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1 Topological Spaces

1.1 The Concept of Continuity

The concept of continuity plays an important role in mathematics. There is
a precise definition of continuity for functions of a real variable. A function
f :D → R, defined on a subset D of the real line R, is said to be continuous
at a point p of D if, given any real number ε satisfying ε > 0, there exists a
real number δ satisfying δ > 0 such that |f(x)− f(p)| < ε for all points x of
D satisfying |x− p| < δ. This definition of continuity can easily be adapted
so as to apply to functions of a complex variable. It can also be generalized
to as to apply to functions of several real or complex variables. We thus
obtain a definition of continuity for functions between subsets of Euclidean
spaces.

This definition of continuity generalizes directly to functions between met-
ric spaces. A metric space is a set provided with a distance function, mea-
suring the distance between any two points of the set. This distance function
is required to satisfy certain axioms: the distance between any two points of
a metric space is always non-negative, and is zero if and only if those points
coincide; the distance from a point x to a point y is the same as the distance
from y to x; given any three points x, y and z of a metric space, the distance
from x to z is required to be less than or equal to the sum of the distance
from x to y and the distance from y to z. A function from a metric space X
to a metric space Y is continuous at a point p of X if and only if, given any
real number ε satisfying ε > 0, there exists a real number δ satisfying δ > 0
such that the distance from f(x) to f(p) is less than ε for all points x of X
whose distance from p is less than δ.

We shall introduce the concept of a topological space, and give a definition
of continuity for functions from one topological space to another which gen-
eralizes the definitions of continuity discussed above for functions of a real
variable, for functions of a complex variable, for functions between subsets
of Euclidean spaces, and for functions from one metric space to another.

The theory of topological spaces has proved itself to be very useful in
many areas of mathematics.

1.2 Topological Spaces

Definition A topological space X consists of a set X together with a collec-
tion of subsets, referred to as open sets, such that the following conditions
are satisfied:—

(i) the empty set ∅ and the whole set X are open sets,
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(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself an open set.

The collection consisting of all the open sets in a topological space X is
referred to as a topology on the set X.

Remark If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X, τ) the topological space whose underlying set
is X and whose topology is τ . However if no confusion will arise then it is
customary to denote this topological space simply by X.

1.3 Subsets of Euclidean Space

Let X be a subset of n-dimensional Euclidean space Rn. The Euclidean
distance |x− y| between two points x and y of X is defined as follows:

|x− y| =

√√√√ n∑
i=1

(xi − yi)2,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The Euclidean distances
between any three points x, y and z of X satisfy the Triangle Inequality :

|x− z| ≤ |x− y|+ |y − z|.

A subset V of X is said to be open in X if, given any point v of V , there
exists some δ > 0 such that

{x ∈ X : |x− v| < δ} ⊂ V.

The empty set is also considered to be open in X.
Both ∅ and X are open sets in X. Also it is not difficult to show that

any union of open sets in X is open in X, and that any finite intersection
of open sets in X is open in X. (This will be proved in more generality for
open sets in metric spaces.) Thus the collection of open sets in a subset X
of a Euclidean space Rn satisfies the topological space axioms. Thus every
subset X of Rn is a topological space with these open sets. This topology on
a subset X of Rn is referred to as the usual topology on X, generated by the
Euclidean distance function.

In particular Rn is itself a topological space.
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1.4 Open Sets in Metric Spaces

Definition A metric space (X, d) consists of a set X together with a distance
function d:X ×X → [0,+∞) on X satisfying the following axioms:

(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,

(iv) d(x, y) = 0 if and only if x = y.

The quantity d(x, y) should be thought of as measuring the distance be-
tween the points x and y. The inequality d(x, z) ≤ d(x, y)+d(y, z) is referred
to as the Triangle Inequality. The elements of a metric space are usually re-
ferred to as points of that metric space.

An n-dimensional Euclidean space Rn is a metric space with with respect
to the Euclidean distance function d, defined by

d(x,y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2

for all x,y ∈ Rn. Any subset X of Rn may be regarded as a metric space
whose distance function is the restriction to X of the Euclidean distance
function on Rn defined above.

Definition Let (X, d) be a metric space. Given a point x of X and r ≥ 0,
the open ball BX(x, r) of radius r about x in X is defined by

BX(x, r) ≡ {x′ ∈ X : d(x′, x) < r}.

Definition Let (X, d) be a metric space. A subset V of X is said to be an
open set if and only if the following condition is satisfied:

• given any point v of V there exists some δ > 0 such that BX(v, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in this case.)

Lemma 1.1 Let X be a metric space with distance function d, and let x0 be
a point of X. Then, for any r > 0, the open ball BX(x0, r) of radius r about
x0 is an open set in X.
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Proof Let x ∈ BX(x0, r). We must show that there exists some δ > 0
such that BX(x, δ) ⊂ BX(x0, r). Now d(x, x0) < r, and hence δ > 0, where
δ = r − d(x, x0). Moreover if x′ ∈ BX(x, δ) then

d(x′, x0) ≤ d(x′, x) + d(x, x0) < δ + d(x, x0) = r,

by the Triangle Inequality, hence x′ ∈ BX(x0, r). Thus BX(x, δ) ⊂ BX(x0, r),
showing that BX(x0, r) is an open set, as required.

Proposition 1.2 Let X be a metric space. The collection of open sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both open sets;

(ii) the union of any collection of open sets is itself an open set;

(iii) the intersection of any finite collection of open sets is itself an open set.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. Thus (i) is satisfied.

Let A be any collection of open sets in X, and let U denote the union of
all the open sets belonging to A. We must show that U is itself an open set.
Let x ∈ U . Then x ∈ V for some open set V belonging to the collection A.
Therefore there exists some δ > 0 such that BX(x, δ) ⊂ V . But V ⊂ U , and
thus BX(x, δ) ⊂ U . This shows that U is open. Thus (ii) is satisfied.

Finally let V1, V2, V3, . . . , Vk be a finite collection of open sets in X, and let
V = V1 ∩ V2 ∩ · · · ∩ Vk. Let x ∈ V . Now x ∈ Vj for all j, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(x, δj) ⊂ Vj
for j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0.
(This is where we need the fact that we are dealing with a finite collection
of open sets.) Moreover BX(x, δ) ⊂ BX(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and
thus BX(x, δ) ⊂ V . This shows that the intersection V of the open sets
V1, V2, . . . , Vk is itself open. Thus (iii) is satisfied.

Any metric space may be regarded as a topological space. Indeed let X
be a metric space with distance function d. We recall that a subset V of
X is an open set if and only if, given any point v of V , there exists some
δ > 0 such that {x ∈ X : d(x, v) < δ} ⊂ V . Proposition 1.2 shows that
the topological space axioms are satisfied by the collection of open sets in
any metric space. We refer to this collection of open sets as the topology
generated by the distance function d on X.
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1.5 Further Examples of Topological Spaces

Example Given any set X, one can define a topology on X where every
subset of X is an open set. This topology is referred to as the discrete
topology on X.

Example Given any set X, one can define a topology on X in which the
only open sets are the empty set ∅ and the whole set X.

1.6 Closed Sets

Definition Let X be a topological space. A subset F of X is said to be a
closed set if and only if its complement X \ F is an open set.

We recall that the complement of the union of some collection of subsets
of some set X is the intersection of the complements of those sets, and the
complement of the intersection of some collection of subsets of X is the
union of the complements of those sets. The following result therefore follows
directly from the definition of a topological space.

Proposition 1.3 Let X be a topological space. Then the collection of closed
sets of X has the following properties:—

(i) the empty set ∅ and the whole set X are closed sets,

(ii) the intersection of any collection of closed sets is itself a closed set,

(iii) the union of any finite collection of closed sets is itself a closed set.

1.7 Hausdorff Spaces

Definition A topological space X is said to be a Hausdorff space if and only
if it satisfies the following Hausdorff Axiom:

• if x and y are distinct points of X then there exist open sets U and V
such that x ∈ U , y ∈ V and U ∩ V = ∅.

Lemma 1.4 All metric spaces are Hausdorff spaces.

Proof Let X be a metric space with distance function d, and let x and y be
points of X, where x 6= y. Let ε = 1

2
d(x, y). Then the open balls BX(x, ε)

and BX(y, ε) of radius ε centred on the points x and y are open sets (see
Lemma 1.1). If BX(x, ε) ∩ BX(y, ε) were non-empty then there would exist
z ∈ X satisfying d(x, z) < ε and d(z, y) < ε. But this is impossible, since it
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would then follow from the Triangle Inequality that d(x, y) < 2ε, contrary to
the choice of ε. Thus x ∈ BX(x, ε), y ∈ BX(y, ε), BX(x, ε) ∩ BX(y, ε) = ∅.
This shows that the metric space X is a Hausdorff space.

We now give an example of a topological space which is not a Hausdorff
space.

Example The Zariski topology on the set R of real numbers is defined as
follows: a subset U of R is open (with respect to the Zariski topology) if and
only if either U = ∅ or else R \ U is finite. It is a straightforward exercise to
verify that the topological space axioms are satisfied, so that the set R of real
numbers is a topological space with respect to this Zariski topology. Now
the intersection of any two non-empty open sets in this topology is always
non-empty. (Indeed if U and V are non-empty open sets then U = R \ F1

and V = R \ F2, where F1 and F2 are finite sets of real numbers. But then
U ∩ V = R \ (F1 ∪ F2), which is non-empty, since F1 ∪ F2 is finite and R is
infinite.) It follows immediately from this that R, with the Zariski topology,
is not a Hausdorff space.

1.8 Subspace Topologies

Let X be a topological space with topology τ , and let A be a subset of X.
Let τA be the collection of all subsets of A that are of the form V ∩ A for
V ∈ τ . Then τA is a topology on the set A. (It is a straightforward exercise
to verify that the topological space axioms are satisfied.) The topology τA
on A is referred to as the subspace topology on A.

Any subset of a Hausdorff space is itself a Hausdorff space (with respect
to the subspace topology).

Lemma 1.5 Let X be a metric space with distance function d, and let A be
a subset of X. A subset W of A is open with respect to the subspace topology
on A if and only if, given any point w of W , there exists some δ > 0 such
that

{a ∈ A : d(a, w) < δ} ⊂ W.

Thus the subspace topology on A coincides with the topology on A obtained
on regarding A as a metric space (with respect to the distance function d).

Proof Suppose that W is open with respect to the subspace topology on A.
Then there exists some open set U in X such that W = U ∩ A. Let w be a
point of W . Then there exists some δ > 0 such that

{x ∈ X : d(x,w) < δ} ⊂ U.
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But then
{a ∈ A : d(a, w) < δ} ⊂ U ∩ A = W.

Conversely, suppose that W is a subset of A with the property that, for
any w ∈ W , there exists some δw > 0 such that

{a ∈ A : d(a, w) < δw} ⊂ W.

Define U to be the union of the open balls BX(w, δw) as w ranges over all
points of W , where

BX(w, δw) = {x ∈ X : d(x,w) < δw}.

The set U is an open set in X, since each open ball BX(w, δw) is an open set
in X (Lemma 1.1), and any union of open sets is itself an open set. Moreover

BX(w, δw) ∩ A = {a ∈ A : d(a, w) < δw} ⊂ W

for any w ∈ W . Therefore U ∩A ⊂ W . However W ⊂ U ∩A, since, W ⊂ A
and {w} ⊂ BX(w, δw) ⊂ U for any w ∈ W . Thus W = U ∩ A, where U is
an open set in X. We deduce that W is open with respect to the subspace
topology on A.

Example Let X be any subset of n-dimensional Euclidean space Rn. Then
the subspace topology on X coincides with the topology on X generated by
the Euclidean distance function on X. We refer to this topology as the usual
topology on X.

Let X be a topological space, and let A be a subset of X. One can readily
verify the following:—

• a subset B of A is closed in A (relative to the subspace topology on A)
if and only if B = A ∩ F for some closed subset F of X;

• if A is itself open in X then a subset B of A is open in A if and only
if it is open in X;

• if A is itself closed in X then a subset B of A is closed in A if and only
if it is closed in X.
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1.9 Continuous Functions between Topological Spaces

Definition A function f :X → Y from a topological space X to a topological
space Y is said to be continuous if f−1(V ) is an open set in X for every open
set V in Y , where

f−1(V ) ≡ {x ∈ X : f(x) ∈ V }.

A continuous function from X to Y is often referred to as a map from X
to Y .

Lemma 1.6 Let X, Y and Z be topological spaces, and let f :X → Y and
g:Y → Z be continuous functions. Then the composition g ◦ f :X → Z of
the functions f and g is continuous.

Proof Let V be an open set in Z. Then g−1(V ) is open in Y (since g is
continuous), and hence f−1(g−1(V )) is open in X (since f is continuous).
But f−1(g−1(V )) = (g ◦ f)−1(V ). Thus the composition function g ◦ f is
continuous.

Lemma 1.7 Let X and Y be topological spaces, and let f :X → Y be a
function from X to Y . The function f is continuous if and only if f−1(G)
is closed in X for every closed subset G of Y .

Proof If G is any subset of Y then X \ f−1(G) = f−1(Y \ G) (i.e., the
complement of the preimage of G is the preimage of the complement of G).
The result therefore follows immediately from the definitions of continuity
and closed sets.

1.10 Continuous Functions between Metric Spaces

The following definition of continuity for functions between metric spaces
generalizes that for functions of a real or complex variable.

Definition Let X and Y be metric spaces with distance functions dX and
dY respectively. A function f :X → Y from X to Y is said to be continuous
at a point x of X if and only if the following criterion is satisfied:—

• given any real number ε satisfying ε > 0 there exists some δ > 0 such
that dY (f(x), f(x′)) < ε for all points x′ of X satisfying dX(x, x′) < δ.

The function f :X → Y is said to be continuous on X if and only if it is
continuous at x for every point x of X.
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This definition can be rephrased in terms of open balls: a function f :X →
Y from a metric space X to a metric space Y is continuous at a point x of
X if and only if, given any ε > 0, there exists some δ > 0 such that f maps
BX(x, δ) into BY (f(x), ε) (where BX(x, δ) and BY (f(x), ε) denote the open
balls of radius δ and ε about x and f(x) respectively).

Let f :X → Y be a function from a set X to a set Y . Given any subset V
of Y , we denote by f−1(V ) the preimage of V under the map f , defined by

f−1(V ) = {x ∈ X : f(x) ∈ V }.

The following result shows that the definition of continuity given above for
functions between metric spaces is consistent with the more general definition
of continuity for functions between topological spaces.

Proposition 1.8 Let X and Y be metric spaces, and let f :X → Y be a
function from X to Y . The function f is continuous if and only if f−1(V )
is an open set in X for every open set V of Y .

Proof Suppose that f :X → Y is continuous. Let V be an open set in Y .
We must show that f−1(V ) is open in X. Let x be a point belonging
to f−1(V ). We must show that there exists some δ > 0 with the prop-
erty that BX(x, δ) ⊂ f−1(V ). Now f(x) belongs to V . But V is open, hence
there exists some ε > 0 with the property that BY (f(x), ε) ⊂ V . But f is
continuous at x. Therefore there exists some δ > 0 such that f maps the
open ball BX(x, δ) into BY (f(x), ε) (see the remarks above). Thus f(x′) ∈ V
for all x′ ∈ BX(x, δ), showing that BX(x, δ) ⊂ f−1(V ). We have thus shown
that if f :X → Y is continuous then f−1(V ) is open in X for every open
set V in Y .

Conversely suppose that f :X → Y has the property that f−1(V ) is open
in X for every open set V in Y . Let x be any point of X. We must show
that f is continuous at x. Let ε > 0 be given. The open ball BY (f(x), ε)
is an open set in Y , by Lemma 1.1, hence f−1 (BY (f(x), ε)) is an open set
in X which contains x. It follows that there exists some δ > 0 such that
BX(x, δ) ⊂ f−1 (BY (f(x), ε)). We have thus shown that, given any ε >
0, there exists some δ > 0 such that f maps the open ball BX(x, δ) into
BY (f(x), ε). We conclude that f is continuous at x, as required.

1.11 A Criterion for Continuity

We now show that, if a topological space X is the union of a finite collection of
closed sets, and if a function from X to some topological space is continuous
on each of these closed sets, then that function is continuous on X.
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Lemma 1.9 Let X and Y be topological spaces, let f :X → Y be a function
from X to Y , and let X = A1∪A2∪· · ·∪Ak, where A1, A2, . . . , Ak are closed
sets in X. Suppose that the restriction of f to the closed set Ai is continuous
for i = 1, 2, . . . , k. Then f :X → Y is continuous.

Proof Let V be an open set in Y . We must show that f−1(V ) is open in
X. Now the preimage of the open set V under the restriction f |Ai of f to
Ai is f−1(V )∩Ai. It follows from the continuity of f |Ai that f−1(V )∩Ai is
relatively open in Ai for each i, and hence there exist open sets U1, U2, . . . , Uk
in X such that f−1(V )∩Ai = Ui∩Ai for i = 1, 2, . . . , k. Let Wi = Ui∪(X\Ai)
for i = 1, 2, . . . , k. Then Wi is an open set in X (as it is the union of the
open sets Ui and X \ Ai), and Wi ∩ Ai = Ui ∩ Ai = f−1(V ) ∩ Ai for each i.
We claim that f−1(V ) = W1 ∩W2 ∩ · · · ∩Wk.

Let W = W1 ∩W2 ∩ · · · ∩Wk. Then f−1(V ) ⊂ W , since f−1(V ) ⊂ Wi for
each i. Also

W =
k⋃
i=1

(W ∩ Ai) ⊂
k⋃
i=1

(Wi ∩ Ai) =
k⋃
i=1

(f−1(V ) ∩ Ai) ⊂ f−1(V ),

since X = A1∪A2∪· · ·∪Ak and Wi∩Ai = f−1(V )∩Ai for each i. Therefore
f−1(V ) = W . But W is open in X, since it is the intersection of a finite
collection of open sets. We have thus shown that f−1(V ) is open in X for
any open set V in Y . Thus f :X → Y is continuous, as required.

Alternative Proof A function f :X → Y is continuous if and only if f−1(G)
is closed in X for every closed set G in Y (Lemma 1.7). Let G be an closed
set in Y . Then f−1(G)∩Ai is relatively closed in Ai for i = 1, 2, . . . , k, since
the restriction of f to Ai is continuous for each i. But Ai is closed in X, and
therefore a subset of Ai is relatively closed in Ai if and only if it is closed in
X. Therefore f−1(G) ∩ Ai is closed in X for i = 1, 2, . . . , k. Now f−1(G) is
the union of the sets f−1(G) ∩ Ai for i = 1, 2, . . . , k. It follows that f−1(G),
being a finite union of closed sets, is itself closed in X. It now follows from
Lemma 1.7 that f :X → Y is continuous.

Example Let Y be a topological space, and let α: [0, 1]→ Y and β: [0, 1]→
Y be continuous functions defined on the interval [0, 1], where α(1) = β(0).
Let γ: [0, 1]→ Y be defined by

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Now γ|[0, 1
2
] = α ◦ ρ where ρ: [0, 1

2
]→ [0, 1] is the continuous function defined

by ρ(t) = 2t for all t ∈ [0, 1
2
]. Thus γ|[0, 1

2
] is continuous, being a composition
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of two continuous functions. Similarly γ|[1
2
, 1] is continuous. The subinter-

vals [0, 1
2
] and [1

2
, 1] are closed in [0, 1], and [0, 1] is the union of these two

subintervals. It follows from Lemma 1.9 that γ: [0, 1]→ Y is continuous.

1.12 Homeomorphisms

Definition Let X and Y be topological spaces. A function h:X → Y is said
to be a homeomorphism if and only if the following conditions are satisfied:

• the function h:X → Y is both injective and surjective (so that the
function h:X → Y has a well-defined inverse h−1:Y → X),

• the function h:X → Y and its inverse h−1:Y → X are both continuous.

Two topological spaces X and Y are said to be homeomorphic if there exists
a homeomorphism h:X → Y from X to Y .

If h:X → Y is a homeomorphism between topological spaces X and Y
then h induces a one-to-one correspondence between the open sets of X and
the open sets of Y . Thus the topological spaces X and Y can be regarded
as being identical as topological spaces.

1.13 Sequences and Convergence

Definition Let X be a topological space. A sequence x1, x2, x3, . . . of points
in a topological space X is said to converge to a point p of X if, given any
open set U containing the point p, there exists some natural number N such
that xj ∈ U for all j ≥ N . If the sequence (xj) converges to p then we refer
to p as a limit of the sequence.

We now show that this definition of convergence for a sequence of points in
a topological space is consistent with the standard definition of convergence
for a sequence of points in a metric space.

Lemma 1.10 Let X be a metric space with distance function d. A sequence
x1, x2, x3, . . . of points in a metric space X converges to a point p of X if and
only if, given any real number ε satisfying ε > 0, there exists some natural
number N such that d(xn, p) < ε whenever n ≥ N .

Proof Let x1, x2, x3, . . . be a sequence of points in X that converges to the
point p of X. Let ε > 0 be given. The open ball BX(p, ε) of radius ε
about p is an open set (see Lemma 1.1). Therefore there exists some natural
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number N such that, if j ≥ N , then xj ∈ BX(p, ε), and thus d(xj, p) < ε.
Hence the sequence (xj) converges to p.

Conversely, suppose that the sequence (xj) has the property that, given
any real number ε satisfying ε > 0, there exists some natural number N
such that d(xn, p) < ε whenever n ≥ N . Let U be an open set which
contains p. Then there exists some ε > 0 such that BX(p, ε) ⊂ U . But
xj → p as j → +∞, and therefore there exists some natural number N such
that d(xj, p) < ε for all j ≥ N . If j ≥ N then xj ∈ BX(p, ε) and thus xj ∈ U .
Thus the sequence (xj) converges to p, as required.

A sequence of points in a metric space can converge to at most one point
of that space. (This is an immediate consequence of Lemma 1.11 below.)
However this result does not apply to topological spaces in general: it can
happen that a sequence of points in a topological space may convergence to
more than one limit. For example, consider the set R of real numbers with the
Zariski topology. (The open sets of R in the Zariski topology are the empty
set and those subsets of R whose complements are finite.) Let x1, x2, x3, . . .
be the sequence in R defined by xj = j for all natural numbers j. One
can readily check that this sequence converges to every real number p with
respect to the Zariski topology on R.

The set of real numbers with the Zariski topology is an example of a
topological space which is not Hausdorff. We now show that sequences in a
Hausdorff space converge to at most one limit.

Lemma 1.11 A sequence x1, x2, x3, . . . of points in a Hausdorff space X
converges to at most one limit.

Proof Suppose that p and q were limits of the sequence (xj), where p 6= q.
Then there would exist open sets U and V such that p ∈ U , q ∈ V and
U ∩V = ∅, since X is a Hausdorff space. But then there would exist natural
numbers N1 and N2 such that xj ∈ U for all j satisfying j ≥ N1 and xj ∈ V
for all j satisfying j ≥ N2. But then xj ∈ U ∩ V for all j satisfying j ≥ N1

and j ≥ N2, which is impossible, since U ∩ V = ∅. This contradiction shows
that the sequence (xj) has at most one limit.

Lemma 1.12 Let X be a topological space, and let F be a closed set in X.
Let (xj : j ∈ N) be a sequence of points in F . Suppose that the sequence (xj)
converges to some point p of X. Then p ∈ F .

Proof Suppose that p were a point belonging to the complement X \F of F .
Now X \ F is open (since F is closed). Therefore there would exist some
natural number N such that xj ∈ X \ F for all values of j satisfying j ≥ N ,
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contradicting the fact that xj ∈ F for all j. This contradiction shows that p
must belong to F , as required.

Lemma 1.13 Let f :X → Y be a continuous function between topological
spaces X and Y , and let x1, x2, x3, . . . be a sequence of points in X which
converges to some point p of X. Then the sequence f(x1), f(x2), f(x3), . . .
converges to f(p).

Proof Let V be an open set in Y which contains the point f(p). Then
f−1(V ) is an open set in X which contains the point p. It follows that
there exists some natural number N such that xj ∈ f−1(V ) whenever j ≥
N . But then f(xj) ∈ V whenever j ≥ N . We deduce that the sequence
f(x1), f(x2), f(x3), . . . converges to f(p), as required.

1.14 Neighbourhoods, Closures and Interiors

Definition Let X be a topological space, and let x be a point of X. Let
N be a subset of X which contains the point x. Then N is said to be a
neighbourhood of the point x if and only if there exists an open set U for
which x ∈ U and U ⊂ N .

One can readily verify that this definition of neighbourhoods in topolog-
ical spaces is consistent with that for neighbourhoods in metric spaces.

Lemma 1.14 Let X be a topological space. A subset V of X is open in X
if and only if V is a neighbourhood of each point belonging to V .

Proof It follows directly from the definition of neighbourhoods that an open
set V is a neighbourhood of any point belonging to V . Conversely, suppose
that V is a subset of X which is a neighbourhood of each v ∈ V . Then, given
any point v of V , there exists an open set Uv such that v ∈ Uv and Uv ⊂ V .
Thus V is an open set, since it is the union of the open sets Uv as v ranges
over all points of V .

Definition Let X be a topological space and let A be a subset of X. The
closure A of A in X is defined to be the intersection of all of the closed
subsets of X that contain A. The interior A0 of A in X is defined to be the
union of all of the open subsets of X that are contained in A.

Let X be a topological space and let A be a subset of X. It follows directly
from the definition of A that the closure A of A is uniquely characterized by
the following two properties:
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(i) the closure A of A is a closed set containing A,

(ii) if F is any closed set containing A then F contains A.

Similarly the interior A0 of A is uniquely characterized by the following two
properties:

(i) the interior A0 of A is an open set contained in A,

(ii) if U is any open set contained in A then U is contained in A0.

Moreover a point x of A belongs to the interior A0 of A if and only if A is a
neighbourhood of x.

Lemma 1.15 Let X be a topological space, and let A be a subset of X.
Suppose that a sequence x1, x2, x3, . . . of points of A converges to some point p
of X. Then p belongs to the closure A of A.

Proof If F is any closed set containing A then xj ∈ F for all j, and therefore
p ∈ F , by Lemma 1.12. Therefore p ∈ A by definition of A.
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2 Product Topologies

2.1 The Cartesian Product of Subsets of Euclidean
Space

Let X and Y be subsets of Rm and Rn respectively. We can regard the
Cartesian product X × Y of X and Y as a subset of Rm+n. If x and y are
points of X and Y respectively, with

x = (x1, x2, . . . , xm), y = (y1, y2, . . . , yn),

then (x,y) is that point of Rm+n with Cartesian coordinates given by

(x,y) = (x1, x2, . . . , xm, y1, y2, . . . , yn).

It follows immediately from the definition of the Euclidean distance function
that

|(x,y)− (v,w)|2 = |x− v|2 + |y −w|2.
for all points x and v of X and points y and w of Y .

Lemma 2.1 Let X and Y be subsets of Rm and Rn respectively. A subset
U of X × Y is open in X × Y if and only if, given any point (v,w) of U ,
there exist positive real numbers δ1 > 0 and δ2 > 0 such that

{(x,y) ∈ X × Y : |x− v| < δ1 and |y −w| < δ2} ⊂ U.

Proof We recall that a subset U of X × Y is open in X × Y if and only if,
given any point (v,w) of U , there exists a positive real number δ > 0 such
that

{(x,y) ∈ X × Y : |(x,y)− (v,w)| < δ} ⊂ U.

Let (v,w) be a point of U . Suppose that there exists a positive real
number δ > 0 such that

{(x,y) ∈ X × Y : |(x,y)− (v,w)| < δ} ⊂ U.

Let δ1 = δ2 = δ/
√

2. Then δ2
1 +δ2

2 = δ2. Thus if |x−v| < δ1 and |y−w| < δ2,
then |(x,y)− (v,w)| < δ, and hence (x,y) ∈ U .

Conversely suppose that there exist positive real numbers δ1 > 0 and
δ2 > 0 such that

{(x,y) ∈ X × Y : |x− v| < δ1 and |y −w| < δ2} ⊂ U.

Let δ be the minimum of δ1 and δ2. If |(x,y)− (v,w)| < δ then |x−v| < δ1

and |y −w| < δ2, and hence (x,y) ∈ U .
The result follows.
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Lemma 2.2 Let X, Y and Z be subsets of Rm, Rn and Rk respectively. A
function f :X × Y → Z is continuous if and only if, given any point (v,w)
of X × Y , and given any positive real number ε > 0, there exist positive real
numbers δ1 > 0 and δ2 > 0 such that |f(x,y) − f(v,w)| < ε for all x ∈ X
and y ∈ Y satisfying |x− v| < δ1 and |y −w| < δ2.

Proof Let f :X × Y → Z be a function satisfying the above criterion. We
must show that this function is continuous. Let U be an open set in Z. We
show that f−1(U) is open in X × Y .

Let (v,w) be a point of f−1(U). Then f(v,w) is a point of U . But U is
open in Z, and therefore there exists a positive real number ε > 0 such that

{z ∈ Z : |z− f(v,w)| < ε} ⊂ U.

But then there exist real numbers real numbers δ1 > 0 and δ2 > 0 such that
|f(x,y) − f(v,w)| < ε, and hence f(x,y) ∈ U , for all x ∈ X and y ∈ Y
satisfying |x− v| < δ1 and |y −w| < δ2. Thus

{(x,y) ∈ X × Y : |x− v| < δ1 and |y −w| < δ2} ⊂ f−1(U).

We conclude that f−1(U) is open in X × Y for each open set U in Z. Thus
the function f :X × Y → Z is continuous.

Conversely suppose that f :X × Y → Z is a continuous function. Let
(v,w) be a point of X × Y and let ε > 0 be given. Then

{z ∈ Z : |z− f(v,w)| < ε}

is an open set in Z, and hence its preimage is an open set in X × Y . It
follows from Lemma 2.1 that there exist positive real numbers δ1 > 0 and
δ2 > 0 such that

{(x,y) ∈ X × Y : |x− v| < δ1 and |y −w| < δ2}

is contained in the preimage of {z ∈ Z : |z− f(v,w)| < ε}. But this means
that |f(x,y)− f(v,w)| < ε for all x ∈ X and y ∈ Y satisfying |x− v| < δ1

and |y −w| < δ2, as required.

The next result shows how one can describe the collection of open sets of
X×Y in terms of the collections of open sets in X and in Y , without explicit
reference to norms or distance functions. This motivates the definition of the
product topology on the Cartesian product of two topological spaces.
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Proposition 2.3 Let X and Y be subsets of Rm and Rn respectively. A
subset U of X ×Y is open in X ×Y if and only if, given any point (v,w) of
U , there exist an open set V in X and an open set W in Y such that v ∈ V ,
w ∈ W and V ×W ⊂ U .

Proof Let U be open in X × Y . It follows from Lemma 2.1 that there exist
positive real numbers δ1 > 0 and δ2 > 0 such that

{(x,y) ∈ X × Y : |x− v| < δ1 and |y −w| < δ2} ⊂ U.

Let

V = {x ∈ X : |x− v| < δ1} and W = {y ∈ Y : |y −w| < δ2}.

Then V is open in X, W is open in Y , v ∈ V , w ∈ W and V ×W ⊂ U .
Conversely suppose that U is a subset of X×Y and that, given any point

(v,w) of U , there exist an open set V in X and an open set W in Y such
that v ∈ V , w ∈ W and V ×W ⊂ U . Then, given any point (v,w) of U ,
there exist positive real numbers δ1 > 0 and δ2 > 0 such that

{x ∈ X : |x− v| < δ1} ⊂ V

and
{y ∈ Y : |y −w| < δ2} ⊂ W.

But then

{(x,y) ∈ X × Y : |x− v| < δ1 and |y −w| < δ2} ⊂ V ×W ⊂ U.

It follows from Lemma 2.1 that U is open in X × Y , as required.

2.2 Product Topologies

The Cartesian product X1 ×X2 × · · · ×Xn of sets X1, X2, . . . , Xn is defined
to be the set of all ordered n-tuples (x1, x2, . . . , xn), where xi ∈ Xi for i =
1, 2, . . . , n.

The sets R2 and R3 are the Cartesian products R × R and R × R × R
respectively.

Cartesian products of sets are employed as the domains of functions of
several variables. For example, if X, Y and Z are sets, and if an element
f(x, y) of Z is determined for each choice of an element x of X and an
element y of Y , then we have a function f :X × Y → Z whose domain is the
Cartesian product X × Y of X and Y : this function sends the ordered pair
(x, y) to f(x, y) for all x ∈ X and y ∈ Y .
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Now suppose that X, Y and Z are topological spaces. We wish to define
a notion of continuity for functions f :X × Y → Z from X × Y to Z. In
order to do this, we show that the topologies of X and Y together induce
in a natural way a topology on X × Y ; this topology is referred to as the
product topology on X × Y .

First we observe that if V is a subset of X and if W is a subset of Y then
V ×W is a subset of X × Y : an element of V ×W is an ordered pair (v, w)
with v ∈ V and w ∈ W , and such an ordered pair belongs to X × Y .

Definition Let X and Y be topological spaces. A subset U of X×Y is said
to be open in X × Y (with respect to the product topology) if, given any
point (x, y) of U , there exist an open set V in X and an open set W in Y
such that x ∈ V , y ∈ W and V ×W ⊂ U . The empty set is regarded as an
open set in X × Y .

Lemma 2.4 Let X and Y be topological spaces. Then the collection of open
sets in X × Y is a topology on X × Y .

Proof The definition of open sets ensures that the empty set and the whole
set X × Y are open in X × Y . We must prove that any union or finite
intersection of open sets in X × Y is an open set.

Let E be the union of a collection of open sets in X × Y , and let (x, y)
be a point of E. Then (x, y) ∈ D for some open set D in the collection. It
follows from this that there exists an open set V in X and an open set W
in Y such that x ∈ V , y ∈ W and V ×W ⊂ D. But then V ×W ⊂ E. It
follows that E is open in X × Y .

Let U = U1∩U2∩ · · · ∩Um, where U1, U2, . . . , Um are open sets in X×Y ,
and let (x, y) be a point of U . Then there exist open sets Vk in X and open
sets Wk in Y for k = 1, 2, . . . ,m such that x ∈ Vk, y ∈ Wk and Vk×Wk ⊂ Uk
for k = 1, 2, . . . ,m. Let

V = V1 ∩ V2 ∩ · · · ∩ Vm, W = W1 ∩W2 ∩ · · · ∩Wm.

Then x ∈ V and y ∈ W . Also V ×W ⊂ Vk ×Wk ⊂ Uk for k = 1, 2, . . . ,m,
hence V ×W ⊂ U . It follows that U is open in X × Y , as required.

Let X and Y be topological spaces. The collection of open sets in X ×Y
defined as described above is referred to as the product topology on X × Y .
The definition of the product topology can easily be generalized to Cartesian
products of any finite number of topological spaces.
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Definition Let X1, X2, . . . , Xn be topological spaces. A subset U of the
Cartesian product X1×X2×· · ·×Xn is said to be open (with respect to the
product topology) if, given any point p of U , there exist open sets Vi in Xi

for i = 1, 2, . . . , n such that {p} ⊂ V1 × V2 × · · · × Vn ⊂ U .

Lemma 2.5 Let X1, X2, . . . , Xn be topological spaces. Then the collection of
open sets in X1 ×X2 × · · · ×Xn is a topology on X1 ×X2 × · · · ×Xn.

Proof Let X = X1×X2×· · ·×Xn. The definition of open sets ensures that
the empty set and the whole set X are open in X. We must prove that any
union or finite intersection of open sets in X is an open set.

Let E be a union of a collection of open sets in X and let p be a point of
E. Then p ∈ D for some open set D in the collection. It follows from this
that there exist open sets Vi in Xi for i = 1, 2, . . . , n such that

{p} ⊂ V1 × V2 × · · · × Vn ⊂ D ⊂ E.

Thus E is open in X.
Let U = U1∩U2∩· · ·∩Um, where U1, U2, . . . , Um are open sets in X, and let

p be a point of U . Then there exist open sets Vki in Xi for k = 1, 2, . . . ,m and
i = 1, 2, . . . , n such that {p} ⊂ Vk1×Vk2×· · ·×Vkn ⊂ Uk for k = 1, 2, . . . ,m.
Let Vi = V1i ∩ V2i ∩ · · · ∩ Vmi for i = 1, 2, . . . , n. Then

{p} ⊂ V1 × V2 × · · · × Vn ⊂ Vk1 × Vk2 × · · · × Vkn ⊂ Uk

for k = 1, 2, . . . ,m, and hence {p} ⊂ V1 × V2 × · · · × Vn ⊂ U . It follows that
U is open in X, as required.

Lemma 2.6 Let X1, X2, . . . , Xn and Z be topological spaces. Then a func-
tion f :X1×X2× · · · ×Xn → Z is continuous if and only if, given any point
p of X1 × X2 × · · · × Xn, and given any open set U in Z containing f(p),
there exist open sets Vi in Xi for i = 1, 2, . . . , n such that p ∈ V1×V2 · · ·×Vn
and f(V1 × V2 × · · · × Vn) ⊂ U .

Proof Let Vi be an open set in Xi for i = 1, 2, . . . , n, and let U be an open set
in Z. Then V1×V2×· · ·×Vn ⊂ f−1(U) if and only if f(V1×V2×· · ·×Vn) ⊂ U .
It follows that f−1(U) is open in the product topology on X1×X2×· · ·×Xn if
and only if, given any point p of X1×X2×· · ·×Xn satisfying f(p) ∈ U , there
exist open sets Vi in Xi for i = 1, 2, . . . , n such that f(V1×V2×· · ·×Vn) ⊂ U .
The required result now follows from the definition of continuity.

Let X1, X2, . . . , Xn be topological spaces, and let Vi be an open set in
Xi for i = 1, 2, . . . , n. It follows directly from the definition of the product
topology that V1 × V2 × · · · × Vn is open in X1 ×X2 × · · · ×Xn.
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Theorem 2.7 Let X = X1 × X2 × · · · × Xn, where X1, X2, . . . , Xn are
topological spaces and X is given the product topology, and for each i, let
pi:X → Xi denote the projection function which sends (x1, x2, . . . , xn) ∈ X
to xi. Then the functions p1, p2, . . . , pn are continuous. Moreover a function
f :Z → X mapping a topological space Z into X is continuous if and only if
pi ◦ f :Z → Xi is continuous for i = 1, 2, . . . , n.

Proof Let V be an open set in Xi. Then

p−1
i (V ) = X1 × · · · ×Xi−1 × V ×Xi+1 × · · · ×Xn,

and therefore p−1
i (V ) is open in X. Thus pi:X → Xi is continuous for all i.

Let f :Z → X be continuous. Then, for each i, pi ◦ f :Z → Xi is a
composition of continuous functions, and is thus itself continuous.

Conversely suppose that f :Z → X is a function with the property that
pi ◦ f is continuous for all i. Let U be an open set in X. We must show that
f−1(U) is open in Z.

Let z be a point of f−1(U), and let f(z) = (u1, u2, . . . , un). Now U is open
in X, and therefore there exist open sets V1, V2, . . . , Vn in X1, X2, . . . , Xn

respectively such that ui ∈ Vi for all i and V1 × V2 × · · · × Vn ⊂ U . Let

Nz = f−1
1 (V1) ∩ f−1

2 (V2) ∩ · · · ∩ f−1
n (Vn),

where fi = pi ◦ f for i = 1, 2, . . . , n. Now f−1
i (Vi) is an open subset of Z for

i = 1, 2, . . . , n, since Vi is open in Xi and fi:Z → Xi is continuous. Thus Nz,
being a finite intersection of open sets, is itself open in Z. Moreover

f(Nz) ⊂ V1 × V2 × · · · × Vn ⊂ U,

so that Nz ⊂ f−1(U). It follows that f−1(U) is the union of the open sets Nz

as z ranges over all points of f−1(U). Therefore f−1(U) is open in Z. This
shows that f :Z → X is continuous, as required.

Proposition 2.8 The usual topology on Rn coincides with the product topol-
ogy on Rn obtained on regarding Rn as the Cartesian product R×R×· · ·×R
of n copies of the real line R.

Proof We must show that a subset U of Rn is open with respect to the usual
topology if and only if it is open with respect to the product topology.

Let U be a subset of Rn that is open with respect to the usual topology,
and let u ∈ U . Then there exists some δ > 0 such that B(u, δ) ⊂ U , where

B(u, δ) = {x ∈ Rn : |x− u| < δ}.
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Let I1, I2, . . . , In be the open intervals in R defined by

Ii = {t ∈ R : ui −
δ√
n
< t < ui +

δ√
n
} (i = 1, 2, . . . , n),

Then I1, I2, . . . , In are open sets in R. Moreover

{u} ⊂ I1 × I2 × · · · × In ⊂ B(u, δ) ⊂ U,

since

|x− u|2 =
n∑
i=1

(xi − ui)2 < n

(
δ√
n

)2

= δ2

for all x ∈ I1 × I2 × · · · × In. This shows that any subset U of Rn that is
open with respect to the usual topology on Rn is also open with respect to
the product topology on Rn.

Conversely suppose that U is a subset of Rn that is open with respect
to the product topology on Rn, and let u ∈ U . Then there exist open
sets V1, V2, . . . , Vn in R containing u1, u2, . . . , un respectively such that V1 ×
V2 × · · · × Vn ⊂ U . Now we can find δ1, δ2, . . . , δn such that δi > 0 and
(ui− δi, ui+ δi) ⊂ Vi for all i. Let δ > 0 be the minimum of δ1, δ2, . . . , . . . , δn.
Then

B(u, δ) ⊂ V1 × V2 × · · ·Vn ⊂ U,

for if x ∈ B(u, δ) then |xi − ui| < δi for i = 1, 2, . . . , n. This shows that any
subset U of Rn that is open with respect to the product topology on Rn is
also open with respect to the usual topology on Rn.

The following result is now an immediate corollary of Proposition 2.8 and
Theorem 2.7.

Corollary 2.9 Let X be a topological space and let f :X → R
n be a function

from X to Rn. Let us write

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where the components f1, f2, . . . , fn of f are functions from X
to R. The function f is continuous if and only if its components f1, f2, . . . , fn
are all continuous.

Let f :X → R and g:X → R be continuous real-valued functions on some
topological space X. We claim that f+g, f−g and f.g are continuous. Now
it is a straightforward exercise to verify that the sum and product functions
s:R2 → R and p:R2 → R defined by s(x, y) = x + y and p(x, y) = xy
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are continuous, and f + g = s ◦ h and f.g = p ◦ h, where h:X → R
2 is

defined by h(x) = (f(x), g(x)). Moreover it follows from Corollary 2.9 that
the function h is continuous, and compositions of continuous functions are
continuous. Therefore f + g and f.g are continuous, as claimed. Also −g
is continuous, and f − g = f + (−g), and therefore f − g is continuous. If
in addition the continuous function g is non-zero everywhere on X then 1/g
is continuous (since 1/g is the composition of g with the reciprocal function
t 7→ 1/t), and therefore f/g is continuous.

Lemma 2.10 The Cartesian product X1 ×X2 × . . . Xn of Hausdorff spaces
X1, X2, . . . , Xn is Hausdorff.

Proof Let X = X1 ×X2 × . . . , Xn, and let u and v be distinct points of X,
where u = (x1, x2, . . . , xn) and v = (y1, y2, . . . , yn). Then xi 6= yi for some
integer i between 1 and n. But then there exist open sets U and V in Xi

such that xi ∈ U , yi ∈ V and U ∩ V = ∅ (since Xi is a Hausdorff space).
Let pi:X → Xi denote the projection function. Then p−1

i (U) and p−1
i (V ) are

open sets in X, since pi is continuous. Moreover u ∈ p−1
i (U), v ∈ p−1

i (V ),
and p−1

i (U) ∩ p−1
i (V ) = ∅. Thus X is Hausdorff, as required.
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3 Identification Maps and Quotient Topolo-

gies

3.1 Cut and Paste Constructions

Suppose we start out with a square of paper. If we join together two opposite
edges of this square we obtain a cylinder. The boundary of the cylinder
consists of two circles. If we join together the two boundary circles we obtain
a torus (which corresponds to the surface of a doughnut).

Let the square be represented by the set [0, 1] × [0, 1] consisting of all
ordered pairs (s, t) where s and t are real numbers between 0 and 1. There
is an equivalence relation on the square [0, 1]× [0, 1], where points (s, t) and
(u, v) of the square are related if and only if at least one of the following
conditions is satisfied:

• s = u and t = v;

• s = 0, u = 1 and t = v;

• s = 1, u = 0 and t = v;

• t = 0, v = 1 and s = u;

• t = 1, v = 0 and s = u;

• (s, t) and (u, v) both belong to {(0, 0), (0, 1), (1, 0), (1, 1)}.

Note that if 0 < s < 1 and 0 < t < 1 then the equivalence class of the
point (s, t) is the set {(s, t)} consisting of that point. If s = 0 or 1 and
if 0 < t < 1 then the equivalence class of (s, t) is the set {(0, t), (1, t)}.
Similarly if t = 0 or 1 and if 0 < s < 1 then the equivalence class of (s, t)
is the set {(s, 0), (s, 1)}. The equivalence class of each corner of the square
is the set (0, 0), (1, 0), (0, 1), (1, 1) consisting of all four corners. Thus each
equivalence class contains either one point in the interior of the square, or
two points on opposite edges of the square, or four points at the four corners
of the square. Let T 2 denote the set of these equivalence classes. We have
a map q: [0, 1] × [0, 1] → T 2 which sends each point (s, t) of the square to
its equivalence class. Each element of the set T 2 is the image of one, two
or four points of the square. The elements of T 2 represent points on the
torus obtained from the square by first joining together two opposite sides of
the square to form a cylinder and then joining together the boundary circles
of this cylinder as described above. We say that the torus T 2 is obtained
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from the square [0, 1]× [0, 1] by identifying the points (0, t) and (1, t) for all
t ∈ [0, 1] and identifying the points (s, 0) and (s, 1) for all s ∈ [0, 1].

The topology on the square [0, 1]× [0, 1] induces a corresponding topology
on the set T 2, where a subset U of T 2 is open in T 2 if and only if q−1(U)
is open in the square [0, 1] × [0, 1]. (The fact that these open sets in T 2

constitute a topology on the set T 2 is a consequence of Lemma 3.1.) The
function q: [0, 1] × [0, 1] → T 2 is then a continuous surjection. We say that
the topological space T 2 is the identification space obtained from the square
[0, 1] × [0, 1] by identifying points on the sides to the square as described
above. The continuous map q from the square to the torus is an example of
an identification map, and the topology on the torus T 2 is referred to as the
quotient topology on T 2 induced by the identification map q: [0, 1]× [0, 1]→
T 2.

Another well-known identification space obtained from the square is the
Klein bottle (Kleinsche Flasche). The Klein bottle K2 is obtained from the
square [0, 1] × [0, 1] by identifying (0, t) with (1, 1 − t) for all t ∈ [0, 1] and
identifying (s, 0) with (s, 1) for all s ∈ [0, 1]. These identifications correspond
to an equivalence relation on the square, where points (s, t) and (u, v) of the
square are equivalent if and only if one of the following conditions is satisfied:

• s = u and t = v;

• s = 0, u = 1 and t = 1− v;

• s = 1, u = 0 and t = 1− v;

• t = 0, v = 1 and s = u;

• t = 1, v = 0 and s = u;

• (s, t) and (u, v) both belong to {(0, 0), (0, 1), (1, 0), (1, 1)}.

The corresponding set of equivalence classes is the Klein bottle K2. Thus
each point of the Klein bottle K2 represents an equivalence class consisting
of either one point in the interior of the square, or two points (0, t) and
(1, 1− t) with 0 < t < 1 on opposite edges of the square, or two points (s, 0)
and (s, 1) with 0 < s < 1 on opposite edges of the square, or the four corners
of the square. There is a surjection r: [0, 1] × [0, 1] → K2 from the square
to the Klein bottle that sends each point of the square to its equivalence
class. The identifications used to construct the Klein bottle ensure that
r(0, t) = r(1, 1− t) for all t ∈ [0, 1] and r(s, 0) = r(s, 1) for all s ∈ [0, 1]. One
can construct a quotient topology on the Klein bottle K2, where a subset U
of K2 is open in K2 if and only if its preimage r−1(U) is open in the square
[0, 1]× [0, 1].
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3.2 Identification Maps and Quotient Topologies

Definition Let X and Y be topological spaces and let q:X → Y be a
function from X to Y . The function q is said to be an identification map if
and only if the following conditions are satisfied:

• the function q:X → Y is surjective,

• a subset U of Y is open in Y if and only if q−1(U) is open in X.

It follows directly from the definition that any identification map is con-
tinuous. Moreover, in order to show that a continuous surjection q:X → Y
is an identification map, it suffices to prove that if V is a subset of Y with
the property that q−1(V ) is open in X then V is open in Y .

Example Let S1 denote the unit circle {(x, y) ∈ R2 : x2+y2 = 1} in R2, and
let q: [0, 1] → S1 be the continuous map defined by q(t) = (cos 2πt, sin 2πt)
for all t ∈ [0, 1]. We show that q: [0, 1] → S1 is an identification map. This
map is continuous and surjective. It remains to show that if V is a subset of
S1 with the property that q−1(V ) is open in [0, 1] then V is open in S1.

Note that |q(s) − q(t)| = 2| sin π(s − t)| for all s, t ∈ [0, 1] satisfying
|s − t| ≤ 1

2
. Let V be a subset of S1 with the property that q−1(V ) is open

in [0, 1], and let v be an element of V . We show that there exists ε > 0
such that all points u of S1 satisfying |u− v| < ε belong to V . We consider
separately the cases when v = (1, 0) and when v 6= (1, 0).

Suppose that v = (1, 0). Then (1, 0) ∈ V , and hence 0 ∈ q−1(V ) and
1 ∈ q−1(V ). But q−1(V ) is open in [0, 1]. It follows that there exists a real
number δ satisfying 0 < δ < 1

2
such that [0, δ) ⊂ q−1(V ) and (1 − δ, 1] ∈

q−1(V ). Let ε = 2 sin πδ. Now if −π ≤ θ ≤ π then the Euclidean distance
between the points (1, 0) and (cos θ, sin θ) is 2 sin 1

2
|θ|. Moreover, this distance

increases monotonically as |θ| increases from 0 to π. Thus any point on the
unit circle S1 whose distance from (1, 0) is less than ε must be of the form
(cos θ, sin θ), where |θ| < 2πδ. Thus if u ∈ S1 satisfies |u − v| < ε then
u = q(s) for some s ∈ [0, 1] satisfying either 0 ≤ s < δ or 1− δ < s ≤ 1. But
then s ∈ q−1(V ), and hence u ∈ V .

Next suppose that v 6= (1, 0). Then v = q(t) for some real number t
satisfying 0 < t < 1. But q−1(V ) is open in [0, 1], and t ∈ q−1(V ). It
follows that (t− δ, t + δ) ⊂ q−1(V ) for some real number δ satisfying δ > 0.
Let ε = 2 sin πδ. If u ∈ S1 satisfies |u − v| < ε then u = q(s) for some
s ∈ (t− δ, t+ δ). But then s ∈ q−1(V ), and hence u ∈ V .

We have thus shown that if V is a subset of S1 with the property that
q−1(V ) is open in [0, 1] then there exists ε > 0 such that u ∈ V for all
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elements u of S1 satisfying |u − v| < ε. It follows from this that V is open
in S1. Thus the continuous surjection q: [0, 1]→ S1 is an identification map.

Lemma 3.1 Let X be a topological space, let Y be a set, and let q:X → Y
be a surjection. Then there is a unique topology on Y for which the function
q:X → Y is an identification map.

Proof Let τ be the collection consisting of all subsets U of Y for which
q−1(U) is open in X. Now q−1(∅) = ∅, and q−1(Y ) = X, so that ∅ ∈ τ and
Y ∈ τ . If {Vα : α ∈ A} is any collection of subsets of Y indexed by a set A,
then it is a straightforward exercise to verify that⋃

α∈A
q−1(Vα) = q−1

(⋃
α∈A

Vα

)
,

⋂
α∈A

q−1(Vα) = q−1
(⋂

α∈A
Vα

)
(i.e., given any collection of subsets of Y , the union of the preimages of the
sets is the preimage of the union of those sets, and the intersection of the
preimages of the sets is the preimage of the intersection of those sets). It
follows easily from this that unions and finite intersections of sets belonging
to τ must themselves belong to τ . Thus τ is a topology on Y , and the
function q:X → Y is an identification map with respect to the topology τ .
Clearly τ is the unique topology on Y for which the function q:X → Y is an
identification map.

Let X be a topological space, let Y be a set, and let q:X → Y be a
surjection. The unique topology on Y for which the function q is an identifi-
cation map is referred to as the quotient topology (or identification topology)
on Y .

Let ∼ be an equivalence relation on a topological space X. If Y is the
corresponding set of equivalence classes of elements of X then there is a
surjection q:X → Y that sends each element of X to its equivalence class.
Lemma 3.1 ensures that there is a well-defined quotient topology on Y , where
a subset U of Y is open in Y if and only if q−1(U) is open in X. (Appropriate
equivalence relations on the square yield the torus and the Klein bottle, as
discussed above.)

Lemma 3.2 Let X and Y be topological spaces and let q:X → Y be an
identification map. Let Z be a topological space, and let f :Y → Z be a
function from Y to Z. Then the function f is continuous if and only if the
composition function f ◦ q:X → Z is continuous.

Proof Suppose that f is continuous. Then the composition function f ◦ q is
a composition of continuous functions and hence is itself continuous.
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Conversely suppose that f ◦ q is continuous. Let U be an open set in Z.
Then q−1(f−1(U)) is open in X (since f ◦ q is continuous), and hence f−1(U)
is open in Y (since the function q is an identification map). Therefore the
function f is continuous, as required.

Example Let S1 be the unit circle in R2, and let q: [0, 1] → S1 be the
map that sends t ∈ [0, 1] to (cos 2πt, sin 2πt). Then q: [0, 1] → S1 is an
identification map, and therefore a function f :S1 → Z from S1 to some
topological space Z is continuous if and only if f ◦q: [0, 1]→ Z is continuous.

Example The Klein bottle K2 is the identification space obtained from the
square [0, 1] × [0, 1] by identifying (0, t) with (1, 1 − t) for all t ∈ [0, 1] and
identifying (s, 0) with (s, 1) for all s ∈ [0, 1]. Let q: [0, 1] × [0, 1] → K2

be the identification map determined by these identifications. Let Z be a
topological space. A function g: [0, 1]× [0, 1]→ Z mapping the square into Z
which satisfies g(0, t) = g(1, 1− t) for all t ∈ [0, 1] and g(s, 0) = g(s, 1) for all
s ∈ [0, 1], determines a corresponding function f :K2 → Z, where g = f ◦ q.
It follows from Lemma 3.2 that the function f :K2 → Z is continuous if and
only if g: [0, 1]× [0, 1]→ Z is continuous.

Example Let Sn be the n-sphere, consisting of all points x in Rn+1 satisfying
|x| = 1. Let RP n be the set of all lines in Rn+1 passing through the origin (i.e.,
RP n is the set of all one-dimensional vector subspaces of Rn+1). Let q:Sn →
RP n denote the function which sends a point x of Sn to the element of RP n

represented by the line in Rn+1 that passes through both x and the origin.
Note that each element of RP n is the image (under q) of exactly two antipodal
points x and −x of Sn. The function q induces a corresponding quotient
topology on RP n such that q:Sn → RP n is an identification map. The set
RP n, with this topology, is referred to as real projective n-space. In particular
RP 2 is referred to as the real projective plane. It follows from Lemma 3.2 that
a function f :RP n → Z from RP n to any topological space Z is continuous
if and only if the composition function f ◦ q:Sn → Z is continuous.

28



4 Compactness

4.1 Compact Topological Spaces

Let X be a topological space, and let A be a subset of X. A collection of
subsets of X in X is said to cover A if and only if every point of A belongs to
at least one of these subsets. In particular, an open cover of X is collection
of open sets in X that covers X.

If U and V are open covers of some topological space X then V is said to
be a subcover of U if and only if every open set belonging to V also belongs
to U .

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

Lemma 4.1 Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any collection U
of open sets in X covering A, there exists a finite collection V1, V2, . . . , Vr of
open sets belonging to U such that A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Proof A subset B of A is open in A (with respect to the subspace topology
on A) if and only if B = A∩V for some open set V in X. The desired result
therefore follows directly from the definition of compactness.

We now show that any closed bounded interval in the real line is compact.
This result is known as the Heine-Borel Theorem. The proof of this theorem
uses the least upper bound principle which states that, given any non-empty
set S of real numbers which is bounded above, there exists a least upper
bound (or supremum) supS for the set S.

Theorem 4.2 (Heine-Borel) Let a and b be real numbers satisfying a < b.
Then the closed bounded interval [a, b] is a compact subset of R.

Proof Let U be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open sets. We must
show that [a, b] is covered by finitely many of these open sets.

Let S be the set of all τ ∈ [a, b] with the property that [a, τ ] is covered
by some finite collection of open sets belonging to U , and let s = supS. Now
s ∈ W for some open set W belonging to U . Moreover W is open in R, and
therefore there exists some δ > 0 such that (s − δ, s + δ) ⊂ W . Moreover
s − δ is not an upper bound for the set S, hence there exists some τ ∈ S
satisfying τ > s− δ. It follows from the definition of S that [a, τ ] is covered
by some finite collection V1, V2, . . . , Vr of open sets belonging to U .
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Let t ∈ [a, b] satisfy τ ≤ t < s+ δ. Then

[a, t] ⊂ [a, τ ] ∪ (s− δ, s+ δ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W,

and thus t ∈ S. In particular s ∈ S, and moreover s = b, since otherwise s
would not be an upper bound of the set S. Thus b ∈ S, and therefore [a, b]
is covered by a finite collection of open sets belonging to U , as required.

Lemma 4.3 Let A be a closed subset of some compact topological space X.
Then A is compact.

Proof Let U be any collection of open sets in X covering A. On adjoining
the open set X \ A to U , we obtain an open cover of X. This open cover
of X possesses a finite subcover, since X is compact. Moreover A is covered
by the open sets in the collection U that belong to this finite subcover. It
follows from Lemma 4.1 that A is compact, as required.

Lemma 4.4 Let f :X → Y be a continuous function between topological
spaces X and Y , and let A be a compact subset of X. Then f(A) is a
compact subset of Y .

Proof Let V be a collection of open sets in Y which covers f(A). Then A is
covered by the collection of all open sets of the form f−1(V ) for some V ∈ V .
It follows from the compactness of A that there exists a finite collection
V1, V2, . . . , Vk of open sets belonging to V such that

A ⊂ f−1(V1) ∪ f−1(V2) ∪ · · · ∪ f−1(Vk).

But then f(A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. This shows that f(A) is compact.

Lemma 4.5 Let f :X → R be a continuous real-valued function on a com-
pact topological space X. Then f is bounded above and below on X.

Proof The range f(X) of the function f is covered by some finite collection
I1, I2, . . . , Ik of open intervals of the form (−m,m), where m ∈ N, since f(X)
is compact (Lemma 4.4) and R is covered by the collection of all intervals of
this form. It follows that f(X) ⊂ (−M,M), where (−M,M) is the largest of
the intervals I1, I2, . . . , Ik. Thus the function f is bounded above and below
on X, as required.

Proposition 4.6 Let f :X → R be a continuous real-valued function on a
compact topological space X. Then there exist points u and v of X such that
f(u) ≤ f(x) ≤ f(v) for all x ∈ X.
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Proof Let m = inf{f(x) : x ∈ X} and M = sup{f(x) : x ∈ X}. There
must exist v ∈ X satisfying f(v) = M , for if f(x) < M for all x ∈ X then
the function x 7→ 1/(M − f(x)) would be a continuous real-valued function
on X that was not bounded above, contradicting Lemma 4.5. Similarly
there must exist u ∈ X satisfying f(u) = m, since otherwise the function
x 7→ 1/(f(x)−m) would be a continuous function on X that was not bounded
above, again contradicting Lemma 4.5. But then f(u) ≤ f(x) ≤ f(v) for all
x ∈ X, as required.

Proposition 4.7 Let A be a compact subset of a metric space X. Then A
is closed in X.

Proof Let p be a point of X that does not belong to A, and let f(x) =
d(x, p), where d is the distance function on X. It follows from Proposition 4.6
that there is a point q of A such that f(a) ≥ f(q) for all a ∈ A, since A is
compact. Now f(q) > 0, since q 6= p. Let δ satisfy 0 < δ ≤ f(q). Then the
open ball of radius δ about the point p is contained in the complement of
A, since f(x) < f(q) for all points x of this open ball. It follows that the
complement of A is an open set in X, and thus A itself is closed in X.

Proposition 4.8 Let X be a Hausdorff topological space, and let K be a
compact subset of X. Let x be a point of X \K. Then there exist open sets
V and W in X such that x ∈ V , K ⊂ W and V ∩W = ∅.

Proof For each point y ∈ K there exist open sets Vx,y and Wx,y such that
x ∈ Vx,y, y ∈ Wx,y and Vx,y ∩Wx,y = ∅ (since X is a Hausdorff space). But
then there exists a finite set {y1, y2, . . . , yr} of points of K such that K is
contained in Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr , since K is compact. Define

V = Vx,y1 ∩ Vx,y2 ∩ · · · ∩ Vx,yr , W = Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr .

Then V and W are open sets, x ∈ V , K ⊂ W and V ∩W = ∅, as required.

Corollary 4.9 A compact subset of a Hausdorff topological space is closed.

Proof Let K be a compact subset of a Hausdorff topological space X. It
follows immediately from Proposition 4.8 that, for each x ∈ X \ K, there
exists an open set Vx such that x ∈ Vx and Vx ∩K = ∅. But then X \K is
equal to the union of the open sets Vx as x ranges over all points of X \K,
and any set that is a union of open sets is itself an open set. We conclude
that X \K is open, and thus K is closed.
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Proposition 4.10 Let X be a Hausdorff topological space, and let K1 and
K2 be compact subsets of X, where K1 ∩K2 = ∅. Then there exist open sets
U1 and U2 such that K1 ⊂ U1, K2 ⊂ U2 and U1 ∩ U2 = ∅.

Proof It follows from Proposition 4.8 that, for each point x of K1, there
exist open sets Vx and Wx such that x ∈ Vx, K2 ⊂ Wx and Vx∩Wx = ∅. But
then there exists a finite set {x1, x2, . . . , xr} of points of K1 such that

K1 ⊂ Vx1 ∪ Vx2 ∪ · · · ∪ Vxr ,

since K1 is compact. Define

U1 = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr , U2 = Wx1 ∩Wx2 ∩ · · · ∩Wxr .

Then U1 and U2 are open sets, K1 ⊂ U1, K2 ⊂ U2 and U1 ∩ U2 = ∅, as
required.

Lemma 4.11 Let f :X → Y be a continuous function from a compact topo-
logical space X to a Hausdorff space Y . Then f(K) is closed in Y for every
closed set K in X.

Proof If K is a closed set in X, then K is compact (Lemma 4.3), and there-
fore f(K) is compact (Lemma 4.4). But any compact subset of a Hausdorff
space is closed (Corollary 4.9). Thus f(K) is closed in Y , as required.

Remark If the Hausdorff space Y in Lemma 4.11 is a metric space, then
Proposition 4.7 may be used in place of Corollary 4.9 in the proof of the
lemma.

Theorem 4.12 A continuous bijection f :X → Y from a compact topological
space X to a Hausdorff space Y is a homeomorphism.

Proof Let g:Y → X be the inverse of the bijection f :X → Y . If U is
open in X then X \ U is closed in X, and hence f(X \ U) is closed in Y ,
by Lemma 4.11. But f(X \ U) = g−1(X \ U) = Y \ g−1(U). It follows that
g−1(U) is open in Y for every open set U in X. Therefore g:Y → X is
continuous, and thus f :X → Y is a homeomorphism.

We recall that a function f :X → Y from a topological space X to a
topological space Y is said to be an identification map if it is surjective and
satisfies the following condition: a subset U of Y is open in Y if and only if
f−1(U) is open in X.
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Proposition 4.13 A continuous surjection f :X → Y from a compact topo-
logical space X to a Hausdorff space Y is an identification map.

Proof Let U be a subset of Y . We claim that Y \ U = f(K), where K =
X \ f−1(U). Clearly f(K) ⊂ Y \ U . Also, given any y ∈ Y \ U , there exists
x ∈ X satisfying y = f(x), since f :X → Y is surjective. Moreover x ∈ K,
since f(x) 6∈ U . Thus Y \ U ⊂ f(K), and hence Y \ U = f(K), as claimed.

We must show that the set U is open in Y if and only if f−1(U) is open
in X. First suppose that f−1(U) is open in X. Then K is closed in X, and
hence f(K) is closed in Y , by Lemma 4.11. It follows that U is open in Y .
Conversely if U is open in Y then f−1(Y ) is open in X, since f :X → Y is
continuous. Thus the surjection f :X → Y is an identification map.

Example Let S1 be the unit circle in R2, defined by S1 = {(x, y) ∈ R2 :
x2 + y2 = 1}, and let q: [0, 1] → S1 be defined by q(t) = (cos 2πt, sin 2πt)
for all t ∈ [0, 1]. It has been shown that the map q is an identification map.
This also follows directly from the fact that q: [0, 1] → S1 is a continuous
surjection from the compact space [0, 1] to the Hausdorff space S1.

We shall show that a finite Cartesian product of compact spaces is com-
pact. To prove this, we apply the following result, known as the Tube Lemma.

Lemma 4.14 Let X and Y be topological spaces, let K be a compact subset
of Y , and U be an open set in X × Y . Let V = {x ∈ X : {x} × K ⊂ U}.
Then V is an open set in X.

Proof Let x ∈ V . For each y ∈ K there exist open subsets Dy and Ey
of X and Y respectively such that (x, y) ∈ Dy × Ey and Dy × Ey ⊂ U .
Now there exists a finite set {y1, y2, . . . , yk} of points of K such that K ⊂
Ey1 ∪ Ey2 ∪ · · · ∪ Eyk , since K is compact. Set Nx = Dy1 ∩Dy2 ∩ · · · ∩Dyk .
Then Nx is an open set in X. Moreover

Nx ×K ⊂
k⋃
i=1

(Nx × Eyi) ⊂
k⋃
i=1

(Dyi × Eyi) ⊂ U,

so that Nx ⊂ V . It follows that V is the union of the open sets Nx for all
x ∈ V . Thus V is itself an open set in X, as required.

Theorem 4.15 A Cartesian product of a finite number of compact spaces is
itself compact.
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Proof It suffices to prove that the product of two compact topological spaces
X and Y is compact, since the general result then follows easily by induction
on the number of compact spaces in the product.

Let U be an open cover of X × Y . We must show that this open cover
possesses a finite subcover.

Let x be a point of X. The set {x}×Y is a compact subset of X×Y , since
it is the image of the compact space Y under the continuous map from Y to
X × Y which sends y ∈ Y to (x, y), and the image of any compact set under
a continuous map is itself compact (Lemma 4.4). Therefore there exists a
finite collection U1, U2, . . . , Ur of open sets belonging to the open cover U
such that {x}×Y is contained in U1∪U2∪ · · · ∪Ur. Let Vx denote the set of
all points x′ of X for which {x′}×Y is contained in U1 ∪U2 ∪ · · · ∪Ur. Then
x ∈ Vx, and Lemma 4.14 ensures That Vx is an open set in X. Note that
Vx × Y is covered by finitely many of the open sets belonging to the open
cover U .

Now {Vx : x ∈ X} is an open cover of the space X. It follows from the
compactness of X that there exists a finite set {x1, x2, . . . , xr} of points of X
such that X = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr . Now X × Y is the union of the sets
Vxj × Y for j = 1, 2, . . . , r, and each of these sets can be covered by a finite
collection of open sets belonging to the open cover U . On combining these
finite collections, we obtain a finite collection of open sets belonging to U
which covers X × Y . This shows that X × Y is compact.

Theorem 4.16 Let K be a subset of Rn. Then K is compact if and only if
K is both closed and bounded.

Proof Suppose that K is compact. Then K is closed, since Rn is Hausdorff,
and a compact subset of a Hausdorff space is closed (by Corollary 4.9). For
each natural number m, let Bm be the open ball of radius m about the origin,
given by Bm = {x ∈ Rn : |x| < m}. Then {Bm : m ∈ N} is an open cover of
R
n. It follows from the compactness of K that there exist natural numbers

m1,m2, . . . ,mk such that K ⊂ Bm1 ∪ Bm2 ∪ · · · ∪ Bmk . But then K ⊂ BM ,
where M is the maximum of m1,m2, . . . ,mk, and thus K is bounded.

Conversely suppose that K is both closed and bounded. Then there exists
some real number L such that K is contained within the closed cube C given
by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.

Now the closed interval [−L,L] is compact by the Heine-Borel Theorem
(Theorem 4.2), and C is the Cartesian product of n copies of the compact
set [−L,L]. It follows from Theorem 4.15 that C is compact. But K is a

34



closed subset of C, and a closed subset of a compact topological space is itself
compact, by Lemma 4.3. Thus K is compact, as required.

4.2 The Lebesgue Lemma and Uniform Continuity

Definition Let X be a metric space with distance function d. A subset A
of X is said to be bounded if there exists a non-negative real number K
such that d(x, y) ≤ K for all x, y ∈ A. The smallest real number K with
this property is referred to as the diameter of A, and is denoted by diamA.
(Note that diamA is the supremum of the values of d(x, y) as x and y range
over all points of A.)

Lemma 4.17 (Lebesgue Lemma) Let (X, d) be a compact metric space. Let
U be an open cover of X. Then there exists a positive real number δ such that
every subset of X whose diameter is less than δ is contained wholly within
one of the open sets belonging to the open cover U .

Proof Every point ofX is contained in at least one of the open sets belonging
to the open cover U . It follows from this that, for each point x of X, there
exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about
the point x is contained wholly within one of the open sets belonging to the
open cover U . But then the collection consisting of the open balls B(x, δx)
of radius δx about the points x of X forms an open cover of the compact
space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such
that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi for i = 1, 2, . . . , r. Let δ > 0 be given by

δ = minimum(δ1, δ2, . . . , δr).

Suppose that A is a subset of X whose diameter is less than δ. Let u be a
point of A. Then u belongs to B(xi, δi) for some integer i between 1 and r.
But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets belonging to
the open cover U . Thus A is contained wholly within one of the open sets
belonging to U , as required.

Let U be an open cover of a compact metric space X. A Lebesgue number
for the open cover U is a positive real number δ such that every subset of X
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whose diameter is less than δ is contained wholly within one of the open sets
belonging to the open cover U . The Lebesgue Lemma thus states that there
exists a Lebesgue number for every open cover of a compact metric space.

Let X and Y be metric spaces with distance functions dX and dY respec-
tively, and let f :X → Y be a function from X to Y . The function f is said
to be uniformly continuous on X if and only if, given ε > 0, there exists some
δ > 0 such that dY (f(x), f(x′)) < ε for all points x and x′ of X satisfying
dX(x, x′) < δ. (The value of δ should be independent of both x and x′.)

Theorem 4.18 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.

Proof Let dX and dY denote the distance functions for the metric spaces X
and Y respectively. Let f :X → Y be a continuous function from X to Y .
We must show that f is uniformly continuous.

Let ε > 0 be given. For each y ∈ Y , define

Vy = {x ∈ X : dY (f(x), y) < 1
2
ε}.

Note that Vy = f−1
(
BY (y, 1

2
ε)
)
, where BY (y, 1

2
ε) denotes the open ball of

radius 1
2
ε about y in Y . Now the open ball BY (y, 1

2
ε) is an open set in Y ,

and f is continuous. Therefore Vy is open in X for all y ∈ Y . Note that
x ∈ Vf(x) for all x ∈ X.

Now {Vy : y ∈ Y } is an open cover of the compact metric space X. It
follows from the Lebesgue Lemma (Lemma 4.17) that there exists some δ > 0
such that every subset of X whose diameter is less than δ is a subset of some
set Vy. Let x and x′ be points of X satisfying dX(x, x′) < δ. The diameter
of the set {x, x′} is dX(x, x′), which is less than δ. Therefore there exists
some y ∈ Y such that x ∈ Vy and x′ ∈ Vy. But then dY (f(x), y) < 1

2
ε and

dY (f(x′), y) < 1
2
ε, and hence

dY (f(x), f(x′)) ≤ dY (f(x), y) + dY (y, f(x′)) < ε.

This shows that f :X → Y is uniformly continuous, as required.

Let K be a closed bounded subset of Rn. It follows from Theorem 4.16)
and Theorem 4.18 that any continuous function f :K → R

k is uniformly
continuous.

36



5 Connectedness

5.1 Connected Topological Spaces

Definition A topological space X is said to be connected if the empty set ∅
and the whole space X are the only subsets of X that are both open and
closed.

Lemma 5.1 A topological space X is connected if and only if it has the
following property: if U and V are non-empty open sets in X such that
X = U ∪ V , then U ∩ V is non-empty.

Proof If U is a subset of X that is both open and closed, and if V = X \U ,
then U and V are both open, U ∪ V = X and U ∩ V = ∅. Conversely if U
and V are open subsets of X satisfying U ∪ V = X and U ∩ V = ∅, then
U = X \V , and hence U is both open and closed. Thus a topological space X
is connected if and only if there do not exist non-empty open sets U and V
such that U ∪ V = X and U ∩ V = ∅. The result follows.

Let Z be the set of integers with the usual topology (i.e., the subspace
topology on Z induced by the usual topology on R). Then {n} is open for
all n ∈ Z, since

{n} = Z ∩ {t ∈ R : |t− n| < 1
2
}.

It follows that every subset of Z is open (since it is a union of sets consisting
of a single element, and any union of open sets is open). It follows that
a function f :X → Z on a topological space X is continuous if and only if
f−1(V ) is open in X for any subset V of Z. We use this fact in the proof of
the next theorem.

Proposition 5.2 A topological space X is connected if and only if every
continuous function f :X → Z from X to the set Z of integers is constant.

Proof Suppose that X is connected. Let f :X → Z be a continuous function.
Choose n ∈ f(X), and let

U = {x ∈ X : f(x) = n}, V = {x ∈ X : f(x) 6= n}.

Then U and V are the preimages of the open subsets {n} and Z \ {n} of
Z, and therefore both U and V are open in X. Moreover U ∩ V = ∅, and
X = U ∪ V . It follows that V = X \U , and thus U is both open and closed.
Moreover U is non-empty, since n ∈ f(X). It follows from the connectedness
of X that U = X, so that f :X → Z is constant, with value n.
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Conversely suppose that every continuous function f :X → Z is constant.
Let S be a subset of X which is both open and closed. Let f :X → Z be
defined by

f(x) =

{
1 if x ∈ S;
0 if x 6∈ S.

Now the preimage of any subset of Z under f is one of the open sets ∅,
S, X \ S and X. Therefore the function f is continuous. But then the
function f is constant, so that either S = ∅ or S = X. This shows that X is
connected.

Lemma 5.3 The closed interval [a, b] is connected, for all real numbers a
and b satisfying a ≤ b.

Proof Let f : [a, b]→ Z be a continuous integer-valued function on [a, b]. We
show that f is constant on [a, b]. Indeed suppose that f were not constant.
Then f(τ) 6= f(a) for some τ ∈ [a, b]. But the Intermediate Value Theorem
would then ensure that, given any real number c between f(a) and f(τ), there
would exist some t ∈ [a, τ ] for which f(t) = c, and this is clearly impossible,
since f is integer-valued. Thus f must be constant on [a, b]. We now deduce
from Proposition 5.2 that [a, b] is connected.

Example Let X = {(x, y) ∈ R2 : x 6= 0}. The topological space X is not
connected. Indeed if f :X → Z is defined by

f(x, y) =

{
1 if x > 0,
−1 if x < 0,

then f is continuous on X but is not constant.

A concept closely related to that of connectedness is path-connectedness.
Let x0 and x1 be points in a topological space X. A path in X from x0 to x1

is defined to be a continuous function γ: [0, 1]→ X such that γ(0) = x0 and
γ(1) = x1. A topological space X is said to be path-connected if and only if,
given any two points x0 and x1 of X, there exists a path in X from x0 to x1.

Proposition 5.4 Every path-connected topological space is connected.

Proof Let X be a path-connected topological space, and let f :X → Z be a
continuous integer-valued function on X. If x0 and x1 are any two points of X
then there exists a path γ: [0, 1]→ X such that γ(0) = x0 and γ(1) = x1. But
then f ◦ γ: [0, 1] → Z is a continuous integer-valued function on [0, 1]. But
[0, 1] is connected (Lemma 5.3), therefore f ◦ γ is constant (Proposition 5.2).
It follows that f(x0) = f(x1). Thus every continuous integer-valued function
on X is constant. Therefore X is connected, by Proposition 5.2.
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The topological spaces R, C and Rn are all path-connected. Indeed, given
any two points of one of these spaces, the straight line segment joining these
two points is a continuous path from one point to the other. Also the n-sphere
Sn is path-connected for all n > 0. We conclude that these topological spaces
are connected.

Let A be a subset of a topological space X. Using Lemma 5.1 and the
definition of the subspace topology, we see that A is connected if and only if
the following condition is satisfied:

• if U and V are open sets in X such that A∩U and A∩V are non-empty
and A ⊂ U ∪ V then A ∩ U ∩ V is also non-empty.

Lemma 5.5 Let X be a topological space and let A be a connected subset
of X. Then the closure A of A is connected.

Proof It follows from the definition of the closure of A that A ⊂ F for any
closed subset F of X for which A ⊂ F . On taking F to be the complement
of some open set U , we deduce that A∩U = ∅ for any open set U for which
A ∩ U = ∅. Thus if U is an open set in X and if A ∩ U is non-empty then
A ∩ U must also be non-empty.

Now let U and V be open sets in X such that A ∩ U and A ∩ V are
non-empty and A ⊂ U ∪ V . Then A ∩ U and A ∩ V are non-empty, and
A ⊂ U ∪ V . But A is connected. Therefore A ∩ U ∩ V is non-empty, and
thus A ∩ U ∩ V is non-empty. This shows that A is connected.

Lemma 5.6 Let f :X → Y be a continuous function between topological
spaces X and Y , and let A be a connected subset of X. Then f(A) is con-
nected.

Proof Let g: f(A)→ Z be any continuous integer-valued function on f(A).
Then g ◦ f :A → Z is a continuous integer-valued function on A. It follows
from Proposition 5.2 that g ◦ f is constant on A. Therefore g is constant
on f(A). We deduce from Proposition 5.2 that f(A) is connected.

Lemma 5.7 The Cartesian product X × Y of connected topological spaces
X and Y is itself connected.

Proof Let f :X×Y → Z be a continuous integer-valued function from X×Y
to Z. Choose x0 ∈ X and y0 ∈ Y . The function x 7→ f(x, y0) is continuous
on X, and is thus constant. Therefore f(x, y0) = f(x0, y0) for all x ∈ X. Now
fix x. The function y 7→ f(x, y) is continuous on Y , and is thus constant.
Therefore

f(x, y) = f(x, y0) = f(x0, y0)
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for all x ∈ X and y ∈ Y . We deduce from Proposition 5.2 that X × Y is
connected.

We deduce immediately that a finite Cartesian product of connected topo-
logical spaces is connected.

Proposition 5.8 Let X be a topological space. For each x ∈ X, let Sx be
the union of all connected subsets of X that contain x. Then

(i) Sx is connected,

(ii) Sx is closed,

(iii) if x, y ∈ X, then either Sx = Sy, or else Sx ∩ Sy = ∅.

Proof Let f :Sx → Z be a continuous integer-valued function on Sx, for
some x ∈ X. Let y be any point of Sx. Then, by definition of Sx, there exists
some connected set A containing both x and y. But then f is constant on A,
and thus f(x) = f(y). This shows that the function f is constant on Sx.
We deduce that Sx is connected. This proves (i). Moreover the closure Sx is
connected, by Lemma 5.5. Therefore Sx ⊂ Sx. This shows that Sx is closed,
proving (ii).

Finally, suppose that x and y are points of X for which Sx ∩ Sy 6= ∅. Let
f :Sx ∪ Sy → Z be any continuous integer-valued function on Sx ∪ Sy. Then
f is constant on both Sx and Sy. Moreover the value of f on Sx must agree
with that on Sy, since Sx ∩ Sy is non-empty. We deduce that f is constant
on Sx ∪ Sy. Thus Sx ∪ Sy is a connected set containing both x and y, and
thus Sx∪Sy ⊂ Sx and Sx∪Sy ⊂ Sy, by definition of Sx and Sy. We conclude
that Sx = Sy. This proves (iii).

Given any topological space X, the connected subsets Sx of X defined
as in the statement of Proposition 5.8 are referred to as the connected com-
ponents of X. We see from Proposition 5.8, part (iii) that the topological
space X is the disjoint union of its connected components.

Example The connected components of {(x, y) ∈ R2 : x 6= 0} are

{(x, y) ∈ R2 : x > 0} and {(x, y) ∈ R2 : x < 0}.

Example The connected components of

{t ∈ R : |t− n| < 1
2

for some integer n}.

are the sets Jn for all n ∈ Z, where Jn = (n− 1
2
, n+ 1

2
).
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