein bottle and real projective plane.)
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1. (a) Let X be a topological space, and let A be a subset of X. A
collection of subsets of X in X is said to cover A if and only
if every point of A belongs to at least one of these subsets. In
particular, an open cover of X is collection of open sets in X that
covers X.

If U and V are open covers of some topological space X then V is
said to be a subcover of U if and only if every open set belonging
to V also belongs to U .

A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

(b) Let U be any collection of open sets in X covering A. On adjoining
the open set X \ A to U , we obtain an open cover of X. This
open cover of X possesses a finite subcover, since X is compact.
Moreover A is covered by the open sets in the collection U that
belong to this finite subcover. It follows that A is compact, as
required.

(c) Let p be a point of X that does not belong to A, and let f(x) =
d(x, p), where d is the distance function on X. It follows that
there is a point q of A such that f(a) ≥ f(q) for all a ∈ A, since A
is compact. Now f(q) > 0, since q 6= p. Let δ satisfy 0 < δ ≤ f(q).
Then the open ball of radius δ about the point p is contained in
the complement of A, since f(x) < f(q) for all points x of this
open ball. It follows that the complement of A is an open set in
X, and thus A itself is closed in X.

(d) Suppose that K is compact. Then K is closed, since Rn is a metric
space, and a compact subset of a metric space is closed. For each
natural number m, let Bm be the open ball of radius m about
the origin, given by Bm = {x ∈ Rn : |x| < m}. Then {Bm :
m ∈ N} is an open cover of Rn. It follows from the compactness
of K that there exist natural numbers m1,m2, . . . ,mk such that
K ⊂ Bm1 ∪ Bm2 ∪ · · · ∪ Bmk . But then K ⊂ BM , where M is the
maximum of m1,m2, . . . ,mk, and thus K is bounded.

Conversely suppose that K is both closed and bounded. Then
there exists some real number L such that K is contained within
the closed cube C given by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.

Now the closed interval [−L,L] is compact by the Heine-Borel
Theorem, and C is the Cartesian product of n copies of the com-
pact set [−L,L]. It follows from C is a finite product of compact
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spaces, and is therefore compact. But K is a closed subset of C,
and a closed subset of a compact topological space is itself com-
pact. Thus K is compact, as required.

(e) Let x be a point of Rn \ K1, and let f :K → R be defined by
f(y) = |y \x|. Then f(y) > 1 for all points y of K. Now f(K) is
a compact subset of R (since continuous functions map compact
sets to compact sets), and therefore f(K) is a closed set in R.
Also f(K) ∩ [0, 1] = ∅. It follows that there exists δ > 0 such
that f(K) ∩ [0, 1 + δ) = ∅. But then Then |y − x| > 1 + δ for
all points y of K, and therefore the open ball of radius δ about
x is contained Rn \ K1. This shows that Rn \ K1 is open, and
therefore K1 is closed in Rn. Moreover K1 is clearly bounded,
for the compact set K is wholly contained within some ball of
radius R about the origin, and K1 is then contained within the
ball of radius R+ 1 about the origin. Thus K1 is both closed and
bounded, and therefore compact.
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2. (a) A topological space X is said to be connected if the empty set ∅ and
the whole space X are the only subsets of X that are both open
and closed. A topological space X is said to be path-connected if
and only if, given any two points x0 and x1 of X, there exists a
path in X from x0 to x1.

(b) Suppose that X is connected. Let f :X → Z be a continuous
function. Choose n ∈ f(X), and let

U = {x ∈ X : f(x) = n}, V = {x ∈ X : f(x) 6= n}.

Then U and V are the preimages of the open subsets {n} and
Z\{n} of Z, and therefore both U and V are open in X. Moreover
U ∩ V = ∅, and X = U ∪ V . It follows that V = X \ U , and
thus U is both open and closed. Moreover U is non-empty, since
n ∈ f(X). It follows from the connectedness of X that U = X,
so that f :X → Z is constant, with value n.

Conversely suppose that every continuous function f :X → Z is
constant. Let S be a subset of X which is both open and closed.
Let f :X → Z be defined by

f(x) =

{
1 if x ∈ S;
0 if x 6∈ S.

Now the preimage of any subset of Z under f is one of the open
sets ∅, S, X \ S and X. Therefore the function f is continuous.
But then the function f is constant, so that either S = ∅ or S = X.
This shows that X is connected.

(c) Let X be a path-connected topological space, and let f :X → Z be
a continuous integer-valued function on X. If x0 and x1 are any
two points of X then there exists a path γ: [0, 1] → X such that
γ(0) = x0 and γ(1) = x1. But then f ◦γ: [0, 1]→ Z is a continuous
integer-valued function on [0, 1]. But [0, 1] is connected, therefore
f ◦ γ is constant. It follows that f(x0) = f(x1). Thus every
continuous integer-valued function on X is constant. Therefore X
is connected.

(d) Suppose f(X) 6= R. Then there would exist a real number t such
that t ∈ R \ f(X). Let

U = {x ∈ X : f(x) < t}, V = {x ∈ X : f(x) < t}.

Then U and V would be non-empty open sets, U ∩ V = ∅ and
X = U ∪ V . But then U = X \ V , and therefore U would be a
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subset of X that was both open and closed, but was neither ∅ nor
X. But this would contradict the connectedness of X. Therefore
f(X) = R.
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3. (a) Let X and X̃ be topological spaces and let p: X̃ → X be a con-
tinuous map. An open subset U of X is said to be evenly covered
by the map p if and only if p−1(U) is a disjoint union of open sets
of X̃ each of which is mapped homeomorphically onto U by p.
The map p: X̃ → X is said to be a covering map if p: X̃ → X is
surjective and in addition every point of X is contained in some
open set that is evenly covered by the map p.

(b) Given a point (x0, y0) of R2 Let U be an open set in R2. Then

q−1(q(U)) =
⋃

(j,k)∈Z2

(U + (j, k)),

where U + (j, k) = {(x + j, y + k) : (x, y) ∈ U}. It follows that,
given any open set U in R2, q−1(q(U)) is a union of open sets, and
is thus itself an open set in T 2.

Suppose that the open set U is contained within an open square
of the form

{(x, y) ∈ R2 : x0 −
1

2
< x < x0 +

1

2
and y0 −

1

2
< y < y0 +

1

2
}.

Then U ∩ U + (j, k) = ∅ whenever j 6= 0 or k 6= 0. It follows
that q|U maps U bijectively onto q(U). Moreover it maps open
sets to open sets, and therefore the inverse of this bijection is
continuous. It follows that q|U maps U homeomorphically onto
q(U). We see therefore that q−1(q(U)) is the disjoint union of the
open sets U + (j, k) for all j ∈ Z and k ∈ Z, and each of these
open sets is mapped homeomorphically onto q(U) by q. Thus
q(U) is evenly covered by the map q:R2 → T 2, provided that U is
contained within an open square of the form given above. The map
q:R2 → T 2 is surjective, and each point of T 2 is contained within
an evenly covered open set of the type just described. Therefore
q:R2 → T 2 is a covering map.

(c) Consider the map g:R2 → T 2 that sends a point (x, y) of R2 to
the point q(nx, y). If (x1, y1) and (x2, y2) are points of R2, and
if q(x1, y1) = q(x2, y2), then x1 − x2 and y1 − y2 are integers.
But then q(nx1, y1) = q(nx2, y2), since nx1 − nx2 and y1 − y2 are
both integers. It follows that there exists a well-defined function
fn:T 2 → T 2 such that fn(q(x, y)) = q(nx, y) for all points (x, y)
of R2. Moreover fn ◦ q:R2 → T 2 is continuous, and q:R2 → T 2 is
an identification map. It follows that fn:T 2 → T 2 is continuous,
as required.
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4. We regard S1 as the unit circle in R2. Without loss of generality, we
can take b = (1, 0). Now the map p:R → S1 which sends t ∈ R to
(cos 2πt, sin 2πt) is a covering map, and b = p(0). Moreover p(t1) =
p(t2) if and only if t1 − t2 is an integer; in particular p(t) = b if and
only if t is an integer.

Let α and β be loops in S1 based at b, and let α̃ and β̃ be paths
in R that satisfy p ◦ α̃ = α and p ◦ β̃ = β. Suppose that α and β
represent the same element of π1(S1, b). Then there exists a homotopy
F : [0, 1] × [0, 1] → S1 such that F (t, 0) = α(t) and F (t, 1) = β(t)
for all t ∈ [0, 1], and F (0, τ) = F (1, τ) = b for all τ ∈ [0, 1]. It follows
from the Monodromy Theorem that this homotopy lifts to a continuous
map G: [0, 1] × [0, 1] → R satisfying p ◦ G = F . Moreover G(0, τ) and
G(1, τ) are integers for all τ ∈ [0, 1], since p(G(0, τ)) = b = p(G(1, τ)).
Also G(t, 0) − α̃(t) and G(t, 1) − β̃(t) are integers for all t ∈ [0, 1],
since p(G(t, 0)) = α(t) = p(α̃(t)) and p(G(t, 1)) = β(t) = p(β̃(t)).
Now any continuous integer-valued function on [0, 1] is constant, by
the Intermediate Value Theorem. In particular the functions sending
τ ∈ [0, 1] to G(0, τ) and G(1, τ) are constant, as are the functions
sending t ∈ [0, 1] to G(t, 0)− α̃(t) and G(t, 1)− β̃(t). Thus

G(0, 0) = G(0, 1), G(1, 0) = G(1, 1),

G(1, 0)− α̃(1) = G(0, 0)− α̃(0), G(1, 1)− β̃(1) = G(0, 1)− β̃(0).

On combining these results, we see that

α̃(1)− α̃(0) = G(1, 0)−G(0, 0) = G(1, 1)−G(0, 1) = β̃(1)− β̃(0).

We conclude from this that there exists a well-defined function

λ: π1(S1, b)→ Z

characterized by the property that λ([α]) = α̃(1)− α̃(0) for all loops α
based at b, where α̃: [0, 1]→ R is any path in R satisfying p ◦ α̃ = α.

Next we show that λ is a homomorphism. Let α and β be any loops
based at b, and let α̃ and β̃ be lifts of α and β. The element [α][β] of
π1(S1, b) is represented by the product path α.β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Define a continuous path σ: [0, 1]→ R by

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

β̃(2t− 1) + α̃(1)− β̃(0) if 1
2
≤ t ≤ 1.
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(Note that σ(t) is well-defined when t = 1
2
.) Then p◦σ = α.β and thus

λ([α][β]) = λ([α.β]) = σ(1)− σ(0) = α̃(1)− α̃(0) + β̃(1)− β̃(0)

= λ([α]) + λ([β]).

Thus λ: π1(S1, b)→ Z is a homomorphism.

Now suppose that λ([α]) = λ([β]). Let F : [0, 1] × [0, 1] → S1 be the
homotopy between α and β defined by

F (t, τ) = p
(

(1− τ)α̃(t) + τ β̃(t)
)
,

where α̃ and β̃ are the lifts of α and β respectively starting at 0. Now
β̃(1) = λ([β]) = λ([α]) = α̃(1), and β̃(0) = α̃(0) = 0. Therefore
F (0, τ) = b = p(α̃(1)) = F (1, τ) for all τ ∈ [0, 1]. Thus α ' β rel {0, 1},
and therefore [α] = [β]. This shows that λ: π1(S1, b)→ Z is injective.

The homomorphism λ is surjective, since n = λ([γn]) for all n ∈ Z,
where the loop γn: [0, 1]→ S1 is given by

γn(t) = p(nt) = (cos 2πnt, sin 2πnt)

for all t ∈ [0, 1]. We conclude that λ: π1(S1, b)→ Z is an isomorphism.
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5. (a) Let K be a simplicial complex which is a subdivision of some
n-dimensional simplex ∆. We define a Sperner labelling of the
vertices of K to be a function, labelling each vertex of K with an
integer between 0 and n, with the following properties:—

• for each j ∈ {0, 1, . . . , n}, there is exactly one vertex of ∆
labelled by j,

• if a vertex v of K belongs to some face of ∆, then some vertex
of that face has the same label as v.

(b) Sperner’s Lemma: Let K be a simplicial complex which is a subdi-
vision of an n-simplex ∆. Then, for any Sperner labelling of the
vertices of K, the number of n-simplices of K whose vertices are
labelled by 0, 1, . . . , n is odd.

Proof. Given integers i0, i1, . . . , iq between 0 and n, let

N(i0, i1, . . . , iq)

denote the number of q-simplices of K whose vertices are labelled
by i0, i1, . . . , iq (where an integer occurring k times in the list
labels exactly k vertices of the simplex). We must show that
N(0, 1, . . . , n) is odd.

We prove the result by induction on the dimension n of the sim-
plex ∆; it is clearly true when n = 0. Suppose that the result
holds in dimensions less than n. For each simplex σ of K of di-
mension n, let p(σ) denote the number of (n−1)-faces of σ labelled
by 0, 1, . . . , n − 1. If σ is labelled by 0, 1, . . . , n then p(σ) = 1; if
σ is labelled by 0, 1, . . . , n − 1, j, where j < n, then p(σ) = 2; in
all other cases p(σ) = 0. Therefore

∑
σ∈K

dimσ=n

p(σ) = N(0, 1, . . . , n) + 2
n−1∑
j=0

N(0, 1, . . . , n− 1, j).

Now the definition of Sperner labellings ensures that the only (n−
1)-face of ∆ containing simplices of K labelled by 0, 1, . . . , n − 1
is that with vertices labelled by 0, 1, . . . , n − 1. Thus if M is the
number of (n−1)-simplices of K labelled by 0, 1, . . . , n−1 that are
contained in this face, then N(0, 1, . . . , n− 1)−M is the number
of (n − 1)-simplices labelled by 0, 1, . . . , n − 1 that intersect the
interior of ∆. It follows that∑

σ∈K
dimσ=n

p(σ) = M + 2(N(0, 1, . . . , n− 1)−M),
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since any (n−1)-simplex of K that is contained in a proper face of
∆ must be a face of exactly one n-simplex of K, and any (n− 1)-
simplex that intersects the interior of ∆ must be a face of exactly
two n-simplices of K. On combining these equalities, we see that
N(0, 1, . . . , n)−M is an even integer. But the induction hypothesis
ensures that Sperner’s Lemma holds in dimension n− 1, and thus
M is odd. It follows that N(0, 1, . . . , n) is odd, as required.

(c) Suppose that such a map r: ∆→ ∂∆ were to exist. It would then
follow from the Simplicial Approximation Theorem that there
would exist a simplicial approximation s:K → L to the map r,
where L is the simplicial complex consisting of all of the proper
faces of ∆, and K is the jth barycentric subdivision, for some
sufficiently large j, of the simplicial complex consisting of the sim-
plex ∆ together with all of its faces.

If v is a vertex of K belonging to some proper face Σ of ∆ then
r(v) = v, and hence s(v) must be a vertex of Σ, since s:K → L is
a simplicial approximation to r: ∆→ ∂∆. In particular s(v) = v
for all vertices v of ∆. Thus if v 7→ m(v) is a labelling of the
vertices of ∆ by the integers 0, 1, . . . , n, then v 7→ m(s(v)) is a
Sperner labelling of the vertices of K. Thus Sperner’s Lemma
guarantees the existence of at least one n-simplex σ of K labelled
by 0, 1, . . . , n. But then s(σ) = ∆, which is impossible, since ∆
is not a simplex of L. We conclude therefore that there cannot
exist any continuous map r: ∆ → ∂∆ satisfying r(x) = x for all
x ∈ ∂∆.
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6. (a) The homomorphism ∂q:Cq(K)→ Cq−1(K), is characterized by the
property that

∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉

whenever v0,v1, . . . ,vq span a simplex of K.

Let v0,v1, . . . ,vq be vertices spanning a simplex of K. Then

∂q−1∂q (〈v0,v1, . . . ,vq〉)

=

q∑
j=0

(−1)j∂q−1 (〈v0, . . . , v̂j, . . . ,vq〉)

=

q∑
j=0

j−1∑
k=0

(−1)j+k〈v0, . . . , v̂k, . . . , v̂j, . . . ,vq〉

+

q∑
j=0

q∑
k=j+1

(−1)j+k−1〈v0, . . . , v̂j, . . . , v̂k, . . . ,vq〉

= 0

(since each term in this summation over j and k cancels with
the corresponding term with j and k interchanged). The result
now follows from the fact that the homomorphism ∂q−1 ◦ ∂q is
determined by its values on all oriented q-simplices of K.

(b) Let K be a simplicial complex. A q-chain z is said to be a q-cycle
if ∂qz = 0. A q-chain b is said to be a q-boundary if b = ∂q+1c

′ for
some (q + 1)-chain c′. The group of q-cycles of K is denoted
by Zq(K), and the group of q-boundaries of K is denoted by
Bq(K). Thus Zq(K) is the kernel of the boundary homomorphism
∂q:Cq(K) → Cq−1(K), and Bq(K) is the image of the boundary
homomorphism ∂q+1:Cq+1(K) → Cq(K). However ∂q ◦ ∂q+1 = 0,
and therefore Bq(K) ⊂ Zq(K). We can therefore form the quo-
tient group Hq(K), where Hq(K) = Zq(K)/Bq(K). The group
Hq(K) is referred to as the qth homology group of the simplicial
complex K.

(c) There is a well-defined homomorphism Dq:Cq(K) → Cq+1(K)
characterized by the property that

Dq(〈v0,v1, . . . ,vq〉) = 〈w,v0,v1, . . . ,vq〉
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whenever v0,v1, . . . ,vq span a simplex of K. Now ∂1(D0(v)) =
v −w for all vertices v of K. It follows that

s∑
r=1

nr〈vr〉 −

(
s∑
r=1

nr

)
〈w〉 =

s∑
r=1

nr(〈vr〉 − 〈w〉) ∈ B0(K)

for all
s∑
r=1

nr〈vr〉 ∈ C0(K). But Z0(K) = C0(K) (since ∂0 = 0

by definition), and thus H0(K) = C0(K)/B0(K). It follows that
there is a well-defined surjective homomorphism from H0(K) to
Z induced by the homomorphism from C0(K) to Z that sends
s∑
r=1

nr〈vr〉 ∈ C0(K) to
s∑
r=1

nr. Moreover this induced homomor-

phism is an isomorphism from H0(K) to Z.

Now let q > 0. Then

∂q+1(Dq(〈v0,v1, . . . ,vq〉))
= ∂q+1(〈w,v0,v1, . . . ,vq〉)

= 〈v0,v1, . . . ,vq〉+

q∑
j=0

(−1)j+1〈w,v0, . . . , v̂j, . . . ,vq〉

= 〈v0,v1, . . . ,vq〉 −Dq−1(∂q(〈v0,v1, . . . ,vq〉))

whenever v0,v1, . . . ,vq span a simplex of K. Thus

∂q+1(Dq(c)) +Dq−1(∂q(c)) = c

for all c ∈ Cq(K). In particular z = ∂q+1(Dq(z)) for all z ∈ Zq(K),
and hence Zq(K) = Bq(K). It follows that Hq(K) is the zero
group for all q > 0, as required.
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7. (a) A 1-chain c1 of the simplicial complex is of the form

c1 = n1〈a,b〉+ n2〈b, c〉+ n3〈c,d〉+ n4〈d, a〉+ n5〈a, c〉
+ n6〈a, e〉+ n7〈b, e〉+ n8〈c, e〉+ n9〈d, e〉

We see that

∂1c1 = (n4 − n1 − n5 − n6)〈a〉+ (n1 − n2 − n7)〈b〉
+ (n2 − n3 + n5 − n8)〈c〉+ (n3 − n4 − n9)〈d〉
+ (n6 + n7 + n8 + n9)〈e〉

It follows that ∂1c1 = 0 if and only if

n4 − n1 − n5 − n6 = 0,

n1 − n2 − n7 = 0,

n2 − n3 + n5 − n8 = 0,

n3 − n4 − n9 = 0

We solve for n5, n6, n7, n8 and n9 in terms of n1, n2, n3, n4 and
n5. Now n6 = n4 − n1 − n5, n7 = n1 − n2, n8 = n2 − n3 + n5,
n9 = n3−n4. Now, these equations for n6, . . . , n9 are sufficient to
ensure that n6 + n7 + n8 + n9 = 0. Therefore ∂1c1 = 0 if and only
if

c1 = n1〈a,b〉+ n2〈b, c〉+ n3〈c,d〉+ n4〈d, a〉+ n5〈a, c〉
+ (n4 − n1 − n5)〈a, e〉+ (n1 − n2)〈b, e〉
+ (n2 − n3 + n5)〈c, e〉+ (n3 − n4)〈d, e〉

= n1z1 + n2z2 + n3z3 + n4z4 + n5z5

(b) A 2-chain c2 is of the form

c2 = k1〈a,b, c〉+ k2〈a,d, e〉,

and

∂2c2 = k1〈a,b〉+ k1〈b, c〉+ k2〈c,d〉+ k2〈d, a〉
+ (k2 − k1)〈a, c〉

= k1z1 + k1z2 + k2z3 + k2z4 + (k2 − k1)z5

Thus n1z1 +n2z2 +n3z3 +n4z4 +n5z5 is a 1-boundary if and only
if n2 = n1, n4 = n3 and n5 = n3 − n1.
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(c) Consider the homomorphism

θ:Z1(K)→ Z⊕ Z⊕ Z

defined by

θ(n1z1 +n2z2 +n3z3 +n4z4 +n5z5) = (n2−n1, n4−n3, n5−n3 +n1).

This homomorphism is obviously surjective, and it follows from
(b) that the kernel of the homomorphism is B1(K). Therefore

H1(K) = Z1(K)/ ker θ ∼= θ(Z1(K)) = Z⊕ Z⊕ Z,

as required.

16



8. (a) A chain complex C∗ is a (doubly infinite) sequence (Ci : i ∈ Z) of
Abelian groups, together with homomorphisms ∂i:Ci → Ci−1 for
each i ∈ Z, such that ∂i ◦ ∂i+1 = 0 for all integers i.

The ith homology group Hi(C∗) of the complex C∗ is defined to
be the quotient group Zi(C∗)/Bi(C∗), where Zi(C∗) is the kernel
of ∂i:Ci → Ci−1 and Bi(C∗) is the image of ∂i+1:Ci+1 → Ci.

Let C∗ and D∗ be chain complexes. A chain map f :C∗ → D∗
is a sequence fi:Ci → Di of homomorphisms which satisfy the
commutativity condition ∂i ◦ fi = fi−1 ◦ ∂i for all i ∈ Z.

A short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of chain com-
plexes consists of chain complexes A∗, B∗ and C∗ and chain maps
p∗:A∗ → B∗ and q∗:B∗ → C∗ such that the sequence

0−→Ai
pi−→Bi

qi−→Ci−→0

is exact for each integer i.

(b) Let z ∈ Zi(C∗). Then there exists b ∈ Bi satisfying qi(b) = z,
since qi:Bi → Ci is surjective. Moreover

qi−1(∂i(b)) = ∂i(qi(b)) = ∂i(z) = 0.

But pi−1:Ai−1 → Bi−1 is injective and pi−1(Ai−1) = ker qi−1, since
the sequence

0−→Ai−1
pi−1−→Bi−1

qi−1−→Ci−1

is exact. Therefore there exists a unique element w of Ai−1 such
that ∂i(b) = pi−1(w). Moreover

pi−2(∂i−1(w)) = ∂i−1(pi−1(w)) = ∂i−1(∂i(b)) = 0

(since ∂i−1 ◦∂i = 0), and therefore ∂i−1(w) = 0 (since pi−2:Ai−2 →
Bi−2 is injective). Thus w ∈ Zi−1(A∗).

Now let b, b′ ∈ Bi satisfy qi(b) = qi(b
′) = z, and let w,w′ ∈

Zi−1(A∗) satisfy pi−1(w) = ∂i(b) and pi−1(w′) = ∂i(b
′). Then

qi(b − b′) = 0, and hence b′ − b = pi(a) for some a ∈ Ai, by
exactness. But then

pi−1(w + ∂i(a)) = pi−1(w) + ∂i(pi(a)) = ∂i(b) + ∂i(b
′ − b)

= ∂i(b
′) = pi−1(w′),

and pi−1:Ai−1 → Bi−1 is injective. Therefore w + ∂i(a) = w′,
and hence [w] = [w′] in Hi−1(A∗). Thus there is a well-defined
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function α̃i:Zi(C∗) → Hi−1(A∗) which sends z ∈ Zi(C∗) to [w] ∈
Hi−1(A∗), where w ∈ Zi−1(A∗) is chosen such that pi−1(w) = ∂i(b)
for some b ∈ Bi satisfying qi(b) = z. This function α̃i is clearly a
homomorphism from Zi(C∗) to Hi−1(A∗).

Suppose that elements z and z′ of Zi(C∗) represent the same ho-
mology class in Hi(C∗). Then z′ = z + ∂i+1c for some c ∈ Ci+1.
Moreover c = qi+1(d) for some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1

is surjective. Choose b ∈ Bi such that qi(b) = z, and let b′ =
b+ ∂i+1(d). Then

qi(b
′) = z + qi(∂i+1(d)) = z + ∂i+1(qi+1(d)) = z + ∂i+1(c) = z′.

Moreover ∂i(b
′) = ∂i(b + ∂i+1(d)) = ∂i(b) (since ∂i ◦ ∂i+1 = 0).

Therefore α̃i(z) = α̃i(z
′). It follows that the homomorphism

α̃i:Zi(C∗)→ Hi−1(A∗) induces a well-defined homomorphism

αi:Hi(C∗)→ Hi−1(A∗),

as required.
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9. (a) Let K be a simplicial complex and let L and M be subcomplexes
of K such that K = L ∪M . Let

iq:Cq(L ∩M)→ Cq(L), jq:Cq(L ∩M)→ Cq(M),

uq:Cq(L)→ Cq(K), vq:Cq(M)→ Cq(K)

be the inclusion homomorphisms induced by the inclusion maps
i:L ∩M ↪→ L, j:L ∩M ↪→M , u:L ↪→ K and v:M ↪→ K. Then

0−→C∗(L ∩M)
k∗−→C∗(L)⊕ C∗(M)

w∗−→C∗(K)−→0

is a short exact sequence of chain complexes, where

kq(c) = (iq(c),−jq(c)),
wq(c

′, c′′) = uq(c
′) + vq(c

′′),

∂q(c
′, c′′) = (∂q(c

′), ∂q(c
′′))

for all c ∈ Cq(L ∩M), c′ ∈ Cq(L) and c′′ ∈ Cq(M), and this gives
rise to a long exact sequence

· · · αq+1−→Hq(L∩M)
k∗−→Hq(L)⊕Hq(M)

w∗−→Hq(K)
αq−→Hq−1(L∩M)

k∗−→· · · ,

of homology groups. This long exact sequence of homology groups
is referred to as the Mayer-Vietoris sequence associated with the
decomposition of K as the union of the subcomplexes L and M .

(b) Let v be a vertex of L ∩ M . Then the homology class of v in
the respective groups generates H0(L∩M), H0(L) and H0(M). It
follows that i∗:H0(L∩M)→ H0(L) and j∗:H0(L∩M)→ H0(M)
are isomorphisms, and therefore k∗:H0(L∩M)→ H0(L)⊕H0(M)
is a monomorphism. It follows from the exactness of the Mayer-
Vietoris seqence that the homomorphism H1(K) → H0(L ∩M)
in that sequence is the zero homomorphism, from which it fol-
lows (by exactness) that w∗:H1(L) ⊕ H1(M) → H1(K) is exact.
Now H1(L)⊕H1(M) ∼= H1(L), since H1(M) = 0, and the homo-
morphisms k∗:H1(L ∩ M) → H1(L) ⊕ H1(M) and w∗:H1(L) ⊕
H1(M) → H1(K) correspond to the homomorphism i∗ and u∗
respectively. Also H2(L) = 0 and H2(M) = 0. Therefore the
Mayer-Vietoris sequence yields the following exact sequence:

0−→H2(K)−→H1(L ∩M)
i∗−→H1(L)

u∗−→H1(K)−→0.
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The fact that i∗([z0]) = 2[z1] where [z0] and [z1] generate H1(L ∩
M) and H1(L) respectively, ensures that H1(L)/i∗(H1(L∩M)) ∼=
Z/2Z. It follows that

H1(K) ∼=
H1(L)

i∗(H1(L ∩M))
∼=
Z

2Z
∼= Z2,

where Z2 denotes the cyclic group of order 2. Also H2(K) ∼=
ker(i∗:H1(L∩M)→ H1(L)), and therefore H2(K) = 0. The fact
that K is connected ensures that H0(K) = 0. This also follows
from the fact that

H0(K) ∼=
H0(L)⊕H0(M)

i∗(H0(L ∩M))
∼=

Z⊕ Z
{(n,−n) : n ∈ Z}

∼= Z.
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