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5 Simplicial Complexes

5.1 Geometrical Independence

Definition Points v0,v1, . . . ,vq in some Euclidean space Rk are said to be
geometrically independent (or affine independent) if the only solution of the
linear system { ∑q

j=0 λjvj = 0,∑q
j=0 λj = 0

is the trivial solution λ0 = λ1 = · · · = λq = 0.

It is straightforward to verify that v0,v1, . . . ,vq are geometrically inde-
pendent if and only if the vectors v1 − v0,v2 − v0, . . . ,vq − v0 are linearly
independent. It follows from this that any set of geometrically independent
points in Rk has at most k + 1 elements. Note also that if a set consists of
geometrically independent points in Rk, then so does every subset of that
set.

Definition A q-simplex in Rk is defined to be a set of the form{
q∑
j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

}
,

where v0,v1, . . . ,vq are geometrically independent points of Rk. The points
v0,v1, . . . ,vq are referred to as the vertices of the simplex. The non-negative
integer q is referred to as the dimension of the simplex.

Note that a 0-simplex in Rk is a single point of Rk, a 1-simplex in Rk is a
line segment in Rk, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron.

Let σ be a q-simplex in Rk with vertices v0,v1, . . . ,vq. If x is a point
of σ then there exist real numbers t0, t1, . . . , tq such that

q∑
j=0

tjvj = x,

q∑
j=0

tj = 1 and 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q.

Moreover t0, t1, . . . , tq are uniquely determined: if
q∑
j=0

sjvj =
q∑
j=0

tjvj and

q∑
j=0

sj = 1 =
q∑
j=0

tj, then
q∑
j=0

(tj − sj)vj = 0 and
q∑
j=0

(tj − sj) = 0, hence

tj − sj = 0 for all j, since v0,v1, . . . ,vq are geometrically independent. We
refer to t0, t1, . . . , tq as the barycentric coordinates of the point x of σ.
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Lemma 5.1 Let q be a non-negative integer, let σ be a q-simplex in Rm,
and let τ be a q-simplex in Rn, where m ≥ q and n ≥ q. Then σ and τ are
homeomorphic.

Proof Let v0,v1, . . . ,vq be the vertices of σ, and let w0,w1, . . . ,wq be the
vertices of τ . The required homeomorphism h:σ → τ is given by

h

(
q∑
j=0

tjvj

)
=

q∑
j=0

tjwj

for all t0, t1, . . . , tq satisfying 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and
q∑
j=0

tj = 1.

A homeomorphism between two q-simplices defined as in the above proof
is referred to as a simplicial homeomorphism.

5.2 Simplicial Complexes in Euclidean Spaces

Definition Let σ and τ be simplices in Rk. We say that τ is a face of σ if
the set of vertices of τ is a subset of the set of vertices of σ. A face of σ is
said to be a proper face if it is not equal to σ itself. An r-dimensional face
of σ is referred to as an r-face of σ. A 1-dimensional face of σ is referred to
as an edge of σ.

Note that any simplex is a face of itself. Also the vertices and edges of
any simplex are by definition faces of the simplex.

Definition A finite collection K of simplices in Rk is said to be a simplicial
complex if the following two conditions are satisfied:—

• if σ is a simplex belonging to K then every face of σ also belongs to K,

• if σ1 and σ2 are simplices belonging to K then either σ1 ∩ σ2 = ∅ or
else σ1 ∩ σ2 is a common face of both σ1 and σ2.

The dimension of a simplicial complex K is the greatest non-negative
integer n with the property that K contains an n-simplex. The union of all
the simplices of K is a compact subset |K| of Rk referred to as the polyhedron
of K. (The polyhedron is compact since it is both closed and bounded in
Rk.)

Example Let Kσ consist of some n-simplex σ together with all of its faces.
Then Kσ is a simplicial complex of dimension n, and |Kσ| = σ.
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Lemma 5.2 Let K be a simplicial complex, and let X be a topological space.
A function f : |K| → X is continuous on the polyhedron |K| of K if and only
if the restriction of f to each simplex of K is continuous on that simplex.

Proof If a topological space can be expressed as a finite union of closed
subsets, then a function is continuous on the whole space if and only if its
restriction to each of the closed subsets is continuous on that closed set. The
required result is a direct application of this general principle.

We shall denote by VertK the set of vertices of a simplicial complex K
(i.e., the set consisting of all vertices of all simplices belonging to K). A
collection of vertices of K is said to span a simplex of K if these vertices are
the vertices of some simplex belonging to K.

Definition Let K be a simplicial complex in Rk. A subcomplex of K is a
collection L of simplices belonging to K with the following property:—

• if σ is a simplex belonging to L then every face of σ also belongs to L.

Note that every subcomplex of a simplicial complex K is itself a simplicial
complex.

Definition Let v0,v1, . . . ,vq be the vertices of a q-simplex σ in some Eu-
clidean space Rk. We define the interior of the simplex σ to be the set of all

points of σ that are of the form
q∑
j=0

tjvj, where tj > 0 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1. One can readily verify that the interior of the simplex σ consists

of all points of σ that do not belong to any proper face of σ. (Note that, if
σ ∈ Rk, then the interior of a simplex defined in this fashion will not coincide
with the topological interior of σ unless dimσ = k.)

Note that any point of a simplex σ belongs to the interior of a unique
face of σ. Indeed let v0,v1, . . . ,vq be the vertices of σ, and let x ∈ σ. Then

x =
q∑
j=0

tjvj, where 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and
q∑
j=0

tj = 1. The

unique face of σ containing x in its interior is then the face spanned by those
vertices vj for which tj > 0.

Lemma 5.3 Let K be a finite collection of simplices in some Euclidean
space Rk, and let |K| be the union of all the simplices in K. Then K is
a simplicial complex (with polyhedron |K|) if and only if the following two
conditions are satisfied:—
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• K contains the faces of its simplices,

• every point of |K| belongs to the interior of a unique simplex of K.

Proof Suppose that K is a simplicial complex. Then K contains the faces
of its simplices. We must show that every point of |K| belongs to the interior
of a unique simplex of K. Let x ∈ |K|. Then x belongs to the interior of a
face σ of some simplex of K (since every point of a simplex belongs to the
interior of some face). But then σ ∈ K, since K contains the faces of all its
simplices. Thus x belongs to the interior of at least one simplex of K.

Suppose that x were to belong to the interior of two distinct simplices σ
and τ of K. Then x would belong to some common face σ ∩ τ of σ and τ
(since K is a simplicial complex). But this common face would be a proper
face of one or other of the simplices σ and τ (since σ 6= τ), contradicting
the fact that x belongs to the interior of both σ and τ . We conclude that
the simplex σ of K containing x in its interior is uniquely determined, as
required.

Conversely, we must show that any collection of simplices satisfying the
given conditions is a simplicial complex. Since K contains the faces of all its
simplices, it only remains to verify that if σ and τ are any two simplices of
K with non-empty intersection then σ ∩ τ is a common face of σ and τ .

Let x ∈ σ ∩ τ . Then x belongs to the interior of a unique simplex ω
of K. However any point of σ or τ belongs to the interior of a unique face
of that simplex, and all faces of σ and τ belong to K. It follows that ω is
a common face of σ and τ , and thus the vertices of ω are vertices of both σ
and τ . We deduce that the simplices σ and τ have vertices in common, and
that every point of σ ∩ τ belongs to the common face ρ of σ and τ spanned
by these common vertices. But this implies that σ ∩ τ = ρ, and thus σ ∩ τ
is a common face of both σ and τ , as required.

Definition A triangulation (K,h) of a topological space X consists of a sim-
plicial complex K in some Euclidean space, together with a homeomorphism
h: |K| → X mapping the polyhedron |K| of K onto X.

The polyhedron of a simplicial complex is a compact Hausdorff space.
Thus if a topological space admits a triangulation then it must itself be a
compact Hausdorff space.

Lemma 5.4 Let X be a Hausdorff topological space, let K be a simplicial
complex, and let h: |K| → X be a bijection mapping |K| onto X. Suppose that
the restriction of h to each simplex of K is continuous on that simplex. Then
the map h: |K| → X is a homeomorphism, and thus (K,h) is a triangulation
of X.
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Proof Each simplex of K is a closed subset of |K|, and the number of sim-
plices ofK is finite. It follows from Lemma 5.2 that h: |K| → X is continuous.
Also the polyhedron |K| of K is a compact topological space. But every con-
tinuous bijection from a compact topological space to a Hausdorff space is a
homeomorphism. Thus (K,h) is a triangulation of X.

5.3 Simplicial Maps

Definition A simplicial map ϕ:K → L between simplicial complexes K
and L is a function ϕ: VertK → VertL from the vertex set of K to that of
L such that ϕ(v0), ϕ(v1), . . . , ϕ(vq) span a simplex belonging to L whenever
v0,v1, . . . ,vq span a simplex of K.

Note that a simplicial map ϕ:K → L between simplicial complexes K
and L can be regarded as a function from K to L: this function sends a
simplex σ of K with vertices v0,v1, . . . ,vq to the simplex ϕ(σ) of L spanned
by the vertices ϕ(v0), ϕ(v1), . . . , ϕ(vq).

A simplicial map ϕ:K → L also induces in a natural fashion a continuous
map ϕ: |K| → |L| between the polyhedra of K and L, where

ϕ

(
q∑
j=0

tjvj

)
=

q∑
j=0

tjϕ(vj)

whenever 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q,
q∑
j=0

tj = 1, and v0,v1, . . . ,vq span a

simplex ofK. The continuity of this map follows immediately from a straight-
forward application of Lemma 5.2. Note that the interior of a simplex σ of
K is mapped into the interior of the simplex ϕ(σ) of L.

There are thus three equivalent ways of describing a simplicial map: as
a function between the vertex sets of two simplicial complexes, as a function
from one simplicial complex to another, and as a continuous map between
the polyhedra of two simplicial complexes. In what follows, we shall describe
a simplicial map using the representation that is most appropriate in the
given context.
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