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1 Continuous Maps and Homotopies

Definition Let f :X → Y and g:X → Y be continuous maps between
topological spaces X and Y . The maps f and g are said to be homotopic if
there exists a continuous map H:X × [0, 1] → Y such that H(x, 0) = f(x)
and H(x, 1) = g(x) for all x ∈ X. If the maps f and g are homotopic then
we denote this fact by writing f ' g. If H:X × [0, 1] → Y is a continuous
map with the property that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X
then we say that H is a homotopy between the maps f and g.

If f and g are continuous maps from a topological space X to a topological
space Y then the maps f and g are homotopic if and only if it is possible to
‘continuously deform’ the map f into the map g.

Lemma 1.1 Let X and Y be topological spaces. Then the relation ' is an
equivalence relation on the set of all continuous maps from X to Y (where
f ' g if and only if the maps f and g are homotopic).

Proof We must prove that the relation ' is reflexive, symmetric and tran-
sitive. Let f , g and h be continuous maps from X to Y .

We observe that f ' f . (This result follows directly on considering the
constant homotopy F0:X×[0, 1]→ Y defined by F0(x, t) = f(x) for all x ∈ X
and t ∈ [0, 1].) Thus the relation ' is reflexive.

Suppose that f ' g. Let H:X × [0, 1] → Y be a homotopy such that
H(x, 0) = f(x) and H(x, 1) = g(x) Define K:X × [0, 1] → Y by K(x, t) =
H(x, 1− t) for all x ∈ X and t ∈ [0, 1]. Then the map K is continuous, and
K(x, 0) = g(x) and K(x, 1) = h(x) for all x ∈ X. Hence g ' f . Thus the
relation ' is symmetric.

Now suppose that f ' g and g ' h. We must show that f ' h. There
exist homotopies H1:X × [0, 1] → Y and H2:X × [0, 1] → Y such that
H1(x, 0) = f(x), H1(x, 1) = g(x) = H2(x, 0) and H2(x, 1) = h(x). Define a
map G:X × [0, 1]→ Y by

G(x, t) =

{
H1(x, 2t) if 0 ≤ t ≤ 1

2
;

H2(x, 2t− 1) if 1
2
≤ t ≤ 1.

It follows easily from the continuity of the maps H1 and H2 that the map G
is continuous. (Indeed the required result follows from a straightforward ap-
plication of Lemma A.7 in Appendix A.) Also G(x, 0) = f(x) and G(x, 1) =
h(x) for all x ∈ X. Therefore f ' h. Thus the relation ' is transitive.

The relation ' is reflexive, symmetric and transitive. Therefore it is an
equivalence relation on the set of all continuous maps from the topological
space X to the topological space Y .
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Lemma 1.2 Let W , X, Y and Z be topological spaces, and let q:W → X,
f :X → Y , g:X → Y and r:Y → Z be continuous maps. Suppose that
f ' g. Then f ◦ q ' g ◦ q and r ◦ f ' r ◦ g.

Proof LetH:X×[0, 1]→ Y be a homotopy between the maps f and g. Thus
H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. Let G:W × [0, 1] → Y
be the map defined by G(w, t) = H(q(w), t) for all w ∈ W . Then G is a
homotopy between the maps f ◦ q and g ◦ q Similarly the composition map
r ◦H:X × [0, 1]→ Z is a homotopy between r ◦ f and r ◦ g.

Definition Let X and Y be topological spaces, and let A be a subset of X.
Let f :X → Y and g:X → Y be continuous maps from X to some topological
space Y , where f |A = g|A (i.e., f(a) = g(a) for all a ∈ A). We say that f
and g are homotopic relative to A if and only if there exists a (continuous)
homotopy H:X × [0, 1] → Y such that H(x, 0) = f(x) and H(x, 1) = g(x)
for all x ∈ X and H(a, t) = f(a) = g(a) for all a ∈ A. If the maps f and
g are homotopic relative to the subset A of X then we denote this fact by
writing f ' g rel A.

Let X and Y be topological spaces. Let us choose points x0 and y0 of
X and Y respectively. We refer to these chosen points as basepoints for
the spaces X and Y . A continuous map f :X → Y is said to be basepoint-
preserving if and only if f(x0) = y0. A homotopy H:X× [0, 1]→ Y between
basepoint-preserving continuous maps is said to be basepoint-preserving if
and only if H(x0, t) = y0 for all t ∈ [0, 1]. One can define an equivalence
relation on the set of all basepoint-preserving continuous maps from X to
Y , where two such maps are equivalent if and only if they are homotopic
through a basepoint-preserving homotopy. Thus if f :X → Y and g:X → Y
are basepoint-preserving continuous maps then f and g are equivalent if and
only if f ' g rel {x0}. The set of equivalence classes of basepoint-preserving
continuous maps from X to Y is often denoted by [X, Y ]0.

Definition A topological space X is said to be contractible if and only if
there exists a point p of X and a continuous map F :X × [0, 1] → X such
that F (x, 0) = p and F (x, 1) = x for all x ∈ X.

We see that a topological space X is contractible if and only if the identity
map of the space X is homotopic to the constant map which sends the whole
of X to some point p of X.
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1.1 Identification Maps and Homotopies

Definition Let X and Y be topological spaces and let q:X → Y be a map
from X to Y . The map q is said to be an identification map if and only if
the following conditions are satisfied:

(i) the map q:X → Y is surjective,

(ii) a subset U of Y is open in Y if and only if q−1(U) is open in X.

Let q:X → Y be an identification map, and let U be an open set in Y .
Then q−1(U) is an open set in X. Thus q:X → Y is continuous. We conclude
therefore that every identification map is necessarily continuous.

Lemma 1.3 Let X be a topological space, let Y be a set, and let q:X → Y
be a surjection. Then there is a unique topology on Y for which the map
q:X → Y is an identification map.

Proof Let τ be the collection consisting of all subsets U of Y for which
q−1(U) is open in X. Now q−1(∅) = ∅, and q−1(Y ) = X, so that ∅ ∈ τ and
Y ∈ τ . It is readily verified that any union of sets belonging to τ is itself a
set belonging to τ , and that any finite intersection of sets belonging to τ is
itself a set belonging to τ . Thus τ is a topology on Y , and the map q:X → Y
is an identification map with respect to the topology τ on Y . Clearly the
topology τ is the unique topology on Y for which the map q:X → Y is a
identification map.

Let X be a topological space, let Y be a set, and let q:X → Y be a
surjection. The unique topology on Y for which the map q is an identifcation
map is referred to as the quotient topology (or identification topology) on Y
(with respect to the map q).

The following useful theorem is frequently used to provide examples of
identification maps.

Theorem 1.4 Let X be a compact topological space, let Y be a Hausdorff
space, and let q:X → Y be a surjection. Suppose that the map q is continu-
ous. Then q:X → Y is an identification map.

Proof Let U be a subset of Y . We must show that U is open in Y if and
only if q−1(U) is open in X. Now if U is open in Y , then q−1(U) is open
in X, since the map q is continuous. Conversely suppose that q−1(U) is open
in X. Let F be the complement Y \ U of U in Y , and let F̃ = q−1(F ).
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Then F̃ = X \ q−1(U), hence F̃ is closed in X. But then F̃ is compact by
Lemma A.16 of Appendix A (since X is a compact topological space). It
then follows from Lemma A.17 that q(F̃ ) is a compact subset of Y . But
q(F̃ ) = F , since the map q:X → Y is surjective. Thus F is compact. But
every compact subset of the Hausdorff space Y is closed, by Lemma A.18.
Therefore F is closed, so that U is open, as required. Thus q:X → Y is an
identification map.

Lemma 1.5 Let X and Y be topological spaces and let q:X → Y be an
identification map. Let Z be a topological space, and let f :Y → Z be a map
from Y to Z. Then the map f is continuous if and only if the composition
map f ◦ q:X → Z is continuous.

Proof Suppose that f is continuous. Then the composition map f ◦ q is a
composition of continuous maps and hence is itself continuous.

Conversely suppose that f ◦ q is continuous. Let U be an open set in Z.
Then q−1(f−1(U)) is open in X (since f ◦ q is continuous), and hence f−1(U)
is open in Y (since the map q is an identification map). Therefore the map f
is continuous, as required.

Example Let S1 be the unit circle in R2, defined by

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

Let q: [0, 1]→ S1 be the map defined by

q(t) = {(cos 2πt, sin 2πt) (t ∈ [0, 1]).

The map q is surjective. Moreover the closed interval [0, 1] is compact, and
the circle S1 is Hausdorff. Therefore the map q: [0, 1]→ S1 is an identification
map. Thus a map f :S1 → Z from the circle S1 to some topological space Z is
continuous if and only if the composition map f ◦ q: [0, 1]→ Z is continuous.

Let X and Y be topological spaces, and let q:X → Y be an identification
map. Let Z be a topological space and let f0:Y → Z and f1:Y → Z
be continuous maps from Y to Z. We claim that the maps f0 and f1 are
homotopic if and only if there exists a (continuous) homotopy H̃:X×[0, 1]→
Y between the maps f0◦q and f1◦q which is consistent with the identifications
represented by the map q, (so that H̃(x1, t) = H̃(x2, t) whenever q(x1) =
q(x2)). In order to prove this result, we first show that if q:X → Y is an
identification map then so is the continuous map q̂:X × [0, 1] → Y × [0, 1],
where q̂(x, t) = (q(x), t) for all x ∈ X and t ∈ [0, 1]. (The continuity of
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the map q̂ may be verified using the definition of the product topology on
X × [0, 1] and on Y × [0, 1].)

Let X and Z be topological spaces, let K be a compact subset of Z, and
U be an open set in X × Z. Let V be the subset of X defined by

V = {x ∈ X : {x} ×K ⊂ U}.

The Tube Lemma (Lemma A.25) shows that V is then an open set in X. We
use this result in the proof of the following theorem.

Theorem 1.6 Let X and Y be topological spaces and let q:X → Y be an
identification map. Then the map q̂:X×[0, 1]→ Y ×[0, 1] defined by q̂(x, t) =
(q(x), t) is also an identification map.

Proof The map q̂:X × [0, 1] → Y × [0, 1] is surjective, since q:X → Y is
surjective. Let U be a subset of Y × [0, 1], and let Ũ = q̂−1(U). In order to
show that the map q̂ is an identification map we must prove that U is open
in Y × [0, 1] if and only if Ũ is open in X × [0, 1].

If U is open in Y × [0, 1] then Ũ is open in X × [0, 1], since the map q̂
is continuous. Conversely suppose that Ũ is open in X × [0, 1]. Let u0 be
a point of U . We show that there exists an open set N in Y × [0, 1] such
that u0 ∈ N and N ⊂ U . Now u0 = (y0, s) for some y0 ∈ Y and s ∈ [0, 1].
There exists some x0 ∈ X such that q(x0) = y0, since the identification map
q:X → Y is (by definition) surjective. Then (x0, s) ∈ Ũ . Now

{t ∈ [0, 1] : (x0, t) ∈ Ũ}

is an open set in the interval [0, 1], since Ũ is open in X × [0, 1]. Therefore
there exists some δ > 0 such that {x0} × Is,δ ⊂ Ũ , where

Is,δ = {t ∈ [0, 1] : |t− s| ≤ δ}.

Define
V = {y ∈ Y : {y} × Is,δ ⊂ U}.

Then
q−1(V ) = {x ∈ X : {x} × Is,δ ⊂ Ũ}.

Using the Tube Lemma (Lemma A.25), we see that q−1(V ) is open in X
(since Is,δ is compact and Ũ is open). Thus V is open in Y (since the map
q:X → Y is an identification map). Moreover y0 belongs to V (since x0
belongs to Ṽ ). Thus if we define

N = {(y, t) ∈ Y × [0, 1] : y ∈ V and |t− s| < δ}
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then N is an open neighbourhood of u0 in Y × [0, 1], where u0 = (y0, s), and
moreover N ⊂ U , as required. We have thus shown that if U is a subset
of Y × [0, 1] with the property that q̂−1(U) is open in X × [0, 1] then, given
any point u0 of U , there exists an open neighbourhood N of u0 in Y × [0, 1]
for which N ⊂ U . Thus if q̂−1(U) is open in X × [0, 1] then U is open in
Y × [0, 1]. Thus the map q̂:X × [0, 1] → Y × [0, 1] is an identification map,
as required.

Let X, Y and Z be topological spaces, and let q:X → Y be an iden-
tification map. Let F :Y × [0, 1] → Z be a map from Y × [0, 1] to Z. It
follows from Theorem 1.6 and Lemma 1.5 that the map F is continuous if
and only if the composition map F ◦ q̂:X × [0, 1]→ Z is continuous (where
q̂(x, t) = (q(x), t) for all x ∈ X and t ∈ [0, 1]). We deduce immediately the
following result.

Corollary 1.7 Let X and Y be topological spaces and let q:X → Y be an
identification map. Let f0:Y → Z and and f1:Y → Z be continuous maps
from Y to Z. Let H:Y × [0, 1]→ Z be a function from Y × [0, 1] to Z such
that H(y, 0) = f0(y) and H(y, 1) = f1(y) for all y ∈ Y . Then the function H
is continuous (and so defines a homotopy between the maps f0 and f1) if and
only if the corresponding function H ◦ q̂:X × [0, 1]→ Z from X × [0, 1] to Z
is continuous (where q̂(x, t) ≡ (q(x), t) for all x ∈ X and t ∈ [0, 1]).

Example Let Z be a topological space, and let f0:S
1 → Z and f1:S

1 → Z
be continuous maps from S1 to Z, where S1 denotes the unit circle in R2.
Let q: [0, 1]→ S1 be the identification map defined by

q(t) = {(cos 2πt, sin 2πt) (t ∈ [0, 1]).

Then f0 ' f1 if and only if there exists a continuous map K: [0, 1]×[0, 1]→ Z
such that

K(t, 0) = f0(cos 2πt, sin 2πt) and K(t, 1) = f1(cos 2πt, sin 2πt)

for all t ∈ [0, 1] and
K(0, τ) = K(1, τ)

for all τ ∈ [0, 1].

Example Let Sn denote the n-sphere given by

Sn = {x ∈ Rn+1 : |x| = 1}.
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Let RP n denote real projective n-space. Thus RP n is the set whose elements
are in bijective correspondence with the lines in Rn+1 that pass through
the origin. Each point x of Sn determines a unique element p(x) of RP n

which represents the line in RP n that passes through both the origin and the
point x. This defines a map p:Sn → RP n. Note that the map p is surjective,
and that p(x) = p(y) if and only if y = ±x (where x and y are elements
of Sn). It follows from Lemma 1.3 that there is a unique topology on RP n

for which the map p:Sn → RP n is an identification map. We regard this
topology as the standard topology on RP n. It follows from Lemma 1.5 that
a map f :RP n → Z from RP n to some topological space Z is continuous if
and only if the composition map f ◦ p:Sn → Z is continuous. Moreover two
continuous maps f0 and f1 from RP n to Z are homotopic if and only if there
exists a continuous map G:Sn × [0, 1]→ Z such that

G(x, 0) = f0(p(x)) and G(x, 1) = f1(p(x)) for all x ∈ Sn,

G(x, t) = G(−x, t) for all x ∈ Sn and t ∈ [0, 1].

Remark Let X, Y and T be topological spaces, and let q:X → Y be an
identification map. Let q × 1T :X × T → Y × T be the map defined by (q ×
1T )(x, t) = (q(x), t). The map q× 1T is not in general an identification map.
However if the topological space T is both locally compact and Hausdorff
then it is possible to prove that the map q × 1T :X × T → Y × T is an
identification map. (A topological space T is said to be locally compact if
and only if every point of T has an open neighbourhood whose closure is
compact.) This result generalizes Theorem 1.6.

1.2 Homotopies of Maps onto Product Spaces

Let X1, X2, . . . , Xr be a finite collection of topological spaces. The product
topology on the Cartesian product X1 × X2 × · · · × Xr of X1, X2, . . . , Xr is
characterized by the following property:

if we are given a topological space Z and continuous maps fj:Z →
Xj for j = 1, 2, . . . , r, then the map f :Z → X1 ×X2 × · · · ×Xr

defined by f(z) = (f1(z), f2(z), . . . , fr(z)) is a continuous map
from Z to X1 ×X2 × · · · ×Xr.

We use this characterization of the product topology on X1 ×X2 × · · · ×Xr

in the proof of the following result.

Lemma 1.8 Let X1, X2, . . . , Xr be a finite collection of topological spaces,
let Z be a topological space, and let fj:Z → Xj and f ′j:Z:Xj be continuous
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maps from Z into Xj, for j = 1, 2, . . . , r. Let X = X1 ×X2 × · · · ×Xr, and
let f :Z → X and f ′:Z → X be the continuous maps from Z to X defined by

f(z) = (f1(z), f2(z), . . . , fr(z)), f ′(z) = (f ′1(z), f ′2(z), . . . , f ′r(z))

for all z ∈ Z. Then

f ' f ′ if and only if fj ' f ′j for j = 1, 2, . . . , r.

Moreover if A is a subset of Z with the property that fj|A = f ′j|A for j =
1, 2, . . . , r then

f ' f ′ rel A if and only if fj ' f ′j rel A for j = 1, 2, . . . , r.

Proof Let Hj:Z× [0, 1]→ Xj be a continuous homotopy between fj and f ′j
for j = 1, 2, . . . , r (so that H(z, 0) = f(z) and H(z, 1) = f ′(z) for all z ∈ Z).
Let H:Z × [0, 1]→ X be the continuous map defined by

H(z, t) = (H1(z, t), H2(z, t), . . . , Hr(z, t)) (z ∈ Z).

Then H(z, 0) = f(z) and H(z, 1) = f ′(z) for all z ∈ Z, so that H is a
homotopy between the maps f and f ′. Conversely if H:Z × [0, 1] → X
is a continuous homotopy between f and f ′ (so that H(z, 0) = f(z) and
H(z, 1) = f ′(z) for all z ∈ Z), then the jth component Hj:Z × [0, 1] → Xj

of the map H is a homotopy between fj and f ′j for each j.
Let A be a subset of Z. Suppose that fj|A = f ′j|A for j = 1, 2, . . . , r.

Then f |A = f ′|A. Moreover H(a, t) = f(a) = f ′(a) if and only if Hj(a, t) =
fj(a) = f ′j(a) for all j. Thus f ' f ′ rel A if and only if fj ' f ′j rel A for all j,
as required.

1.3 Homotopy Equivalences

Definition LetX and Y be topological spaces. A continuous map f :X → Y
from X to Y is said to be a homotopy equivalence if there exists a continuous
map g:Y → X such that g ◦ f and f ◦ g are homotopic to the identity maps
of X and Y respectively. If there exists a homotopy equivalence f :X → Y
then the spaces X and Y are said to be homotopy equivalent.

Definition Let X be a topological space and let A be a subset of X. Let
i:A→ X denote the inclusion map of A in X. A continuous map r:X → A
with the property that r|A is the identity map of A is said to be a retraction
of the space X onto the subset A. The retraction r:X → A is said to be a
deformation retraction if i◦r ' 1X , where 1X is the identity map of X. In this
case A is said to be a deformation retract of X. If in addition i◦r ' 1X rel A,
then r:X → A is said to be a strong deformation retraction and A is said to
be a strong deformation retract of X.
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Note that if A is a deformation retract of some topological space X then
the inclusion map A ↪→ X is a homotopy equivalence.

Example Let Sn denote the unit sphere in Rn+1 given by

Sn = {x ∈ Rn+1 : |x| = 1}

Then Sn is a strong deformation retract of the following subsets of Rn+1:

(i) {x ∈ Rn+1 : |x| > 0},

(ii) {x ∈ Rn+1 : 1
2
< |x| < 2},

(iii) {x ∈ Rn+1 : 0 < |x| ≤ 1},

(iv) {x ∈ Rn+1 : |x| ≥ 1}.

However it is possible to show that Sn is not a retract of Rn+1 itself.
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2 Paths, Loops and the Fundamental Group

Definition Let X be a topological space, and let x0 and x1 be points of X.
A path in X from x0 to x1 is defined to be a continuous map γ: [0, 1] → X
for which γ(0) = x0 and γ(1) = x1. A loop in X based at x0 is defined to be
a continuous map γ: [0, 1] → X for which γ(0) = x0 and γ(1) = x0. Thus a
loop based at the point x0 is by definition a path from x0 to itself.

We can concatenate paths. Let γ1: [0, 1]→ X and γ2: [0, 1]→ X be paths
in some topological space X. Suppose that γ1(1) = γ2(0). We define the
product path γ1.γ2: [0, 1]→ X by

(γ1.γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2
;

γ2(2t− 1) if 1
2
≤ t ≤ 1.

Similarly suppose that x0, x1, . . . , xr are points in the space X and that, for
each integer j between 1 and r, we are given a path γj: [0, 1] → X from the
point xj−1 to xj. We define γ1.γ2. . . . .γr: [0, 1]→ X to be the path in X from
x0 to xr defined such that

(γ1.γ2. . . . .γr)(t) = γj(rt− j + 1) for all t satisfying
j − 1

r
≤ t ≤ j

r
.

Thus the restriction of the path γ1.γ2. . . . .γr to the interval [(j − 1)/r, j/r]
is a reparameterization of the path γr from xj−1 to xj: the path γ1.γ2. . . . .γr
thus represents the path from x0 to xr obtained by travelling in succession
along the paths γ1, γ2, . . . , γr. (A straightforward application of Lemma A.7
of Appendix A shows that the path γ1.γ2. . . . .γr is indeed continuous.)

If γ: [0, 1]→ X is a path in X then we define the inverse path γ−1: [0, 1]→
X by γ−1(t) = γ(1− t). (Thus if γ is a path from the point x to the point y
then γ−1 is the path from y to x obtained by reversing the direction in which
the path γ is traversed.)

Lemma 2.1 Let X be a topological space, and let γ: [0, 1] → X be a path
in X. Then

ε0.γ ' γ ' γ.ε1 rel {0, 1}, γ.γ−1 ' ε0 rel {0, 1},

where ε0 and ε1 denote the constant loops at the points γ(0) and γ(1) respec-
tively (i.e., ε0(t) = γ(0) and ε1(t) = γ(1) for all t ∈ [0, 1]). Also if γ1, γ2
and γ3 are paths in X for which γ1(1) = γ2(0) and γ2(1) = γ3(0) then

(γ1.γ2).γ3 ' γ1.(γ2.γ3) rel {0, 1}.
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Proof First we show that ε0.γ ' γ ' γ.ε1 rel {0, 1}. Let F1: [0, 1]× [0, 1]→
X and F2: [0, 1]× [0, 1]→ X be the homotopies defined by

F1(t, τ) =


γ(0) if 0 ≤ t ≤ 1

2
(1− τ);

γ

(
2t+ τ − 1

1 + τ

)
if 1

2
(1− τ) ≤ t ≤ 1;

F2(t, τ) =

 γ

(
2t

1 + τ

)
if 0 ≤ t ≤ 1

2
(1 + τ);

γ(1) if 1
2
(1 + τ) ≤ t ≤ 1.

Then
F1(t, 0) = (ε0.γ)(t), F1(t, 1) = γ(t) (t ∈ [0, 1]),

F2(t, 0) = (γ.ε1)(t), F2(t, 1) = γ(t) (t ∈ [0, 1]),

F1(0, τ) = F2(0, τ) = γ(0), F1(1, τ) = F2(1, τ) = γ(1) (τ ∈ [0, 1]).

Thus F1 provides the required homotopy between the paths ε0.γ and γ, and
F2 provides the required homotopy between the paths γ.ε1 and γ.

Next we show that γγ−1 ' ε0 rel {0, 1}. Let G: [0, 1]× [0, 1]→ X be the
homotopy defined by

G(t, τ) =

{
γ(2τt) if 0 ≤ t ≤ 1

2
;

γ(2τ(1− t)) if 1
2
≤ t ≤ 1.

Note that

G(t, 0) = γ(0) = ε0(t) and G(t, 1) = (γ.γ−1)(t) for all t ∈ [0, 1],

G(0, τ) = γ(0) = G(1, τ) for all τ ∈ [0, 1].

Thus G provides the required homotopy between the paths γ.γ−1 and ε0.
Finally we show that if γ1, γ2 and γ3 are paths in X for which γ1(1) =

γ2(0) and γ2(1) = γ3(0) then (γ1.γ2).γ3 ' γ1.(γ2.γ3) rel {0, 1}. Let H: [0, 1]×
[0, 1]→ X be the homotopy defined by

H(t, τ) =


γ1

(
4t

τ + 1

)
if 0 ≤ t ≤ 1

4
(τ + 1);

γ2(4t− τ − 1) if 1
4
(τ + 1) ≤ t ≤ 1

4
(τ + 2);

γ3

(
4t− τ − 2

2− τ

)
if 1

4
(τ + 2) ≤ t ≤ 1.

Then

H(t, 0) = ((γ1.γ2).γ3)(t), H(t, 1) = (γ1.(γ2.γ3))(t) (t ∈ [0, 1]),
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H(0, τ) = γ1(0), H(1, τ) = γ3(1) (τ ∈ [0, 1]).

Thus H provides the required homotopy between the paths (γ1.γ2).γ3 and
γ1.(γ2.γ3).

Let X be a topological space, and let x0 ∈ X be some chosen basepoint
for X. We define an equivalence relation on the set of all (continuous) loops
based at the point x0 of X, where two such loops γ0 and γ1 are equivalent
if and only if γ0 ' γ1 rel {0, 1}. We denote the equivalence class of a loop
γ: [0, 1] → X based at x0 by [γ]. This equivalence class is referred to as the
based homotopy class of the loop γ.

We denote by π1(X, x0) the set of all based homotopy classes of loops
based at the point x0. Thus every element [γ] of π1(X, x0) is represented by
some loop γ: [0, 1]→ X based at the point x0, and two such loops γ1: [0, 1]→
X and γ2: [0, 1]→ X based at x0 represent the same element of π1(X, x0) if
and only if γ1 ' γ2 rel {0, 1}.

We now describe how one can define a group structure on π1(X, x0).
Let γ1: [0, 1] → X and γ2: [0, 1] → X be loops based at the point x0. We
define the product [γ1][γ2] of the based homotopy classes [γ1] and [γ2] to
be the based homotopy class [γ1.γ2] of the product loop γ1.γ2 obtained by
concatenating the loops γ1 and γ2. We now show that this group operation
is indeed well-defined and satisfies the group axioms.

Lemma 2.2 Let X be a topological space, let x0 be some chosen point of X,
and let π1(X, x0) be the set of all based homotopy classes of loops based
at the point x0. Then π1(X, x0) is a group, where the group multiplication
on π1(X, x0) is defined according to the rule [γ1][γ2] = [γ1.γ2], for all loops
γ1: [0, 1]→ X and γ2: [0, 1]→ X based at x0.

Proof First we show that the group operation on π1(X, x0) is well-defined.
Let γ1, γ

′
1, γ2 and γ′2 be loops in X based at the point x0. Suppose that

[γ1] = [γ′1] and [γ2] = [γ′2]. We must show that [γ1.γ2] = [γ′1.γ
′
2]. Now there

exist homotopies H1: [0, 1]× [0, 1]→ X and H2: [0, 1]× [0, 1]→ X such that
H1(t, 0) = γ1(t), H1(t, 1) = γ′1(t), H2(t, 0) = γ2(t) and H2(t, 1) = γ′2(t) for all
t ∈ [0, 1], and

H1(0, τ) = H1(1, τ) = H2(0, τ) = H2(1, τ) = x0

for all τ ∈ [0, 1]. Let H: [0, 1]× [0, 1]→ X be the continuous map defined by

H(t, τ) =

{
H1(2t, τ) if 0 ≤ t ≤ 1

2
;

H2(2t− 1, τ) if 1
2
≤ t ≤ 1.

12



Then H(t, 0) = (γ1.γ2)(t) and H(t, 1) = (γ′1.γ
′
2)(t) for all t ∈ [0, 1], and also

H(0, τ) = H(1, τ) = x0 for all τ ∈ [0, 1]. Thus [γ1.γ2] = [γ′1γ
′
2]. This shows

that the group operation on π1(X, x0) is well-defined.
If γ1, γ2 and γ3 are loops in X based at the point x0 then (γ1.γ2).γ3 '

γ1.(γ2.γ3) rel {0, 1} by Lemma 2.1, and hence ([γ1][γ2])[γ3] = [γ1]([γ2][γ3]).
Thus the group operation on π1(X, x0) is associative.

Let ε0 denote the constant loop at the basepoint x0 (i.e., ε0(t) = x0 for
all t ∈ [0, 1]). If γ is a loop in X based at x0 then ε0.γ ' γ ' γ.ε0 rel {0, 1}
by Lemma 2.1, and hence [ε0][γ] = [γ] = [γ][ε0]. This shows that [ε0] is the
identity element of π1(X, x0).

If γ: [0, 1] → X is a loop based at x0 then γ.γ−1 ' ε0 ' γ−1.γ rel {0, 1},
by Lemma 2.1. Therefore the based homotopy class [γ−1] of the loop γ−1 is
the inverse of the based homotopy class [γ] of the loop γ with respect to the
group multiplication operation defined on π1(X, x0). Thus the given group
multiplication operation on π1(X, x0) satisfies all of the the group axioms, as
required.

Let X be a topological space and let x0 ∈ X be some chosen basepoint
for X. The group π1(X, x0) is referred to as the fundamental group of the
topological space X based at the point x0. This group is a topological invari-
ant: if X and Y are topological spaces and if h:X → Y is a homeomorphism
then π(X, x0) ∼= π(Y, h(x0)) for all x0 ∈ X.

Remark Let S1 be the standard circle and let b ∈ S1 be some chosen base-
point. Every loop on the topological space corresponds to some continuous
map from S1 to X. If x0 is some chosen basepoint in the space X then every
loop in X based at x0 corresponds to some continuous map from S1 to X
which maps the chosen basepoint b of S1 to x0. Indeed suppose that we rep-
resent S1 as the unit circle in R2 and suppose that we choose the point (1, 0)
on this unit circle to be the basepoint of S1. If γ: [0, 1]→ X is a (continuous)
loop based at the point x0 of X then the corresponding continuous map from
S1 to X is the map γ̂:S1 → X defined such that

γ̂(cos 2πt, sin 2πt) = γ(t)

for all t ∈ [0, 1]. Observe that γ̂(1, 0) = x0 (since γ(0) = x0 = γ(1)).
Let γ0: [0, 1] → X and γ1: [0, 1] → X be loops in X based at x0, and let

γ̂0:S
1 → X and γ̂1:S

1 → X be the corresponding continuous maps from
S1 to X (where γ̂0 and γ̂1 are determined by the loops γ0 and γ1 in the
manner described above). Then the loops γ0 and γ1 represent the same
element of π1(X, x0) if and only if the maps γ̂0:S

1 → X and γ̂1:S
1 → X

are homotopic by a basepoint-preserving homotopy (i.e., if and only if there
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exists a continuous map H:S1 × [0, 1] → X such that H((1, 0), t) = x0 for
all t ∈ [0, 1], and H(u, 0) = γ̂0(u) and H(u, 1) = γ̂1(u) for all u ∈ S1). We
therefore have a natural identification of the fundamental group π1(X, x0)
of the topological space X at the basepoint x0 with the set of all based
homotopy classes of basepoint-preserving maps from S1 to X.

Let X be a topological space and let α: [0, 1]→ X be a continuous path
in X. Let x = α(0) and y = α(1). Let τα: π1(X, y) → π1(X, x) be the
function defined by τα([γ]) = [α.γ.α−1], for all loops γ: [0, 1]→ X based at y,
where [α.γ.α−1] ∈ π1(X, x) denotes the based homotopy class of the loop
α.γ.α−1 based at x given by

(α.γ.α−1)(t) =


α(3t) if 0 ≤ t ≤ 1

3
;

γ(3t− 1) if 1
3
≤ t ≤ 2

3
;

α(3− 3t) if 2
3
≤ t ≤ 1.

(Thus α.γ.α−1 is the path obtained by following the path α from x to y, then
following round the loop γ based at y, and then returning back to x along
the path α in the reverse direction.)

Lemma 2.3 Let X be a topological space and let α: [0, 1] → X be a contin-
uous path in X. Let x = α(0) and y = α(1), and let τα: π1(X, y)→ π1(X, x)
be the function defined by τα([γ]) = [α.γ.α−1]. Then τα is an isomorphism
from π1(X, y) to π1(X, x).

Proof First we show that τα is a homomorphism of groups. Let γ1 and γ2
be loops based at the point y. Then

τα([γ1][γ2]) = τα([γ1.γ2]) = [α.(γ1.γ2).α
−1],

τα([γ1])τα([γ2]) = [α.γ1.α
−1.α.γ2.α

−1],

where

(α.(γ1.γ2).α
−1)(t) =


α(3t) if 0 ≤ t ≤ 1

3
;

γ1(6t− 2) if 1
3
≤ t ≤ 1

2
;

γ2(6t− 3) if 1
2
≤ t ≤ 2

3
;

α(3− 3t) if 2
3
≤ t ≤ 1;

and

(α.γ1.α
−1.α.γ2.α

−1)(t) =



α(6t) if 0 ≤ t ≤ 1
6
;

γ1(6t− 1) if 1
6
≤ t ≤ 1

3
;

α(3− 6t) if 1
3
≤ t ≤ 1

2
;

α(6t− 3) if 1
2
≤ t ≤ 2

3
;

γ2(6t− 4) if 2
3
≤ t ≤ 5

6
;

α(6− 6t) if 5
6
≤ t ≤ 1.
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However
α.γ1.α

−1.α.γ2.α
−1 ' α.(γ1.γ2).α

−1 rel {0, 1}.

Indeed if H: [0, 1]× [0, 1]→ X is the continuous map defined by

H(t, τ) =



α

(
6t

τ + 1

)
if 0 ≤ t ≤ 1

6
(τ + 1),

γ1(6t− τ − 1) if 1
6
(τ + 1) ≤ t ≤ 1

6
(τ + 2),

α(3 + τ − 6t) if 1
6
(τ + 2) ≤ t ≤ 1

2
,

α(6t− 3 + τ) if 1
2
≤ t ≤ 1

6
(4− τ),

γ2(6t− 4 + τ) if 1
6
(4− τ) ≤ t ≤ 1

6
(5− τ),

α

(
6− 6t

τ + 1

)
if 1

6
(5− τ) ≤ t ≤ 1,

then

H(t, 0) = (α.γ1.α
−1.α.γ2.α

−1)(t) and H(t, 1) = (α.(γ1.γ2).α
−1)(t)

for all t ∈ [0, 1], and
H(0, τ) = x = H(1, τ)

for all τ ∈ [0, 1], and thus H provides the required homotopy between the
loops α.γ1.α

−1.α.γ2.α
−1 and α.(γ1.γ2).α

−1. This shows that τα([γ1][γ2]) =
τα([γ1])τα([γ2]), so that τα: π1(X, y) → π1(X, x) is a homomorphism. More-
over τα is invertible. Indeed the inverse of τα is given by

τ−1α ([σ]) = [α−1.σ.α]

for all loops σ based at the point x. Thus τα: π1(X, y) → π1(X, x) is an
isomorphism.

Definition A topological space X is said to be path-connected if and only
if, given any two points x0 and x1 of X, there exists a continuous path
α: [0, 1]→ X such that α(0) = x0 and α(1) = x1.

We deduce immediately from Lemma 2.3 the following result.

Corollary 2.4 Let X be a path-connected topological space, and let x0 and
x1 be points of X. Then π1(X, x0) ∼= π1(X, x1).

Definition A topological space X is said to be simply-connected if X is
path-connected and π1(X, x0) is the trivial group (where x0 is some chosen
basepoint for X).
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We deduce immediately from Corollary 2.4 that if the topological space X
is simply connected then π1(X, x) is trivial for all x ∈ X.

Lemma 2.5 Let X be a topological space, and let γ1: [0, 1] → X and
γ2: [0, 1]→ X be paths in X, where γ1(0) = γ2(0) and γ1(1) = γ2(1). Suppose
that the topological space X is simply-connected. Then

γ1 ' γ2 rel {0, 1}.

Proof Let x0 = γ1(0) = γ2(0). Using Lemma 2.1 we see that

γ1 ' γ1.(γ
−1
2 .γ2) ' (γ1.γ

−1
2 ).γ2 rel {0, 1}.

But the fundamental group π1(X, x0) of X at x0 is trivial, since the topolog-
ical space X is simply-connected. Therefore

γ1.γ
−1
2 ' ε0 rel {0, 1},

where ε0 denotes the constant loop at the point x0. It follows from Lemma 2.1
that

γ1 ' ε0.γ2 ' γ2 rel {0, 1},

as required.

LetX and Y be topological spaces, and let x0 be a point ofX. Let f :X →
Y be a continuous map. Then f induces a homomorphism f#: π1(X, x0) →
π1(Y, f(x0)) defined by f#([γ]) = [f ◦ γ] for all loops γ: [0, 1] → X based
at x0.

Lemma 2.6 Let X, Y and Z be topological spaces, and let x0, y0 and z0 be
chosen basepoints of X, Y and Z respectively. Then

(i) if 1X :X → X is the identity map of X then 1X#: π1(X, x0)→ π1(X, x0)
is the identity homomorphism of the fundamental group π1(X, x0) of X,

(ii) if f :X → Y and h:Y → Z are continuous maps, and if f(x0) = y0
and h(y0) = z0, then (h ◦ f)# = h# ◦ f#,

(iii) if f :X → Y and g:X → Y are continuous maps for which f(x0) =
g(x0), and if f ' g rel {x0}, then f# = g#.

We now show that the fundamental group of a product of topological
spaces is isomorphic to the direct product of the fundamental groups of those
spaces.
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Lemma 2.7 Let X1, X2, . . . , Xr be topological spaces, and let xj be some
chosen basepoint of the space Xj for each integer j between 1 and r. Let x
be the point of X1 ×X2 × · · · ×Xr given by x = (x1, x2, . . . , xr). Then

π1(X1 ×X2 × · · · ×Xr, x) ∼= π1(X1, x1)× π1(X2, x2)× · · · × π1(Xr, xr).

Proof Each element of π1(X1 × X2 × · · · × Xr, x) is represented by a loop
of the form

t 7→ (γ1(t), γ2(t), . . . , γr(t)) ,

where γj is a loop in Xj based at xj, for j = 1, 2, . . . , r. Moreover it follows
from Lemma 1.8 that if γj and γ′j are loops in Xj, for j = 1, 2, . . . , r, and if
γ and γ′ are the loops in X1 ×X2 × · · · ×Xr given by

γ(t) = (γ1(t), γ2(t), . . . , γr(t)) , γ′(t) = (γ′1(t), γ
′
2(t), . . . , γ

′
r(t)) ,

then γ ' γ′ rel {0, 1} if and only if γj ' γ′j rel {0, 1} for all j. The required
result follows easily from these observations.

2.1 The Fundamental Group of a Union of Simply-
Connected Spaces

Theorem 2.8 Let X be a topological space, let x0 be a point of X, and let
U and V be open sets in X containing the point x0 such that X = U ∪ V .
Suppose that the open sets U and V are simply-connected and that their
intersection U ∩V is path-connected. Then the topological space X is simply-
connected.

Proof If x is a point of X then x belongs either to U or to V . Therefore
there exists a continuous path in X joining x to x0 since the sets U and V
are both path-connected. Thus X is path-connected. We must prove that
the fundamental group π1(X, x0) of the space X is trivial.

Let γ: [0, 1]→ X be a loop in X based at the point x0. A straightforward
application of the Lebesgue Lemma shows that there exist real numbers sj
for j = 0, 1, 2, . . . , r, where

0 = s0 < s1 < s2 < · · · < sr = 1,

such that, for each integer j between 1 and r, either γ ([sj−1, sj]) ⊂ U or else
γ ([sj−1, sj]) ⊂ V (see Theorem A.29 of Appendix A).

The sets U , V and U ∩ V are all path-connected. Thus we may choose,
for j = 0, 1, . . . , r a path ηj: [0, 1] → X from x0 to γ(sj), where the choice
of ηj is made subject to the following conditions:
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(i) η0(t) = x0 = ηr(t) for all t ∈ [0, 1],

(ii) if γ(sj) ∈ U then ηj([0, 1]) ⊂ U ,

(iii) if γ(sj) ∈ V then ηj([0, 1]) ⊂ V ,

(Thus if γ(sj) ∈ U ∩V then the path ηj must be chosen such that ηj([0, 1]) ⊂
U ∩ V , in order that both (ii) and (iii) are satisfied.)

For each integer j between 1 and r let αj: [0, 1]→ X denote the loop in X
based at x0 defined by

αj(t) =


ηj−1(3t) if 0 ≤ t ≤ 1

3
,

γ((2− 3t)sj−1 + (3t− 1)sj) if 1
3
≤ t ≤ 2

3
,

ηj(3− 3t) if 2
3
≤ t ≤ 1,

However the loop β is a reparameterization of the loop γ, and therefore β
and γ represent the same element of π1(X, x0). We conclude therefore that
the loop γ represents the identity element of π1(X, x0).

(It is not difficult to construct an explicit homotopy between the loops β
and γ. Indeed let µ: [0, 1]→ [0, 1] be the homeomorphism of the interval [0, 1]
defined by

µ(t) = (j − rt)sj−1 + (rt− j + 1)sj for all t satisfying
j − 1

r
≤ t ≤ j

r
.

Then β = γ ◦ µ. Thus the map

(t, τ) 7→ γ((1− τ)µ(t) + τt)

provides the required homotopy between the loops γ and β.)
We have shown that the topological space X is path-connected and that

every loop in X based at the point x0 represents the identity element of
π1(X, x0). Thus π1(X, x0) is the trivial group. We conclude that X is simply-
connected, as required.

Given a non-negative integer n, the n-sphere Sn is the topological space
given by

Sn = {(x1, x2, . . . , xn+1 ∈ Rn+1 : x21 + x22 + · · ·+ x2n+1 = 1}.

If we apply Theorem 2.8 we may deduce the following result.

Corollary 2.9 The n-sphere Sn is simply-connected for all integers n satis-
fying n ≥ 2.
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Proof Let U be the subset of Sn consisting of those points (x1, x2, . . . , xn+1)
of Sn for which xn+1 > −1

2
, and let V be the subset of Sn consisting of those

points (x1, x2, . . . , xn+1) of Sn for which xn+1 <
1
2
. The sets U and V are

open sets with respect to the topology of Sn, and Sn = U ∪ V . If n ≥ 2
then the sets U and V are simply-connected and their intersection U ∩ V is
path-connected. Therefore Sn is simply connected, by Theorem 2.8.

2.2 Homotopy Equivalences and the Fundamental Group

Let X and Y be topological spaces and let f :X → Y be a continuous map.
We recall that the map f is said to be a homotopy equivalence if and only
if there exists a continuous map g:Y → X such that g ◦ f is homotopic to
the identity map of X and f ◦ g is homotopic to the identity map of Y . In
particular, if X is a topological space, and if A is a subset of X which is
a deformation retract of X, then the inclusion map A ↪→ X is a homotopy
equivalence. We now prove that a homotopy equivalence between two topo-
logical spaces induces an isomorphism between the fundamental groups of
those topological spaces.

Theorem 2.10 Let X and Y be topological spaces and let f :X → Y be a
homotopy equivalence. Then for any given basepoint x0 ∈ X the induced
homomorphism f#: π1(X, x0)→ π1(Y, f(x0)) is an isomorphism.

Proof Let g:Y → X be a continuous map such that g ◦ f and f ◦ g are
homotopic to the identity maps of X and Y respectively. (Such a map g
exists since f is a homotopy equivalence.)

In the case when g(f(x0)) = x0 and all homotopies are basepoint-preserv-
ing, we see that g ◦ f and f ◦ g are the identity homomorphisms of π1(X, x0)
and π1(Y, f(x0)) respectively. (This follows directly on applying the results
of Lemma 2.6.) Thus g# = f−1# , so that f# is an isomorphism from π1(X, x0)
to π1(Y, f(x0)).

In the general case we proceed as follows. Define y0 = f(x0) and x1 =
g(y0). We show that the composition g# ◦ f#: π1(X, x0) → π1(X, x1) of
the induced homomorphisms f#: π1(X, x0) → π1(Y, y0) and g#: π1(Y, y0) →
π1(X, x1) is an isomorphism. There exists a continuous homotopy H:X ×
[0, 1] → X such that H(x, 0) = g(f(x)) and H(x, 1) = x for all x ∈ X
(since g ◦ f is homotopic to the identity map of X). Define α: [0, 1]→ X by
α(t) = H(x0, t) for all t ∈ [0, 1]. Then α is a path from x1 to x0. We claim
that if γ: [0, 1] → X is a loop based at the basepoint x0 (so that γ(0) = x0
and γ(1) = x0) then g#(f#([γ])) = τα([γ]), where τα: π1(X, x1) → π1(X, x0)
is the isomorphism defined by τα([γ]) = [α.γ.α−1] (see Lemma 2.3).
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Consider the map F : [0, 1]× [0, 1]→ X defined by

F (t, τ) =


α(3t) if 0 ≤ t ≤ 1

3
τ ;

H

(
γ

(
3t− τ
3− 2τ

)
, τ

)
if 1

3
τ ≤ t ≤ 1− 1

3
τ ;

α(3− 3t) if 1− 1
3
τ ≤ t ≤ 1.

(A straightforward application of Lemma A.7 of Appendix A shows that the
map H is well-defined and continuous, since

H

(
γ

(
3t− τ
3− 2τ

)
, τ

)
= H(γ(0), τ) = H(x0, τ) = α(3t)

when t = 1
3
τ , and

H

(
γ

(
3t− τ
3− 2τ

)
, τ

)
= H(γ(1), τ) = H(x0, τ) = α(3− 3t)

when t = 1− 1
3
τ .) Note that

F (t, 0) = H(γ(t), 0) = g(f(γ(t))), F (t, 1) = (α.γ.α−1)(t).

Therefore F is a homotopy between the loops g◦f ◦γ and α.γ.α−1. Moreover
F (0, τ) = α(0) = x1 and F (1, τ) = α(0) = x1 for all τ ∈ [0, 1]. Therefore g ◦
f ◦γ ' α.γ.α−1 rel {0, 1}, and thus g#(f#([γ])) = τα[γ]. But τα: π1(X, x0)→
π1(X, x1) is an isomorphism, by Lemma 2.3. Thus the composition g# ◦ f#
of the homomorphisms f#: π1(X, x0) → π1(Y, f(x0)) and g#: π1(Y, f(x0)) →
π1(X, x1) is an isomorphism, and hence the homomorphism f#: π1(X, x0)→
π1(Y, f(x0)) is injective.

Let β: [0, 1] → Y be a loop based at y0. Then g#([β]) = g#(f#([γ])) for
some loop γ: [0, 1] → X based at x0 (since g# ◦ f# is an isomorphism). But
we have just shown that the homomorphism of fundamental groups induced
by any homotopy equivalence is injective. This implies that g#: π1(Y, y0)→
π1(X, g(y0)) is injective (since g:Y → X is a homotopy equivalence). There-
fore [β] = f#([γ]). This shows that f#: π1(X, x0)→ π1(Y, f(x0)) is surjective.
We conclude that f# is an isomorphism, as required.

Corollary 2.11 Let X be a topological space, and let A be a deformation
retract of X. Let x0 be a point of A. Then the homomorphism i#: π1(A, x0)→
π1(X, x0) of fundamental groups induced by the inclusion map i ↪→ A → X
is an isomorphism.

Proof The inclusion map i:A ↪→ X is a homotopy equivalence, since A
is a deformation retract of X. Hence the induced homomorphism i# of
fundamental groups is an isomorphism, by Theorem 2.10.
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Corollary 2.12 Let X be a contractible topological space and let x0 be a
point of X. Then π1(X, x0) is trivial.

Proof If X is contractible then there exists a point p of X such that the
set {p} consisting of the single element p is a deformation retract of X. It
follows from Corollary 2.12 that the fundamental group of the space X is
isomorphic to the fundamental group of the topological space consisting of a
single point. Thus π1(X, x0) is trivial.

Example The following spaces are contractible and thus have trivial funda-
mental group:

(i) n-dimensional Euclidean space Rn,

(ii) the open unit ball Bn in Rn defined by

Bn = {(x1, x2, . . . , xn) ∈ Rn : x21 + x22 + · · ·+ x2n < 1},

(iii) the closed unit ball En in Rn defined by

En = {(x1, x2, . . . , xn) ∈ Rn : x21 + x22 + · · ·+ x2n ≤ 1},

(iv) the open half-space Hn in Rn defined by

Hn = {(x1, x2, . . . , xn) ∈ Rn : xn > 0}.
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3 Covering Maps

Definition Let X and X̃ be topological spaces and let p: X̃ → X be a con-
tinuous map. The map p is said to be a local homeomorphism if and only if
every point of X̃ has an open neighbourhood which is mapped homeomor-
phically by p onto some open set in X.

Example Let S1 denote the unit circle in R2, and let α: (−2, 2) → S1 be
the continuous map defined by α(t) = (cos 2πt, sin 2πt). Then the map α is
a local homeomorphism from (−2, 2) to S1.

We shall be considering a particular class of local homeomorphisms known
as covering maps.

Definition Let X and X̃ be topological spaces and let p: X̃ → X be a
continuous map. An open subset U of X is said to be evenly covered by the
map p if and only if p−1(U) is a disjoint union of open sets of X̃ each of
which is mapped homeomorphically onto U by p.

Example Let α: (−2, 2) → S1 be the continuous map defined by α(t) =
(cos 2πt, sin 2πt). Let U and V be the open subsets of S1 defined by

U = {(x, y) ∈ S1 : x < 0 and x2 + y2 = 1},
V = {(x, y) ∈ S1 : x > 0 and x2 + y2 = 1}.

The set U is evenly covered by the map α, since

α−1(U) = {t ∈ (−2, 2) : cos 2πt < 0}

= (−7

4
,−5

4
) ∪ (−3

4
,−1

4
) ∪ (

1

4
,
3

4
) ∪ (

5

4
,
7

4
),

and each of the open intervals (−7
4
,−5

4
), (−3

4
,−1

4
), (1

4
, 3
4
) and (5

4
, 7
4
) is mapped

homeomorphically onto U by the map p. On the other hand the set V is not
evenly covered by the map p since

α−1(V ) = {t ∈ (−2, 2) : cos 2πt > 0}

= (−2,−7

4
) ∪ (−5

4
,−3

4
) ∪ (−1

4
,
1

4
) ∪ (

3

4
,
5

4
) ∪ (

7

4
, 2),

where the open intervals (−2,−7
4
) and (7

4
, 2) are not mapped homeomorphi-

clly onto V by the map p.

Definition Let X and X̃ be topological spaces and let p: X̃ → X be a
continuous map. The map p: X̃ → X is said to be a covering map over the
topological space X if and only if the following conditions are satisfied:
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(i) the map p: X̃ → X is surjective,

(ii) every point of X has an open neighbourhood which is evenly covered
by the map p.

If p: X̃ → X is a covering map over a topological space X then the topological
space X̃ is said to be a covering space of X.

Lemma 3.1 Every covering map is a local homeomorphism.

Proof Let p: X̃ → X be a covering map. Let z be a point of X̃. Then p(z)
has an open neighbourhood V which is evenly covered by the map p. Thus
p−1(V ) is a disjoint union of open sets, each of which is mapped homeomor-
phically onto V by the map p. One of these open sets contains the point z;
let us denote this open set by U . Then U is an open neighbourhood of the
point z which is mapped homeomorphically onto the open set V in X by the
map p. This shows that p is a local homeomorphism.

Example Let S1 be the unit circle in R2. Then the map e:R→ S1 defined
by

e(t) = (cos 2πt, sin 2πt)

is a covering map. Indeed let n be a point of S1. Consider the open neigh-
bourhood U of n in S1 defined by U = S1\{−n}. Now n = (cos 2πt0, sin 2πt0)
for some t0 ∈ R. Then e−1(U) is the union of the disjoint open sets Jn for
all integers n, where

Jn = {t ∈ R : t0 + n− 1

2
< t < t0 + n+

1

2
}.

Each of the open sets Jn is mapped homeomorphically onto U by the map e.
This shows that e:R→ S1 is a covering map.

Example The map p:C→ C\{0} defined by p(z) = exp(2πiz) is a covering
map. Given any θ ∈ [−π, π] let us define

Uθ = {z ∈ C \ {0} : arg z 6= −θ}.

Note the Uθ is evenly covered by the map p. Indeed p−1(Uθ) consists of the
union of the open sets

{z ∈ C :
θ

2π
+ n− 1

2
< Im z <

θ

2π
+ n+

1

2
},

where each of these open sets is mapped homeomorphically onto Uθ by the
map p.
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Example Let S1 denote the unit circle in R2. Let n be a non-zero integer.
Let βn:S1 → S1 be defined by

βn(cos θ, sin θ) = (cosnθ, sinnθ).

Then βn:S1 → S1 is a covering map.

Example Let RP n denote the real projective n-space. This is the topologi-
cal space obtained from the n-sphere Sn by identifying antipodal points on
Sn. (We regard Sn as the unit n-sphere in Rn+1 consisting of all x ∈ Rn−1

satisfying |x| = 1. We define an equivalence relation on Sn where distinct
points x and y of Sn are equivalent if and only if x = −y. The space RP n

is then defined to be the set of equivalence classes of points of Sn under this
equivalence relation. The topology on RP n is the quotient topology induced
by the quotient map ρ:Sn → RP n. Thus a subset U of RP n is open if and
only if ρ−1(U) is open in Sn.) It is easily verified that the quotient map
ρ:Sn → RP n is a covering map.

The local homeomorphism α: (−2, 2)→ S1 is not a covering map, where
S1 as the unit circle in R2, and where by α(t) = (cos 2πt, sin 2πt) for all
t ∈ (−2, 2). It can easily be shown that the point (1, 0) of S1 has no open
neighbourhood which is evenly covered by the map α.

Definition Let p: X̃ → X be a covering map, and let x be a point of X̃. The
fibre of the map p: X̃ → X over the point x is defined to be the set p−1({x})
consisting of all points of X̃ that are mapped by p onto the point x.

3.1 The Path Lifting and Homotopy Lifting Properties

Let p: X̃ → X be a covering map over a topological space X. Let Z be a
topological space, and let f :Z → X be a continuous map from Z to X. A
continuous map f̃ :Z → X̃ is said to be a lift of the map f :Z → X if and
only if p ◦ f̃ = f . We shall prove several results concerning the existence and
uniqueness of such lifts. These results include the important Path Lifting
Property and the Homotopy Lifting Property for covering maps. First we
prove a result concerning the uniqueness of lifts of continuous maps from
connected topological spaces. (We recall that a topological space X is said
to be connected if and only if ∅ and X itself are the only subsets of X that
are both open and closed.)

Theorem 3.2 Let p: X̃ → X be a covering map over a topological space X.
Let Z be a connected topological space, and let f :Z → X̃ and g:Z → X̃
be continuous maps. Suppose that p ◦ f = p ◦ g and that there exists some
point z0 of Z with the property that f(z0) = g(z0). Then f = g.
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Proof Let Z0 be the subset of Z defined by

Z0 = {z ∈ Z : f(z) = g(z)}.

Note that Z0 is non-empty, by hypothesis. We show that Z0 is both open
and closed.

Let z be a point of Z0. There exists an open neighbourhood U of p(f(z))
in X which is evenly covered by the map p. Then p−1(U) is a disjoint union of
open sets, each of which is mapped homeomorphically onto U by the map p.
One of these open sets contains f(z); let this set be denoted by Ũ . Let N
be the the open neighbourhood of z in Z defined by N = f−1(Ũ) ∩ g−1(Ũ).
Then f(N) ⊂ Ũ and g(N) ⊂ Ũ . But p ◦ f = p ◦ g, and the restriction p|Ũ of
the map p to Ũ maps Ũ homeomorphically onto U . Therefore f |N = g|N ,
and thus N ⊂ Z0. This shows that Z0 is open.

We now show that the complement Z \Z0 of Z0 in Z is open. Let z be a
point of Z \Z0. There exists an open neighbourhood U of p(f(z)) in X which
is evenly covered by the map p. Then p−1(U) is a disjoint union of open sets,
each of which is mapped homeomorphically onto U by the map p. One of
these open sets contains f(z); let this set be denoted by Ũ1. Another of these
open sets contains g(z); let this open set be denoted by Ũ2. Then Ũ1∩Ũ2 = ∅.
LetN be the open neighbourhood of z in Z defined byN = f−1(Ũ1)∩g−1(Ũ2).
Then f(N) ⊂ Ũ1 and g(N) ⊂ Ũ2, and hence f(z′) 6= g(z′) for all z′ ∈ N .
Thus N ⊂ Z \ Z0. This shows that Z \ Z0 is open, so that Z0 is closed.

The set Z0 is a non-empty subset of Z that is both open and closed.
It follows from the connectedness of Z that Z0 = Z. Therefore f = g
throughout Z, as required.

Corollary 3.3 Let p: X̃ → X be a covering map over a topological space X.
Let Z be a connected topological space, and let f :Z → X̃ be a continuous
map. Suppose that p(f(z)) = x0 for all z ∈ Z, where x0 is some point of X.
Then f(z) = x̃0 for all z ∈ Z, where x̃0 is some point of X̃ which satisfies
p(x̃0) = x0.

Proof Let z0 be some point of Z. Let x̃0 = f(z0), and let c:Z → X̃ be the
constant map defined by c(z) = x̃0 for all z ∈ Z. Then c(z0) = f(z0) and
p ◦ c = p ◦ f . Therefore f = c by Theorem 3.2, as required.

Let p: X̃ → X be a covering map over a topological space X. Let
γ: [a, b]→ X be a continuous path in X defined on the closed interval [a, b].
A continuous path γ̃: [a, b] → X̃ is said to be a lift of γ to X̃ if and only if
p ◦ γ̃ = γ. We now prove the Path Lifting Property for covering maps.
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Theorem 3.4 (Path Lifting Property) Let p: X̃ → X be a covering map
over a topological space X. Let γ: [a, b] → X be a continuous map from the
closed interval [a, b] to X, and let w be a point of X̃ for which p(w) = γ(a).
Then there exists a unique continuous map γ̃: [a, b]→ X̃ such that γ̃(a) = w
and p ◦ γ̃ = γ.

Proof Let S be the subset of [a, b] consisting of all τ ∈ [a, b] with the prop-
erty that there exists a lift of γ|[a, τ ] to X̃ starting at w (where γ|[a, τ ]
denotes the restriction of the path γ to the closed interval [a, τ ]). We shall
prove that b belongs to S. Note that S is non-empty, since a belongs to S.
Let s = supS. There exists an open neighbourhood U of γ(s) which is evenly
covered by the map p, since p: X̃ → X is a covering map. It then follows
from the continuity of the path γ that there exists some δ > 0 such that
γ(J(s, δ)) ⊂ U , where

J(s, δ) = {t ∈ [a, b] : |t− s| < δ}.

Now S ∩ J(s, δ) is non-empty, since s is the supremum of the set S. Choose
some element τ0 of S∩J(s, δ). Then there exists a continuous lift η0: [a, τ0]→
X̃ of γ|[a, τ0] to X̃ starting at w. Now the open set U is evenly covered by
the map p. Therefore p−1(U) is a disjoint union of open sets in X̃, each
of which is mapped homeomorphically onto U by the map p. One of these
open sets contains the point η0(τ0); let this open set be denoted by Ũ . Now
γ(t) ∈ U for all t ∈ J(s, δ) and Ũ is mapped homeomorphically onto U by
the map p. Therefore there exists a unique continuous path λ: J(s, δ) → Ũ
such that λ(τ0) = η0(τ0) and p(λ(t)) = γ(t) for all t ∈ J(s, δ). But then,
given any τ ∈ J(s, δ), let η: [a, τ ]→ X̃ be the continuous path in X̃ given by

η(t) =

{
η0(t) if a ≤ t ≤ τ0;
λ(t) if τ0 ≤ t ≤ τ .

Then η is a lift of γ|[a, τ ]. Thus τ belongs to the set S. This shows that
J(s, δ) ⊂ S. However s is defined to be the supremum of the set S. There-
fore s = b, and b belongs to S. We conclude therefore that there exists a
continuous lift γ̃: [a, b] → X̃ of γ starting at w. The uniqueness of γ̃ follows
directly from Theorem 3.2, since the closed interval [a, b] is connected.

Theorem 3.5 (Homotopy Lifting Property) Let p: X̃ → X be a covering
map over a topological space X. Let Z be a topological space, and let F :Z ×
[0, 1]→ X and g:Z → X̃ be continuous maps with the property that p(g(z)) =
F (z, 0) for all z ∈ Z. Then there exists a unique continuous map G:Z ×
[0, 1]→ X̃ such that G(z, 0) = g(z) for all z ∈ Z and p ◦G = F .
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Proof For each z ∈ Z, consider the path γz: [0, 1] → Z defined by γz(t) =
F (z, t) for all t ∈ [0, 1]. Note that p(g(z)) = γz(0). It follows from the Path
Lifting Property (Theorem 3.4) that there exists a unique continuous path
γ̃z: [0, 1] → X̃ such that γ̃z(0) = g(z) for all z ∈ Z and p ◦ γ̃z = γz. Let
the map G:Z × [0, 1] → X̃ be defined by G(z, t) = γ̃z(t) for all z ∈ Z and
t ∈ [0, 1]. Then G(z, 0) = g(z) for all z ∈ Z and

p(G(z, t)) = p(γ̃z(t)) = γz(t) = F (z, t)

for all z ∈ Z and t ∈ [0, 1]. It remains to show that the map G:Z×[0, 1]→ X̃
is continuous and that it is unique.

Given any z ∈ Z, let Sz denote the set of all real numbers t belonging to
the closed interval [0, 1] which have the following property:

there exists an open neighbourhood N of z in Z such that the
map G is continuous on N × [0, t].

Let sz be the supremum supSz (i.e., the least upper bound) of the set Sz.
We prove that sz belongs to the set Sz and that sz = 1.

Choose some z ∈ Z, and let w ∈ X̃ be given by w = G(z, sz). There
exists an open neighbourhood U of p(w) in X which is evenly covered by
the map p. Thus p−1(U) is a disjoint union of open sets, each of which is
mapped homeomorphically onto U by the covering map p. One of these
open sets contains the point w; let this open set be denoted by Ũ . Thus
Ũ is an open set in X̃ which contains the point w and which is mapped
homeomorphically onto U by the covering map p. Let σ:U → Ũ denote the
inverse of the homeomorphism p|Ũ : Ũ → U .

Note that F (z, sz) = p(w). It follows from the continuity of the map F
that there exists some δ > 0 and some open neighbourhood N1 of z in Z
such that F (N1 × J(sz, δ)) ⊂ U , where

J(sz, δ) = {t ∈ R : 0 ≤ t ≤ 1 and sz − δ < t < sz + δ}.

Now we can choose some τ belonging to Sz which satisfies sz − δ < τ ≤ sz,
since sz is the least upper bound of the set Sz. It then follows from the
definition of the set Sz that there exists an open neighbourhood N2 of z in Z
such that the map G is continuous on N2 × [0, τ ]. It follows from this that
there exists some open neighbourhood N of z in Z, where N is contained in
N2, such that G(N × {τ}) ⊂ Ũ . Moreover we can choose N to be a subset
of N1, thus ensuring that F (N × J(sz, δ)) ⊂ U .

Now p(G(z′, t)) = F (z′, t) = p(σ(F (z′, t))) for all z′ ∈ N and t ∈ J(sz, δ),
and G(z′, τ) = σ(F (z′, τ)) for all z′ ∈ N . It follows from this that G(z′, t) =
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σ(F (z′, t)) for all z′ ∈ N and t ∈ J(sz, δ) (since it follows from Theorem 3.2
that the continuous maps t 7→ G(z′, t) and t 7→ σ(F (z′, t)) agree on the
connected interval J(sz, δ)). But the maps F and σ are continuous; therefore
the map G is continuous on N × J(sz, δ) The map G is also continuous on
N × [0, τ ], for some τ satisfying sz− δ < τ ≤ sz Therefore G is continuous on
N × [0, t] for any t ∈ J(sz, δ), so that J(sz, δ) ⊂ Sz. We conclude from this
that sz = 1 and that 1 belongs to Sz. Thus we have shown that, given any
z ∈ Z there exists an open neighbourhood N of z such that G is continuous
on N × [0, 1]. It follows from this that G is continuous on Z × [0, 1], as
required.

The uniqueness of the map G:Z × [0, 1] → X̃ follows directly from the
fact that for any z ∈ Z there is a unique continuous path γ̃z: [0, 1]→ X̃ such
that γ̃z(0) = g(z) and p(γ̃z(t)) = F (z, t) for all t ∈ [0, 1].

Corollary 3.6 Let p: X̃ → X be a covering map over a topological space X.
Let α: [0, 1]→ X and β: [0, 1]→ X be continuous paths in X, where α(0) =
β(0) and α(1) = β(1). Let α̃: [0, 1] → X̃ and β̃: [0, 1] → X̃ be continuous
paths in X̃ such that p ◦ α̃ = α and p ◦ β̃ = β. Suppose that α̃(0) = β̃(0) and
that α ' β rel {0, 1}. Then α̃(1) = β̃(1) and α̃ ' β̃ rel {0, 1}.

Proof Let x0 and x1 be the points of X given by

x0 = α(0) = β(0), x1 = α(1) = β(1).

There exists a homotopy F : [0, 1]× [0, 1]→ X such that

F (t, 0) = α(t) and F (t, 1) = β(t) for all t ∈ [0, 1],

F (0, τ) = x0 and F (1, τ) = x1 for all τ ∈ [0, 1]

(since α ' β rel {0, 1}). It follows from the Homotopy Lifting Property
(Theorem 3.5) that there exists a continuous map G: [0, 1]× [0, 1]→ X̃ such
that p ◦G = F and G(t, 0) = α̃(t) for all t ∈ [0, 1]. Then p(G(0, τ)) = x0 and
p(G(1, τ)) = x1 for all τ ∈ [0, 1]. It follows immediately from Corollary 3.3
that G(0, τ) = x̃0 and G(1, τ) = x̃1 for all τ ∈ [0, 1], where

x̃0 = G(0, 0) = α̃(0), x̃1 = G(1, 0) = α̃(1).

However
G(0, 1) = G(0, 0) = α̃(0) = β̃(0),

and
p(G(t, 1)) = F (t, 1) = β(t) = p(β̃(t))
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for all t ∈ [0, 1]. Therefore G(t, 1) = β̃(t) for all t ∈ [0, 1], by Theorem 3.2.
In particular,

β̃(1) = G(1, 1) = x1 = α̃(1).

Moreover the map G: [0, 1]× [0, 1]→ X̃ is a homotopy between the paths α̃
and β̃ which fixes the endpoints of these paths, so that α̃ ' β̃ rel {0, 1}, as
required.

Corollary 3.7 Let p: X̃ → X be a covering map over a topological space X.
Let x̃0 be a point of X̃. Then the homomorphism p#: π1(X̃, x̃0)→ π1(X, p(x̃0))
of fundamental groups induced by the covering map p is injective. Moreover
if γ is a loop in X based at the point p(x̃0) which represents some element of
the image p#(π1(X̃, x̃0)) of the homomorphism p#, then there exists a loop γ̃
in X̃, based at the point x̃0, such that p ◦ γ̃ = γ.

Proof Let σ0 and σ1 be loops in X̃ based at the point x̃0, representing
elements [σ0] and [σ1] of π1(X̃, x̃0). Suppose that p#[σ0] = p#[σ1]. Then
p ◦ σ0 ' p ◦ σ1 rel {0, 1}. Also p(σ0(0) = p(x̃0) = p(σ1(0). Therefore
σ0 ' σ1 rel {0, 1}, by Corollary 3.6. Thus [σ0] = [σ1]. This shows that the
homomorphism p#: π1(X̃, x̃0)→ π1(X, p(x̃0)) is injective.

Let γ be a loop in X based at the point p(x̃0) which represents some
element of the image p#(π1(X̃, x̃0)) of the homomorphism p#. Then there
exists a loop σ in X̃ based at the point x̃0 such that γ ' p ◦ σ rel {0, 1}. Let
γ̃: [0, 1] → X̃ be the unique path in X̃ for which γ̃(0) = x̃0 and p ◦ γ̃ = γ.
(The existence of the path γ̃ follows from Theorem 3.4.) Then γ̃(1) = σ(1)
and γ̃ ' σ rel {0, 1}, by Corollary 3.6. But σ(1) = x̃0. Thus the path γ̃ is a
loop in X̃ based the point x̃0 for which p ◦ γ̃ = γ.

Let p: X̃ → X be a covering map over a topological space X. Let x0 and
x1 be points of X, and let α and β be paths in X from x0 to x1. Then α.β−1

is a loop based at the point x0, given by

(α.β−1)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2− 2t) if 1
2
≤ t ≤ 1.

Thus the loop α.β−1 represents an element [α.β−1] of the fundamental group
π1(X, x0) of X based at the point x0. Let x̃0 be a point of X̃ for which
p(x̃0) = x0, and let α̃ and β̃ be the unique lifts of the paths α and β for which
α̃(0) = x̃0 and β̃(0) = x̃0. (Thus p◦ α̃ = α and p◦ β̃ = β.) We now prove that
α̃(1) = β̃(1) if and only if [α.β−1] belongs to the image p#(π1(X̃, x̃0)) of the
homomorphism p#: π1(X̃, x̃0)→ π1(X, x0) of fundamental groups induced by
the covering map p: X̃ → X).
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Lemma 3.8 Let p: X̃ → X be a covering map over a topological space X.
Let α: [0, 1]→ X and β: [0, 1]→ X be paths in X such that α(0) = β(0) and
α(1) = β(1). Let α̃: [0, 1] → X̃ and β̃: [0, 1] → X̃ be paths in X̃ such that
p ◦ α̃ = α, and p ◦ β̃ = β. Suppose that α̃(0) = β̃(0). Then α̃(1) = β̃(1) if
and only if [α.β−1] ∈ p#(π1(X̃, x̃0)), where x̃0 = α̃(0) = β̃(0).

Proof Let x0 = p(x̃0), and γ: [0, 1] → X be the loop based at x0 given by
γ = α.β−1. Thus

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2− 2t) if 1
2
≤ t ≤ 1.

It follows from the Path Lifting Property for covering maps (Theorem 3.4)
that there exists a unique path γ̃: [0, 1]→ X such that γ̃(0) = x̃0 and p◦γ̃ = γ.

Suppose that [α.β−1] ∈ p#(π1(X̃, x̃0)). Then the lift γ̃ of γ is a loop in X̃
based at the point x̃0, by Corollary 3.7. It then follows from the uniqueness of
the lifts tα̃ and β̃ of the paths α and β that α̃(t) = γ̃(1

2
t) and β̃(t) = γ̃(1

2
(1−t))

for all t ∈ [0, 1]. In particular α̃(1) = γ̃(1
2

= β̃(1), as required.

Conversely suppose that α̃(1) = β̃(1). Then the unique continuous lift γ̃
of the path γ starting at the point x̃0 is given by

γ̃(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

β̃(2− 2t) if 1
2
≤ t ≤ 1.

But then γ̃(1) = x̃0 = γ̃(0), so that γ̃ is a loop in X̃ based at the point x̃0.
Thus [α.β−1] = p#[γ̃], and hence [α.β−1] belongs to the image of the homo-
morphism p#: π1(X̃, x̃0)→ π1(X, x0) as required.

Theorem 3.9 Let b be a point of the circle S1. Then π1(S
1, b) is isomorphic

to the additive group Z of integers.

Proof We represent S1 as the unit circle in R2. Without loss of generality
we may suppose that b = (1, 0). Then the map p:R→ S1 defined by

e(t) = (cos 2πt, sin 2πt)

is a covering map. Note that p(0) = b and p−1({b}) = Z.
Let γ: [0, 1] → S1 be a loop in S1 based at the point b which represents

some element [γ] of π1(S
1, b) (where b = (1, 0)). It follows from the Path

Lifting Property for covering maps (Theorem 3.4) that there exists a unique
path γ̃: [0, 1] → R in R such that γ̃(0) = 0 and p ◦ γ̃ = γ. Then γ̃(1)
is an integer (since p(γ̃(1)) = b). We claim that there is a well-defined
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homomorphism which maps the element [γ] of π1(S
1, b) represented by the

loop γ to the endpoint γ̃(1) of the lift γ̃ of γ.
Let α and β be loops in S1 based at the point b and let α̃ and β̃ be the

corresponding paths in R for which p◦α̃ = α, p◦β̃ = β, and α̃(0) = 0 = β̃(0).
The space R of real numbers is simply-connected, so that π1(R, 0) is the trivial
group. It follows from Lemma 3.8 that α̃(1) = β̃(1) if and only if [α.β−1]
represents the identity element of π1(S

1, b). Thus α̃(1) = β̃(1) if and only
if [α] = [β] (where [α] and [β] are the elements of π1(S

1, b) represented by
the loops α and β respectively. We conclude therefore that there is a well-
defined function Θ:π1(S

1, b) → Z which maps the element [γ] of π1(S
1, b)

represented by the loop γ to the endpoint γ̃(1) of the lift γ̃ of γ. Moreover
this function is injective. It is also surjective, since if γn: [0, 1] → S1 is the
loop in S1 based at B defined by

γn(t) = e(nt) = (cos 2πnt, sin 2πnt)

then Θ([γn]) = n for each integer n.
We claim that the bijection Θ: π1(S

1, b) → Z is a homomorphism. Let
α and β be loops in S1 based at the point b, and let α̃ and β̃ be the corre-
sponding paths in R for which p ◦ α̃ = α, p ◦ β̃ = β, and α̃(0) = 0 = β̃(0).
Let γ: [0, 1]→ S1 be the product loop given by γ = α.β, so that

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Let γ̃: [0, 1]→ R be the unique path in R for which p ◦ γ̃ = γ and γ̃(0) = 0.
Then

γ̃(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

α̃(1) + β̃(2t− 1) if 1
2
≤ t ≤ 1.

Thus

Θ([α].[β]) = Θ([α.β]) = Θ([γ]) = γ̃(1) = α̃(1) + β̃(1) = Θ([α]) + Θ([β]).

Thus the bijection Θ:π1(S
1, b)→ Z is a homomorphism. We conclude there-

fore that Θ:π1(S
1, b)→ Z is an isomorphism, as required.

Theorem 3.10 Let p: X̃ → X be a covering map over a topological space X.
Suppose that X̃ is path-connected and that X is simply-connected. Then the
covering map p: X̃ → X is a homeomorphism.

Proof We show that the map p: X̃ → X is a bijection. This map is surjective
(since covering maps are by definition surjective). We must show that it is
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injective. Let w0 and w1 be points of X̃ with the property that p(w0) = p(w1).
Then there exists a continuous path σ: [0, 1] → X̃ with σ(0) = w0 and
σ(1) = w1, since X̃ is path-connected. Then p◦σ is a loop in X based at the
point x0, where x0 = p(w0). However π1(X, p(w0)) is the trivial group, since
X is simply-connected. It follows from Corollary 3.7 that p ◦ σ = p ◦ ω for
some loop ω in X̃ based at the point w0. But ω(0) = w0 = σ(0). Therefore
ω = σ, by Theorem 3.2. In particular

w1 = σ(1) = ω(1) = w0.

This shows that the the covering map p: X̃ → X is injective. Thus the map
p: X̃ → X is a bijection, and thus has a well-defined inverse p−1:X → X̃.

Every covering map is a local homeomorphism, by Lemma 3.1. Let x be
a point of X. Then there exists an open neighbourhood U p−1(x) which is
mapped homeomorphically onto some open set p(U) in X. But then p(U) is
an open neighbourhood of the point x, and the inverse p−1 of p is continuous
on p(U). Thus p−1:X → X̃ is continuous at each point x of X. Thus
p: X̃ → X is a homeomorphism, as required.

Let p: X̃ → X be a covering map over some topological space X, and
let x0 be some chosen basepoint of X. We shall investigate the dependence

of the subgroup p#

(
π1(X̃, x̃)

)
of π1(X, x0) on the choice of the point x̃ in X̃,

where x̃ is chosen such that p(x̃) = x0. We first introduce some concepts from
group theory.

Let G be a group, and let H be a subgroup of G. Given any g ∈ G, let
gHg−1 denote the subset of G defined by

gHg−1 = {g′ ∈ G : g′ = ghg−1 for some h ∈ H}.

It is easy to verify that gHg−1 is a subgroup of G.

Definition Let G be a group, and let H and H ′ be subgroups of G. We say
that H and H ′ are conjugate if and only if there exists some g ∈ G for which
H ′ = gHg−1.

Note that if H ′ = gHg−1 then H = g−1H ′g. The relation of conjugacy is
an equivalence relation on the set of all subgroups of the group G. Moreover
conjugate subgroups of G are isomorphic, since the homomorphism sending
h ∈ H to ghg−1 is an isomorphism from H to gHg−1.
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Lemma 3.11 Let p: X̃ → X be a covering map over some topological space
X. Let x0 be a point of X, and let x̃0 and x̃1 be points of X̃ for which
p(x̃0) = x0 = p(x̃1). Let H0 and H1 be the subgroups of π1(X, x0) defined by

H0 = p#

(
π1(X̃, x̃0)

)
, H1 = p#

(
π1(X̃, x̃1)

)
.

Suppose that the covering space X̃ is path-connected. Then the subgroups
H0 and H1 of π1(X, x0) are conjugate. Moreover if H is any subgroup
of π1(X, x0) which is conjugate to H0 then there exists an element x̃ of X̃ for

which p(x̃) = x and p#

(
π1(X̃, x̃)

)
= H.

Proof Let α: [0, 1]→ X̃ be a path in X̃ for which α(0) = x̃0 and α(1) = x̃1.
(Such a path exists since X̃ is path-connected.) Let

τα: π1(X̃, x̃1)→ π1(X̃, x̃1)

be the isomorphism which sends [γ] ∈ π1(X̃, x̃1) to [α.γ.α−1] for all loops γ
in X̃ based at x̃1, where

(α.γ.α−1)(t) =


α(3t) if 0 ≤ t ≤ 1

3
;

γ(3t− 1) if 1
3
≤ t ≤ 2

3
;

α(3− 3t) if 2
3
≤ t ≤ 1.

(It follows from Lemma 2.3 that τα is well-defined and is an isomorphism
from π1(X̃, x̃1) to X̃, x̃0.) Let η: [0, 1] → X be the loop in X based at the
point x0 given by η = α ◦ p. Then

p#(τα([γ])) = [η] (p#([γ])) [η−1]

for all [γ] ∈ π1(X̃, x̃1). Therefore H0 = [η]H1[η]−1. Thus the subgroups H0

and H1 of π1(X, x0) are conjugate.
Now let H be a subgroup of π1(X, x0) which is conjugate to H0. Then

H0 = [η]H[η]−1 for some loop η in X based at the point x0. It follows from
the Path Lifting Property for covering maps (Theorem 3.4) that there exists
a path α: [0, 1]→ X̃ in X̃ for which α(0) = x̃0 and p ◦ α = η. Let x̃ = α(1).
Then

p#

(
π1(X̃, x̃)

)
= [η]−1H0[η] = H,

as required.
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4 Winding Numbers

Let γ: [a, b]→ C be a continuous closed curve in the complex plane which is
defined on some closed interval [a, b] (so that γ(a) = γ(b)), and let w be a
complex number which does not belong to the image of the closed curve γ.
The map pw:C → C \ {w} defined by pw(z) = w + exp(2πiz) is a covering
map. Observe that if z1 and z2 are complex numbers then pw(z1) = pw(z2) if
and only if z1−z2 is an integer. Using the Path Lifting Property for covering
maps (Theorem 3.4) we see that there exists a continuous path γ̃: [a, b]→ C
in C such that pw ◦ γ̃ = γ. Let us define

n(γ, w) = γ̃(b)− γ̃(a).

Now pw(γ̃(b)) = pw(γ̃(a)) (since γ(b) = γ(a)). It follows from this that
n(γ, w) is an integer. We claim that the value of n(γ, w) is independent of
the choice of the path γ̃ on C.

Let σ: [a, b]→ C be a continuous path in C with the property that pw◦σ =
γ. Then pw(σ(t)) = pw(γ̃(t)) for all t ∈ [a, b], and hence σ(t) − γ̃(t) is an
integer for all t ∈ [a, b]. But the map sending t ∈ [a, b] to σ(t) − γ̃(t) is
continuous on [a, b]; therefore this map must be a constant map. Thus there
exists some integer m with the property that σ(t) = γ̃(t)+m for all t ∈ [a, b],
and hence

σ(b)− σ(a) = γ̃(b)− γ̃(a).

This proves that the value of n(γ, w) is independent of the choice of the lift γ̃
of the closed curve γ.

Definition Let γ: [a, b] → C be a continuous closed curve in the complex
plane, and let w be a complex number which does not belong to the image of
the closed curve γ. Then the winding number n(γ, w) of the closed curve γ
about w is defined by

n(γ, w) ≡ γ̃(b)− γ̃(a),

where γ̃: [a, b]→ C is some continuous path in C with the property that

γ(t) = w + exp(2πiγ̃(t)

for all t ∈ [a, b].

Theorem 4.1 Let w be a complex number and let

γ0: [a, b]→ C and γ1: [a, b]→ C

be closed curves in C which do not pass through w. Suppose that there exists
some homotopy F : [a, b]× [0, 1]→ C with the following properties:
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(i) F (t, 0) = γ0(t) and F (t, 1) = γ1(t) for all t ∈ [a, b],

(ii) F (a, τ) = F (b, τ) for all τ ∈ [0, 1],

(iii) the complex number w does not belong to the image F ([a, b]× [0, 1]) of
the homotopy F .

Then n(γ0, w) = n(γ1, w) (where n(γ0, w) and n(γ1, w) are the winding num-
bers of the closed curves γ0 and γ1).

Proof It follows from the Path Lifting Property for covering maps (Theo-
rem 3.4) that there there exists a continuous path η: [0, 1]→ C with the prop-
erty that pw(η(τ)) = F (a, τ) for all τ ∈ [0, 1] (where pw(z) = w + exp(2πiz)
for all z ∈ C). It then follows from the Homotopy Lifting Property (Theo-
rem 3.5) that there exists a continuous map G: [a, b] × [0, 1] → C such that
G(a, τ) = η(τ) and pw(G(t, τ)) = F (t, τ) for all t ∈ [a, b] and τ ∈ [0, 1]. But
then

pw(G(a, τ)) = F (a, τ) = F (b, τ) = pw(G(b, τ))

for all τ ∈ [0, 1] and hence G(b, τ) − G(a, τ) is an integer for all τ ∈ [0, 1].
But the map t 7→ G(b, τ) − G(a, τ) is continuous; therefore this map is
a constant map. Thus there exists some integer m with the proprty that
G(b, τ)−G(a, τ) = m for all τ ∈ [0, 1]. But

G(b, 0)−G(a, 0) = n(γ0, w), G(b, 1)−G(a, 1) = n(γ1, w)

(since pw(G(t, 0)) = γ0(t) and pw(G(t, 1)) = γ1(t) for all t ∈ [a, b]). Therefore
n(γ0, w) = m = n(γ1, w), as required.

Corollary 4.2 Let γ0: [a, b] → C and γ1: [a, b] → C be continuous closed
curves in C, and let w be a complex number which does not lie on the images
of the closed curves γ0 and γ1. Suppose that, for all t ∈ [a, b], the line segment
in the complex plane C joining γ0(t) to γ1(t) does not pass through w. Then
n(γ0, w) = n(γ1, w).

Proof Let F : [a, b]× [0, 1]→ C be the homotopy defined by

F (t, τ) = (1− τ)γ0(t) + τγ1(t)

for all t ∈ [a, b] and τ ∈ [0, 1]. Note that w does not lie on the image of
the homotopy F . We can therefore apply Theorem 4.1 to conclude that
n(γ0, w) = n(γ1, w).
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Corollary 4.3 (Dog-walking Principle) Let γ0: [a, b]→ C and γ1: [a, b]→ C
be continuous closed curves in C, and let w be a complex number which
does not lie on the images of the closed curves γ0 and γ1. Suppose that
|γ1(t)− γ0(t)| < |γ0(t)− w| for all t ∈ [a, b]. Then n(γ0, w) = n(γ1, w).

Proof The inequality |γ1(t) − γ0(t)| < |γ0(t) − w| ensures that the line
segment in C joining γ0(t) and γ1(t) does not pass through w. The result
therefore follows directly from Corollary 4.2.

Corollary 4.4 Let γ: [a, b] → C be a continuous closed curve in C, and let
σ: [0, 1]→ C be a continuous path in C. Suppose that γ([a, b]) ∩ σ([0, 1]) = ∅
(so that σ is a continuous path in C \ γ([a, b])). Then

n(γ, σ(0)) = n(γ, σ(1)).

Thus the function w 7→ n(γ, w) is constant over each path-component of the
set C \ γ([a, b]).

Proof Let F : [a, b]× [0, 1]→ C be the continuous map defined by F (t, τ) =
γ(t) − σ(τ). Then F (t, τ) 6= 0 for all t ∈ [a, b] and τ ∈ [0, 1]. Given any
τ ∈ [0, 1], let γτ : [0, 1]→ C be the closed curve defined by

γτ (t) = F (t, τ) = γ(t)− σ(τ)

for all t ∈ [a, b]. Then it follows directly from the definition of winding
numbers that n(γ, σ(tau)) = n(γτ , 0) for all τ ∈ [0, 1]. But F is a continuous
homotopy between the closed curves γ0 and γ1. It follows from Theorem 4.1
that n(γ0, 0) = n(γ1, 0). Hence n(γ, σ(0)) = n(γ, σ(1)), as required.

Corollary 4.5 Let w ∈ C and θ0 ∈ R be given, and let Lw,θ denote the
half-line in C defined by

Lw,θ = {z ∈ C : z = w + ρeiθ for some ρ ∈ [0,+∞)}.

Let γ: [a, b]→ C be a continuous closed curve in C whose image is contained
in the complement C \ Lw,θ of the half-line Lw,θ. Then n(γ, w) = 0.

Proof Let η: [a, b]→ C be the constant curve in C defined by η(t) = w− eiθ
for all t ∈ [a, b]. Then n(γ, w) = n(η, w) = 0 by Corollary 4.2, since the line
segment joining γ(t) to w−eiθ does not pass through w for any t ∈ [a, b].
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Let D be the unit disk in C, defined by

D = {z ∈ C : |z| ≤ 1}.

Let ∂D denote the boundary of D, given by

∂D = {z ∈ C : |z| = 1}.

Thus ∂D is the unit circle in C. Note that the continuous closed curve
σ: [0, 1]→ C defined by σ(t) = e2πit traverses the unit circle ∂D once in the
anticlockwise direction.

Theorem 4.6 (Kronecker Principle) Let f :D → C be a continuous map
defined on the closed unit disk D in C. Let w be a complex number which
does not lie on the image f(∂D) of the boundary ∂D of D. Suppose that
n(f ◦ σ,w) 6= 0, where σ: [0, 1] → ∂D is defined by σ(t) = e2πit. Then there
exists some z ∈ D \ ∂D with the property that f(z) = w.

Proof Let w be a complex number which does not belong To the image f(D)
of the closed unit disk D under the map f . We show that n(f ◦σ, 0). Consider
the homotopy F : [0, 1]× [0, 1]→ C defined by F (t, τ) = f(τe2πit). Note that
F (t, 0) = f(0) and F (t, 1) = f(σ(t)) for all t ∈ [0, 1]. Also F (0, τ) = F (1, τ)
for all τ ∈ [0, 1] and the image of the homotopy F is the image f(D) of the
closed unit disk D under the map f . Thus if w 6∈ f(D) then n(f ◦ σ,w) =
n(η, w) = 0 by Theorem 4.1, where η: [0, 1]→ C is the constant curve defined
by η(t) = f(0) for all t ∈ [0, 1]. This proves the Kronecker Principle.

We can use the Kronecker Principle in order to prove the 2-dimensional
case of the Brouwer Fixed Point Theorem for maps from the closed unit disk
into itself.

Theorem 4.7 (The Brouwer Fixed Point Theorem in 2 dimensions) Let
F :D → D be a continuous map which maps the closed unit disk D into
itself. Then there exists some z0 ∈ D such that f(z0) = z0.

Proof We may assume without loss of generality that f(z) 6= z for all z ∈ ∂D
(since the conclusion of the theorem is clearly satisfied if f has a fixed point
on ∂D). Consider the map g:D → C defined by g(z) = z − f(z). We must
show that there exists some z0 ∈ Z such that g(z0) = 0. Let σ: [0, 1] → ∂D
be the continuous closed curve defined by σ(t) = e2πit for all t ∈ [0, 1]. Define

F (t, τ) = (1− τ)σ(t) + τg(σ(t)) = σ(t)− τf(σ(t))
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for all t, τ ∈ [0, 1]. Note that if 0 ≤ τ < 1 then |F (t, τ)| ≥ 1− τ |f(σ(t))| > 0
(since f(σ(t)) belongs to D). Also F (t, 1) 6= 0, since we are assuming that f
has no fixed point on ∂D. Thus F (t, τ) 6= 0 for all t ∈ [0, 1] and τ ∈ [0, 1].
Thus the line segment joining σ(t) to g(σ(t)) does not pass through 0, and
hence

n(g ◦ σ, 0) = g(σ, 0) = 1

by Corollary 4.2. It follows from the Kronecker Principle (Theorem 4.6) that
there exists some z0 ∈ D such that g(z0) = 0. But then f(z0) = z0. This
proves the Brouwer Fixed Point Theorem (in the 2-dimensional case).

Remark One can give a geometrical interpretation of the proof of the
Brouwer Fixed Point Theorem given above. let ζ be a point on the boundary
∂D of the closed unit disk in C, and let Lη be the line through 0 defined by

Lζ = {z ∈ C : Re zζ−1 = 0}.

Thus Lζ is the line through 0 which is parallel to the tangent line to the unit
circle ∂D at ζ. Now the unit disk D lies entirely to one side of the tangent
line to the unit circle at ζ. It follows from this that ζ − f(ζ) lies on the the
same side of the line Lζ as ζ (where ζ − f(ζ) represents the displacement
vector joining the point f(ζ) to the point ζ). Therefore the line segment
joining ζ − f(ζ) to ζ does not pass through 0. It follows from this that the
closed curves g ◦ σ and σ have the same winding number about 0, where
g(z) = z − f(z) and where σ: [0, 1] → C is the parameterization of the unit
circle given by σ(t) = e2πit. Thus winding number of the closed curve g ◦ σ
about 0 is equal to 1, and so the continuous function g:D → C has a zero
inside D (by the Kronecker Principle) and thus f has a fixed point inside D.

Remark There is an alternative proof of the 2-dimensional case of the
Brouwer Fixed Point Theorem which is well-known. Let f :D → D be a
continuous map which maps the closed unit disk D into itself. Suppose that
it were the case that the map f has no fixed point in D. Then one could
define a map r:D → ∂D as follows. Given z ∈ D let r(z) be the point on
the boundary ∂D of D obtained by continuing the line segment joining f(z)
to z beyond z until it intersects ∂D at the point r(z). It is not difficult to
verify that if f :D → D has no fixed point then r:D → ∂D is continuous.
Moreover r|∂D is the identity map of ∂D. Choose some basepoint ζ ∈ ∂D.
If i: ∂D ↪→ D is the inclusion map, and if

i#: π1(∂D, ζ)→ π1(D, ζ), r#: π1(D, ζ)→ π1(∂D, ζ)

are the homomorphisms of fundamental groups induced by the continuous
maps i: ∂D ↪→ D and r:D → ∂D respectively then r# ◦ i# is the identity
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homomorphism π1(∂D, ζ), and hence r# is surjective. But this is impossi-
ble, since π1(D, ζ) is trivial and π1(∂D, ζ) is the infinite cyclic group. This
contradiction shows that the continuous map f :D → D must have a fixed
point in D.

Remark The Brouwer Fixed Point Theorem in n-dimensions states that
every continuous map f :En → En from the closed unit ball En in Rn into
itself has a fixed point x0 ∈ En at which f(x0) = x0, where

En = {x ∈ Rn : |x| ≤ 1}.

This result can be proved using certain topological invariants known as ho-
mology groups.

Theorem 4.8 (The Fundamental Theorem of Algebra) Let P :C → C be a
non-constant polynomial with complex coefficients. Then there exists some
complex number z0 such that P (z0) = 0.

Proof Let P (z) = a0 + a1z + · · · + amz
m, where a1, a2, . . . , an are complex

numbers, and where am 6= 0. We write P (z) = Pm(z)+Q(z), where Pm(z) =
amz

m and
Q(z) = a0 + a1z + · · ·+ am−1z

m−1.

Let R be defined by R = |am|−1(|a0|+ |a1|+ · · ·+ |am|) If |z| = R then |z| ≥ 1
and hence ∣∣∣∣ Q(z)

Pm(z)

∣∣∣∣ =
1

|amz|

∣∣∣ a0
zm−1

+
a1
zm−2

+ · · ·+ am−1

∣∣∣ < 1.

Thus if |z| = R then |P (z)−Pm(z)| < |Pm(z)|. Let σR: [0, 1]→ C be defined
by σR(t) = Re2πit. It follows from the Dog-Walking Principle (Corollary 4.3)
that

n(P ◦ σR, 0) = n(Pm ◦ σR, 0) = m > 0

(where m is the degree of the non-constant polynomial P ). Thus if f :D → C
is defined by f(z) = P (Rz) for all z ∈ D (where D is the closed unit disk
in C) then there exists some ζ ∈ D with the property that f(ζ) = 0 by the
Kronecker Principle (Theorem 4.6). Thus P (z0) = 0, where z0 = Rζ. This
proves the Fundamental Theorem of Algebra.

Lemma 4.9 Let f :S1 → C be a continuous function defined on the unit
circle S1 in C. Suppose that f(−z) = −f(z) for all z ∈ C. Then the
winding number n(f ◦σ, 0) of f ◦σ about 0 is odd, where σ: [0, 1]→ S1 is the
parameterization of S1 given by σ(t) = e2πit.
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Proof Let γ: [0, 1]→ C be defined by γ = f ◦σ. Then γ(t+ 1
2
) = −γ(t) for all

t ∈ [0, 1
2
]. Using the Path Lifting Property for covering maps (Theorem 3.4)

(applied to the covering map from C to C \ {0} which sends z ∈ C to
e2πiz), we see that there exists a continuous path γ̃: [0, 1] → C such that
exp(2πiγ̃(t)) = γ(t) for all t ∈ [0, 1]. Moreover

n(f ◦ σ, 0) = n(γ, 0) = γ̃(1)− γ̃(0).

Now exp(2πiγ̃(t + 1
2
)) = − exp(2πiγ̃(t)) for all t ∈ [0, 1

2
], hence there exists

some integer m with the property that γ̃(t+ 1 over2) = γ̃(t) +m+ 1
2

for all
t ∈ [0, 1

2
]. But then

n(f ◦ σ, 0) = (γ̃(1)− γ̃(
1

2
))− (γ̃(

1

2
)− γ̃(1)) = 2(m+

1

2
) = 2m+ 1.

Thus n(f ◦ σ, 0) is an odd integer, as required.

We shall identify the space R2 with C, identifying (x, y) ∈ R2 with the
complex number x + iy ∈ C for all x, y ∈ R. This is permissible, since we
are interested in purely topological results concerning continuous functions
defined on appropriate subsets of these spaces. Thus we can represent the
closed unit disk D either as the closed unit disk

{z ∈ C : |z| ≤ 1}

in C or else as the closed unit disk

{(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Similarly we regard the circle S1 as the unit circle about the origin in either
C or R2. We represent the standard 2-sphere S2 as the unit sphere about
the origin in R3, defined by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

Lemma 4.10 Let f :S2 → R2 be a continuous map with the property that
f(−n) = −f(n) for all n ∈ S2. Then there exists some point n0 of S2 with
the property that f(n0) = 0.

Proof Let D be the closed unit disk in R2, and let ϕ:D → S2 be the map
from D to S2 defined by

ϕ(x, y) = (x, y,+
√
x2 + y2).
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(Thus the map ϕ maps D homeomorphically onto the upper hemisphere in
R3.) Let σ: [0, 1]→ S2 be the parameterization of the equator in S2 defined
by

σ(t) = (cos 2πt, sin 2πt, 0)

for all t ∈ [0, 1]. Let f :S2 → R2 be a continuous map with the property
that f(−n) = −f(n) for all n ∈ S2. It follows from Lemma 4.9 that the
winding number n(f ◦ σ, 0) of the closed curve f ◦ σ about the origin is an
odd integer, and in particular, this winding number is non-zero. Hence there
exists some point (u, v) of D such that f(σ(u, v)) = 0, by the Kronecker
Principle (Theorem 4.6) applied to the map f ◦ σ:D → R2. Thus f(n0) = 0,
where n0 = σ(u, v).

We conclude immediately from this result that there are no continuous
maps f :S2 → S1 from the 2-sphere S2 to the circle S1 with the property
that f(−n) = −f(n) for all n ∈ S2.

Theorem 4.11 (Borsuk-Ulam) Let f :S2 → R2 be a continuous map. Then
there exists some point n of S2 with the property that f(−n) = f(n).

Proof This result follows immediately on applying Lemma 4.11 to the con-
tinuous function g:S2 → R2 defined by g(n) = f(n)− f(−n).

Remark It is possible to generalize the Borsuk-Ulam Theorem to n dimen-
sions. Let Sn be the unit n-sphere centered on the origin in Rn. The Borsuk-
Ulam Theorem in n-dimensions states that if f :Sn → Rn is a continuous map
then there exists some point x of Sn with the property that f(x)− f(−x).
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5 Properties of Covering Maps over Locally

Path-Connected Topological Spaces

Let p: X̃ → X be a covering map over a topological space X. Let f :Z → X
be a continuous map from some topological space Z into X. If the topolog-
ical space Z is locally path-connected then one can formulate a criterion to
determine whether or not there exists a map f̃ :Z → X̃ for which p ◦ f̃ = f
(see Theorem 5.4 and Corollary 5.5). This criterion is stated in terms of
the homomorphisms of fundamental groups induced by the continuous maps
f :Z → X and p: X̃ → X. We shall use this criterion in order to derive a
necessary and sufficient condition for two covering maps over a connected
and locally path-connected topological space to be topologically equivalent
(see Theorem 5.6). We shall also study the deck transformations of a cover-
ing space over some connected and locally path-connected topological space.
First we must define the concept of a locally path-connected topological space.

Definition Let Z be a topological space. The space Z is said to be locally
path-connected if and only if, for every open subset U of Z and for each
point u of U , there exists a path-connected open set N such that u ∈ N
and N ⊂ U (i.e., the path-connected open subsets of Z form a base for the
topology of Z).

Lemma 5.1 Let X be a locally path-connected topological space and let
p: X̃ → X be a covering map over X. Then the covering space X̃ is also
locally path-connected.

Proof Let U be an open set in X̃, and let u be a point of U . The covering
map p: X̃ → X is a local homeomorphism, by Lemma 3.1. Therefore there
exists an open set V containing the point u such that V is mapped homeo-
morphically onto some open set in X. Thus p(U ∩ V ) is an open set in X
which contains the point p(u). But X is a locally path-connected topological
space. Therefore there exists a path-connected open set N in X for which
p(u) ∈ N and N ⊂ p(U ∩ V ). Let Ñ = V ∩ p−1(N). Then Ñ is an path-
connected open subset of U ∩ V (since the restriction p|V :V → p(V ) of the
map p to V is a homeomorphism from V to p(V )). Moreover u ∈ Ñ and
Ñ ⊂ U . This shows that the covering space X̃ is locally path connected.

Theorem 5.2 Let X be a connected, locally path-connected topological space.
Then X is path-connected.
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Proof Choose a point x0 of X. Let Z be the subset of X consisting of all
points x of X with the property that x can be joined to x0 by a continuous
path. We show that the subset Z is both open and closed in X.

Let x be a point of Z. There exists a path-connected open set N which
contains the point x, since the topological space X is locally path-connected.
Now every point of N can be joined to x by a continuous path, and the
point x can be joined to x0 by a continuous path. Thus every point of N can
be joined to x0 by a continuous path, so that N ⊂ Z. We conclude that Z
is an open subset of X.

Now let x be a point of the complement X \ Z of Z in X. Then there
exists a path-connected open neighbourhood N of x. Now if there were to
exist a point y of N which cound be joined to x0 by a continuous path then
we would also be able to join the point x to x0 by a continuous path (since
we could join x to y by a continuous path, and then continue this path to
x0). Thus the point x would belong to Z. But this contradicts the choice
of the point x. We conclude therefore that N ∩ Z = ∅. We have therefore
shown that every point of the complement X \ Z of Z in X has an open
neighbourhood which is disjoint from Z. Thus X \ Z is open in X, so that
Z is closed in X.

Note that x0 belongs to the set Z. Thus Z is a non-empty subset of X
which is both open and closed. But X is connected. Therefore Z = X. Thus
every point of X can be joined to the point x0 by a continuous path. This
shows that X is path-connected, as required.

Corollary 5.3 Let X be a locally path-connected topological space, and let
p: X̃ → X be a covering map over X. Suppose that the covering space X̃ is
connected. Then X̃ is path-connected.

Proof The covering space X̃ is locally path-connected, by Lemma 5.1. There-
fore X̃ is connected, by Theorem 5.2.

Theorem 5.4 Let p: X̃ → X be a covering map over a topological space X,
and let f :Z → X be a continuous map from some topological space Z
into X. Suppose that the topological space Z is both connected and locally
path-connected. Suppose also that

f# (π1(Z, z0)) ⊂ p#

(
π1(X̃, x̃0)

)
,

where z0 and x̃0 are points of Z and X̃ respectively which satisfy f(z0) =
p(x̃0). Then there exists a unique map f̃ :Z → X̃ for which f̃(z0) = x̃0 and
p ◦ f̃ = f .
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Proof The topological space Z is path-connected, by Theorem 5.2. Let z
be a point of Z, and let α and β be paths in Z from z0 to z. Then f ◦α and
f ◦β are paths in X from p(x̃0) to f(z) (where p(x̃0) = f(z0)). It follows from
the Path Lifting Property for covering maps (Theorem 3.4) that there exist
unique paths ρ: [0, 1]→ X̃ and σ: [0, 1]→ X̃ in X̃ such that ρ(0) = σ(0) = x̃0,
p ◦ ρ = f ◦ α and p ◦ σ = f ◦ β. Now [(f ◦ α).(f ◦ β)−1] = f#[α.β−1], and

f# (π1(Z, z0)) ⊂ p#

(
π1(X̃, x̃0

)
. It follows from Lemma 3.8 that ρ(1) = σ(1).

Thus there is a well-defined map f̃ :Z → X̃ characterized by the following
property:

if α: [0, 1]→ Z is a path in Z from z0 to z, and if ρ: [0, 1]→ X̃ is
the unique path in X̃ for which ρ(0) = x̃0 and p ◦ ρ = f ◦α, then
f̃(z) = ρ(1).

Clearly p ◦ f̃ = f . Thus it only remains to show that the map f̃ :Z → X̃ is
continuous.

Let z be a point of Z. Then there exists an open neighbourhood V of f(z)
in X which is evenly covered by the map p. The inverse image p−1(V ) of V is
a disjoint union of open sets in X̃, each of which is mapped homeomorphically
onto N by p. One of these open sets contains the point f̃(z). Let us denote
this open set by Ṽ . Thus f̃(z) ∈ Ṽ , and Ṽ is mapped homeomorphically
onto V by the map p. Let s:V → Ṽ denote the inverse of (p|Ṽ ): Ṽ → V .
The map s is continuous, and p(s(v)) = v for all v ∈ V .

Now f−1(V ) is an open set in Z containing the point z. But the topologi-
cal space Z is locally path-connected. Therefore there exists a path-connected
open set N in Z such that z ∈ N and N ⊂ f−1(V ). We claim that f̃(N) ⊂ Ṽ .
Let n be a point of N . Let γ: [0, 1] → N be a path in N from z to n. Let
η: [0, 1] → Ṽ be the path in Ṽ defined by η = s ◦ f ◦ γ. Then p ◦ η = f ◦ γ.
Moreover p(η(0)) = f(z) = p(f̃(z)), and hence η(0) = f̃(z). It follows easily
from the definition of the map f̃ that f̃(n) = η(1). Thus f̃(n) ∈ Ṽ for all
n ∈ N , so that f̃(N) ⊂ Ṽ . But p ◦ f̃ = f . Therefore f̃ |N = s ◦ (f |N).
Thus the restriction f̃ |N of the map f̃ to the open neighbourhood N of z
is a composition of the continuous maps f |N and s, and is thus itself con-
tinuous. This shows that the map f̃ is continuous at each point z of Z, as
required.

Let p: X̃ → X be a covering map over some topological space X, and let
x0 be a point of X. Suppose that the covering space X̃ is path-connected.
Lemma 3.11 states that if x̃1 and x̃2 are points of X̃ for which p(x̃1) = x0 =

p(x̃2) then the subgroups p#

(
π1(X̃, x̃1

)
and p#

(
π1(X̃, x̃2

)
of π1(X, x0) are

conjugate. Moreover if H is any subgroup of π1(X, x0) which is conjugate to
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p#

(
π1(X̃, x̃1

)
then there exists some point x̃ of X̃ for which p(x̃) = x0 and

p#

(
π1(X̃, x̃

)
= H. This result can be combined with Theorem 5.4 to yield

the following result.

Corollary 5.5 Let p: X̃ → X be a covering map over a topological space X,
and let f :Z → X be a continuous map from some topological space Z into X.
Suppose that the covering space X̃ is path-connected and that the topologi-
cal space Z is both connected and locally path-connected. Suppose also that
there exist points z0 and x̃0 of Z and X̃ respectively for which f(z0) = p(x̃0)
and f# (π1(Z, z0)) ⊂ H, where H is some subgroup of π1(X, p(x̃0)) which is

conjugate to p#

(
π1(X̃, x̃0)

)
. Then there exists a map f̃ :Z → X̃ for which

p ◦ f̃ = f .

Proof Let H be a subgroup conjugate to p#

(
π1(X̃, x̃0)

)
for which

f# (π1(Z, z0)) ⊂ H.

It follows from Lemma 3.11 that there exists a point x̃ of X̃ for which p(x̃) =

p(x̃0) and p#

(
π1(X̃, x̃)

)
= H. But then

f# (π1(Z, z0)) ⊂ p#

(
π1(X̃, x̃)

)
.

It follows from Theorem 5.4 that there exists a continuous map f̃ :Z → X̃
for which p ◦ f̃ = f , as required.

Definition Let p1: X̃1 → X and p2: X̃2 → X be covering maps over some
topological space X. We say that the covering maps p1: X̃1 → X and
p2: X̃2 → X are topologically isomorphic if and only if there exists a homeo-
morphism h: X̃1 → X̃2 from the covering space X̃1 to the covering space X̃2

with the property that p1 = p2 ◦ h.

We can apply Theorem 5.4 in deriving a criterion for determining whether
or not two covering maps over some connected locally path-connected topo-
logical space are isomorphic.

Theorem 5.6 Let X be a topological space which is both connected and lo-
cally path-connected, and let p1: X̃1 → X and p2: X̃2 → X be covering maps
over X. Let x0 be a point of X, and let x̃1 and x̃2 be elements of X̃1 and
X̃2 respectively for which p1(x̃1) = x0 = p2(x̃2). Suppose that the covering
spaces X̃1 and X̃2 are both connected. Then the covering maps p1: X̃1 → X
and p2: X̃2 → X are topologically isomorphic if and only if the subgroups

p1#

(
π1(X̃1, x̃1)

)
and p2#

(
π1(X̃2, x̃2)

)
of π1(X, x0) are conjugate.
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Proof It follows from Lemma 5.3 that the covering spaces X̃1 and X̃2 are
both locally path-connected, since X is a locally path-connected topological
space. But X̃1 and X̃2 are both connected. Therefore X̃1 and X̃2 are path-
connected (see Corollary 5.3).

Suppose that the covering maps p1: X̃1 → X and p2: X̃2 → X are topolog-
ically isomorphic. Let h: X̃1 → X̃2 be a homeomorphism for which p2◦h = p1.
Then

p1#

(
π1(X̃1, x̃1)

)
= p2#

(
π1(X̃2, h(x̃1))

)
.

It follows immediately from Lemma 3.11 that the subgroups p1#

(
π1(X̃1, x̃1)

)
and p2#

(
π1(X̃2, x̃2)

)
of π1(X, x0) are conjugate.

Conversely, suppose that the subgroups

p1#

(
π1(X̃1, x̃1)

)
and p2#

(
π1(X̃2, x̃2)

)
of π1(X, x0) are conjugate. It then follows from Lemma 3.11 that there exists
a point w of X̃2 for which p2(w) = x0 and

p1#

(
π1(X̃1, x̃1)

)
= p2#

(
π1(X̃2, w)

)
.

But the covering spaces X̃1 and X̃2 are connected and locally path-connected.
It follows from Theorem 5.4 that there exist unique continuous maps h1: X̃1 →
X̃2 and h2: X̃2 → X̃1 for which p2 ◦ h1 = p1, p1 ◦ h2 = p2, h1(x̃1) = w and
h2(w) = x̃1. But then p1 ◦ h2 ◦ h1 = p1 and (h2 ◦ h1)(x̃1) = x̃1. It follows
from this that the composition map h2 ◦ h1 is the identity map of X̃1 (since
it follows from Theorem 5.4 that the identity map of X̃1 is the unique map
from X̃1 to itself with the required properties). Similarly the composition
map h1 ◦ h2 is the identity map of X̃2. Thus h1: X̃1 → X̃2 is a homeomor-
phism whose inverse is h2. Moreover p2 ◦ h1 = p2. Thus the covering maps
p1: X̃1 → X and p2: X̃2 → X are topologically isomorphic, as required.

5.1 Deck Transformations

Definition Let p: X̃ → X be a covering map over a topological space X. A
deck transformation of the covering space X̃ is a homeomorphism h: X̃ → X̃
of X̃ with the property that p ◦ h = p.

The deck transformations of some covering space form a group of home-
omorphisms of that covering space (where the group operation is the usual
operation of composition of homeomorphisms).

We now define the notion of a normal subgroup of a group.
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Definition Let G be a group, and let H be a subgroups of G. The sub-
group H is said to be a normal subgroup of G if and only if ghg−1 belongs
to H for all h ∈ H and g ∈ G.

We recall that if H is a subgroup of a group G then gHg−1 is a subgroup
of G for all g ∈ G, where

gHg−1 ≡ {h′ ∈ G : h′ = ghg−1 for some h ∈ H}.

If H is a normal subgroup of G then gHg−1 ⊂ H for all g ∈ G. We now
show that if H is a normal subgroup of G then gHg−1 = H for all g ∈ G.

Let H be a normal subgroup of G. Choose an element g of G. If h is an
element of H then h = g(g−1hg)g−1. But g−1hg is an element of H (since H
is a normal subgroup of G). Therefore h ∈ gHg−1. This shows that, for any
element g of G, H ⊂ gHg−1. But we have already noted that gHg−1 ⊂ H.
Therefore gHg−1 = H, as required. We see therefore that if H is a normal
subgroup of G then the only subgroup of G which is conjugate to H is H
itself.

Theorem 5.7 Let X be a topological space which is connected and locally
path-connected, let p: X̃ → X be a covering map over X, where the cov-
ering space X̃ is connected. Let x0 be a point of X and let x̃1 and x̃2 be
points of the covering space X̃ for which p(x̃1) = x0 = p(x̃2). Suppose that

p#

(
π1(X̃, x̃1)

)
is a normal subgroup of π1(X, x0). Then there exists a unique

deck transformation h: X̃ → X̃ such that h(x̃1) = x̃2.

Proof We see from Lemma 3.11 that the subgroups p#

(
π1(X̃, x̃1)

)
and

p#

(
π1(X̃, x̃2)

)
of π1(X, x0) are conjugate. But p#

(
π1(X̃, x̃1)

)
is a normal

subgroup of G, and therefore

p#

(
π1(X̃, x̃1)

)
= p#

(
π1(X̃, x̃2)

)
(see the remarks above). Also the covering space X̃ is locally simply con-
nected (see Lemma 5.1) and is also connected. It follows from Theorem 5.4
that there exists a unique continuous map h: X̃ → X̃ such that h(x̃1) = x̃2.
Similarly there exists a unique continuous map h′: X̃ → X̃ such that h′(x̃2) =
x̃1, and moreover the composition maps h′ ◦ h and h ◦ h′ are both equal to
the identity map of X̃ (since the identity map of X̃ is the unique map from
X̃ to itself which respects the covering map p: X̃ → X and which fixes some
given point of X̃). Thus h′ is the inverse of h, so that the map h: X̃ → X̃ is
the required homeomorphism of X̃ which sends x̃1 to x̃2.
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Let p: X̃ → X be a covering map over some topological space X which is
both connected and locally path-connected. Let us denote the group of deck
transformations of the covering space X̃ by Deck(X̃|X). (Thus each element
of the group Deck(X̃|X) is a homeomorphism h of X̃ for which p◦h = p.) Let
x0 be a point of X, and let x̃0 be a point of the covering space X̃ for which

p(x̃0) = x̃. Suppose that X̃ is connected and that p#

(
π1(X̃, x̃0)

)
is a normal

subgroup of π1(X, x0). We now construct a function λ from the fundamental
group π1(X, x0) of X to the group Deck(X̃|X) of deck transformations of the
covering space X̃.

Let γ: [0, 1]→ X be a (continuous) loop in X based at the point x0. Then
there exists a unique (continuous) path γ̃: [0, 1]→ X̃ in X̃ for which γ̃(0) = x̃0
and p◦ γ̃ = γ, by the Path Lifting Property for covering maps (Theorem 3.4).
Moreover it follows from Corollary 3.6 that the endpoint γ̃(1) of the path γ̃
is determined by the element [γ] of π1(X, x0) represented by the loop γ (i.e.,
if we are given two loops based at the point x0 which represent the same
element of π1(X, x0) then the lifts of these two loops to the covering space X̃
have the same endpoint). Moreover p(γ̃(1)) = γ(1) = x0. It therefore follows
from Theorem 5.7 that there exists a unique deck transformation h[γ] ∈
Deck(X̃|X) for which h[γ](x̃0) = γ̃(1). (Here we have used the fact that X̃ is

connected and p#

(
π1(X̃, x̃0)

)
is a normal subgroup of π1(X, x0).) Let

λ: π1(X, x0)→ Deck(X̃|X)

denote the function which sends an element [γ] of π1(X, x0) to the deck
transformation h[γ]: X̃ → X̃.

Lemma 5.8 Let p: X̃ → X be a covering map over some topological space X
which is both connected and locally path-connected. Suppose that X̃ is con-

nected and that p#

(
π1(X̃, x̃0)

)
is a normal subgroup of π1(X, x0) (where

x0 ∈ X and x̃0 ∈ X̃ are chosen such that p(x̃0) = x0). Let

λ: π1(X, x0)→ Deck(X̃|X)

be the function from the fundamental group π1(X, x0) of X to the group
Deck(X̃|X) of deck transformations of the covering space X̃ constructed in
the manner described above. Then λ is a homomorphism. Moreover this
homomorphism has the following properties:

(i) the image of the homomorphism λ is the whole of the group Deck(X̃|X)
(i.e., the homomorphism λ is surjective),
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(ii) the kernel of the homomorphism λ is p#

(
π1(X̃, x̃0)

)
.

Proof Let α and β be loops in X based at the point x0, and let [α] and [β]
be the elements of π1(X, x0) represented by the loops α and β. Then [α][β]
is represented by the product loop α.β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Let α̃ and β̃ be the unique paths in X̃ for which α̃(0) = x̃0 = β̃(0), p ◦ α̃ = α
and p ◦ β̃ = β. Then

α̃(1) = h[α](β̃(0))

and p ◦ hα ◦ β̃ = β. Let σ: [0, 1] → X̃ be the product path obtained by
concatenating the paths α̃ and h[α] ◦ β̃. Thus

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

h[α](β̃(2t− 1)) if 1
2
≤ t ≤ 1.

Then σ(0) = x̃0 and p ◦ σ = α.β. We conclude that

λ([α][β])(x̃0) = h[α.β](x̃0) = σ(1) = h[α](β̃(1)) = h[α](h[β](x̃0))

But the deck transformation λ([α][β]) is uniquely determined by the value
of λ([α][β])(x̃0). We conclude therefore that λ([α][β]) = h[α] ◦ h[β] = λ([α]) ◦
λ([β]) This shows that the function λ: π1(X, x0) → Deck(X̃|X) is a homo-
morphism.

Let h: X̃ → X̃ be a deck transformation of X̃. The covering space X̃ is
path-connected. Thus there exists a path η: [0, 1]→ X̃ in X̃ from x̃ to h(x̃0).
But then p ◦ η: [0, 1] → X is a loop in X based at x0 and thus represents
some element [p ◦ η] of π1(X, x0). It then follows from the definition of the
homomorphism λ that h = λ([p ◦ η]). This shows that the homomorphism λ
is surjective. This proves (i).

Let γ be a loop in X based at x0 which represents an element of the kernel
of λ: π1(X, x0)→ Deck(X̃|X). Then h[γ] is the identity map of X̃, and thus

h[γ](x̃0) = x̃0. Thus if γ̃ is the unique path in X̃ for which γ̃(0) = x̃0 and

p ◦ γ̃ = γ then γ̃(1) = x̃0, so that γ̃ is a loop in X̃ based at the point x̃0, and

[γ] = p#[γ̃]. Thus kerλ ⊂ p#

(
π1(X̃, x̃0)

)
. Conversely if σ is a loop in X̃

based at the point x̃0 then

λ(p#[σ])(x̃0) = h[p◦σ](x̃0) = σ(1) = x̃0.
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It follows that λ(p#[σ]) is the identity map of X̃, since the deck transforma-
tion λ(p#[σ]) is uniquely determined by λ(p#[σ])(x̃0). Thus

p#

(
π1(X̃, x̃0)

)
⊂ kerλ.

We conclude therefore that kerλ = p#

(
π1(X̃, x̃0)

)
. This proves (ii).
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6 Topological Classification of Covering Maps

over Locally Simply-Connected Topologi-

cal Spaces

Let X be a topological space. We shall show that there is a bijective corre-
spondence between covering maps over X and conjugacy classes of subgroups
of the fundamental group of X, provided that the space X satisfies certain
topological conditions. (More precisely, we require the topological space X to
be connected and locally simply-connected. (The concept of a locally simply-
connected topological space is defined below.) Suppose that X satisfies these
conditions. Let x0 be some chosen basepoint of X, and let H be a subgroup
of the fundamental group π1(X, x0) of X at x0. We shall construct a path-
connected topological space X̃H and a covering map pH : X̃H → X over X
with the property that the fundamental group of the covering space X̃H is
isomorphic to the chosen subgroup H of π1(X, x0).

In particular, we show that if X is a connected and locally simply-
connected topological space then there exists a covering map p: X̃ → X
for which that the covering space X̃ is simply-connected. Such a covering
map is said to be a universal covering map for the topological space X, and
the covering space X̃ is said to be a universal covering space for X.

We recall that a topological space X locally path-connected if and only if,
for each open subset U of X and for each point u of U , there exists a path-
connected open set N such that u ∈ N and N ⊂ U (i.e., the path-connected
open subsets of X form a base for the topology of X). We have shown that
if a topological space X is both connected and locally path-connected then
it is path-connected (see Theorem 5.2).

We next define the concept of a locally simply-connected topological space.

Definition Let X be a topological space. The space X is said to be locally
simply-connected if and only if, for every open subset U of X and for each
point u of U , there exists a simply-connected open set N such that u ∈ N
and N ⊂ U (i.e., the simply-connected open subsets of X form a base for the
topology of X).

A topological space X is said to be locally Euclidean of dimension n if and
only if every point of X has an open neighbourhood which is homeomorphic
to Rn. Every topological space which is locally Euclidean of dimension n for
some positive integer n is clearly locally simply-connected.

Let X be a topological space, and let x0 be point of X. Let H be a
subgroup of the fundamental group π1(X, x0) of X based at the point x0. Let
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α and β be paths in X starting at the point x0. Suppose that α(1) = β(1).
Then the path α.β−1 is a loop in X based at the point x0; thus it represents
an element [α.β−1] of π1(X, x0). (Here α.β−1 denotes the loop based at
x0 obtained by starting at the point x0, going out along the path α to the
point α(1) and then returning to x0 along the path β in the reverse direction;
it is defined by

(α.β−1)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2− 2t) if 1
2
≤ t ≤ 1.)

We define a relation ∼H on the set of all paths in X starting at the point x0,
where α ∼H β if and only if α(1) = β(1) and [α.β−1] belongs to the sub-
group H of π1(X, x0). We claim that the relation ∼H is an equivalence
relation.

If α is a path starting at the point x0 then the loop α.α−1 represents the
identity element of π1(X, x0); therefore α ∼H α. Thus the relation ∼H is
reflexive.

If α and β are paths in X starting at the point x0 and if α ∼H β then
α(1) = β(1) and [α.β−1] belongs to H. But [β.α−1] = [α.β−1]−1, and thus
[β.α−1] also belongs to H (since H is a subgroup of π1(X, x0). Hence β ∼H α.
Thus the relation ∼H is symmetric.

Let α, β and γ be paths in X starting at x0 such that α ∼H β and
β ∼H γ. Then α(1) = β(1) = γ(1), [α.β−1] ∈ H and [β.γ−1] ∈ H. But

α.γ−1 ' α.β−1.β.γ−1 rel {0, 1};

thus [α.γ−1] = [α.β−1][β.γ−1], and hence [α.γ−1] belongs to H. This shows
that if α ∼H β and β ∼H γ then α ∼H γ. Thus the relation ∼H is transitive.

We have shown that the relation∼H is reflexive, symmetric and transitive.
We therefore conclude that it is an equivalence relation on the set of all paths
in X starting at the point x0. We denote by 〈γ〉H the equivalence class of a
path γ in X starting at the point x0.

Let X̃H be the set of all equivalence classes of paths in X starting at the
point x0 (with respect to the equivalence relation ∼H). Thus each element
of X̃H is of the form 〈γ〉H for some path γ in X starting at the point x0.
If α and β are paths in X starting at x0 then 〈α〉H = 〈β〉H if and only if
α(1) = β(1) and [α.β−1] belongs to the subgroup H of π1(X, x0). Thus there
is a well-defined map pH : X̃H → X defined such that pH(〈γ〉H) = γ(1) for all
paths γ: [0, 1]→ X in X satisfying γ(0) = x0.

We must define a topology on the set X̃H . Let U be an open set in X,
and let γ: [0, 1]→ X be a path in X for which γ(0) = x0 and γ(1) ∈ U . We
denote by 〈γ, U〉H the set of all elements of X̃H that are of the form 〈γ.α〉H ,
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where α: [0, 1] → U is a path in the open set U for which α(0) = γ(1).
(Here γ.α denotes the concatenation of the paths γ and α obtained by first
following the path γ from x0 to γ(1) and then following the path α from γ(1)
to α(1). It is defined by

(γ.α)(t) =

{
γ(2t) if 0 ≤ t ≤ 1

2
;

α(2t− 1) if 1
2
≤ t ≤ 1.)

Observe that pH(〈γ, U〉H) ⊂ U . We define a topology on the set X̃H such
that a subset V of X̃H is open if and only if, for all elements 〈γ〉H of V , there
exists an open set N in X for which γ(1) ∈ N and 〈γ,N〉H ⊂ V . In order
to verify that this topology on X̃H is well-defined, we must show that the
empty set ∅ and the whole set X̃H are both open sets in X̃H (with respect to
this topology) and that unions of open sets and finite intersections of open
sets are themselves open sets.

The empty set ∅ is an open set in X̃H (since the criterion defining open
sets becomes vacuous in the case of the empty set). The set X̃H itself is an
open set, since X is open in X and 〈γ,X〉H ⊂ X̃H for each element 〈γ〉H
of X̃H Also it follows directly from the definition of open sets in X̃H that any
union of open sets in X̃H is itself an open set.

Let V1, V2, . . . , Vr be a finite collection of open sets in X̃H , and let 〈γ〉H be
an element of the intersection V1∩V2∩· · ·∩Vr of these open sets. Then 〈γ〉H
is represented by some path γ: [0, 1] → X starting at the point x0. There
exist open sets N1, N2, . . . , Nr in X such that γ(1) ∈ Nj and 〈γ,Nj〉H ⊂ Vj
for j = 1, 2, . . . , r. Define

N = N1 ∩N2 ∩ · · · ∩Nr.

Then γ(1) ∈ N and 〈γ,N〉H ⊂ V1∩V2∩· · ·Vr. This shows that V1∩V2∩· · ·Vr
is an open set in X̃H . We conclude therefore that the topology on X̃H

described above is indeed well-defined.
Next we show that the map pH : X̃H → X defined above is continuous.

Let U be an open set in X. We must show that the inverse image p−1H (U) of U
is an open set in X̃H . Let 〈γ〉H be an element of p−1H (U) which is represented
by some path γ in X starting at the point x0. Then pH(〈γ, U〉H) ⊂ U , and
hence 〈γ, U〉H ⊂ p−1H (U). This shows that p−1H (U) is an open set in X̃H . Thus
the map pH : X̃H → X is continuous.

Lemma 6.1 Let X be a topological space, let x0 be a chosen basepoint of X,
let H be a subgroup of π1(X, x0), and let X̃H be the topological space con-
structed in the manner described above. Then X̃H is path-connected.
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Proof Let x̃0 be the element of X̃H which represents the constant map at
the point x0 of X. If x̃ is any other element of X̃H then x̃ = 〈γ〉H for
some path γ: [0, 1] → X for which γ(0) = x0 and γ(1) = pH(x̃). For each
τ ∈ [0, 1] let γτ : [0, 1] → X be the path in X defined by γτ (t) = γ(τt). Let
γ̃: [0, 1] → X̃H be the map from [0, 1] to X̃H given by γ̃(τ) = 〈γτ 〉H for all
τ ∈ [0, 1]. It is not difficult to verify that the map γ̃ is continuous. Thus γ̃
is a path in X̃H from x̃0 to x̃. This shows that the topological space X̃H is
path-connected.

Lemma 6.2 Let X be a topological space, let x0 be a chosen basepoint of X,
let H be a subgroup of π1(X, x0), and let X̃H and pH : X̃H → X be the topo-
logical space and the continuous map constructed in the manner described
above. Let α and β be paths in X starting at x0, and let U be an open set
in X containing the endpoints α(1) and β(1) of the paths α and β. Suppose
that 〈β〉H belongs to 〈α, U〉H . Then 〈α, U〉H = 〈β, U〉H . Thus 〈α, U〉H is an
open set in X̃H .

Proof Let 〈β〉H be an element of 〈α,N〉H . Then there exists a path η: [0, 1]→
U in U such that η(0) = α(1), η(1) = β(1) and β ∼H α.η. Let 〈β.σ〉H be
an element of 〈β, U〉H , where σ: [0, 1] → U is some path in U for which
σ(0) = β(1). It follows from Lemma 2.1 that (α.η).σ ' α.(η.σ) rel {0, 1}.
Thus β.σ ∼H α.(η.σ). Moreover η.σ is a path in U from α(1) to σ(1). Thus
〈β.σ〉H belongs to 〈α, U〉H . This shows that 〈β, U〉H ⊂ 〈α, U〉H .

Now 〈α〉H ∈ 〈β, U〉H , since

α ∼H (α.η).η−1 ∼H β.η−1

(where η−1: [0, 1] → U is the path in U defined by η−1(t) = η(1 − t) for all
t ∈ [0, 1]). It then follows from the result already proved (with the roles of α
and β interchanged) that 〈α, U〉H ⊂ 〈β, U〉H . Therefore 〈α, U〉H = 〈β, U〉H ,
as required. It follows immediately from this result and the definition of the
topology of X̃H that 〈α, U〉 is an open set in X̃H .

We now prove that the map pH : X̃H → X is a covering map, provided
that the topological space X is connected and locally simply-connected.

Theorem 6.3 Let X be a topological space, let x0 be a chosen basepoint
of X, let H be a subgroup of π1(X, x0), and let X̃H and pH : X̃H → X be the
topological space and the continuous map constructed in the manner described
above. Suppose that the topological space X is connected and locally simply-
connected. Then the map pH : X̃H → X is a covering map.
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Proof First we must show that the map pH : X̃H → X is a surjection. The
topological space X is connected and path-connected, and thus is path-
connected, by Theorem 5.2. Thus if x is a point of X then there exists
some path γ in X from x0 to x. But then

x = γ(1) = pH(〈γ〉H).

This shows that the map pH : X̃H → X is a surjection.
Let x be a point of X. Then there exists a simply-connected open set N

which contains the point x (since X is a locally simply-connected topological
space). We shall show that the open set N is evenly covered by the map pH .

Let ỹ be an element of p−1H (N). There exists a path η: [0, 1]→ N inN with
η(0) = x and η(1) = p(ỹ), since N is path-connected. Also ỹ = 〈γ〉H for some
path γ in X starting at the point x0. Let α: [0, 1]→ X be the path from x0
to x given by α = γ.η−1. Then pH(〈α〉H) = x and and 〈γ〉H ∈ 〈α,N〉H . Thus
every element of p−1H (N) belongs to 〈α,N〉 for some element 〈α〉H of p−1H ({x}).

Let y be a point of N and let α be a path in X from x0 to x. There
exists a path η in N from x to y (since the open set N is path-connected).
Thus y = pH(ỹ), where ỹ is the element of 〈α,N〉H given by ỹ = 〈α.η〉. Thus
pH(〈α,N〉H) = N for all 〈α〉H ∈ p−1H ({x}).

Now let ỹ1 and ỹ2 be elements of 〈α,N〉, where α is some path in X
from x0 to x. Then there exist paths η1 and η2 in N starting at the point x
such that ỹ1 = 〈α.η1〉H and ỹ2 = 〈α.η2〉H . Suppose that pH(x̃1) = pH(x̃2).
Then η1(1) = η2(1), so that η1.η

−1
2 is a loop in N based at the point x.

But this loop represents the identity element of π1(X, x) (since the open
set N is simply-connected). It follows from this that the loop α.η1.η

−1
2 .α−1

based at the point x0 represents the identity element of π1(X, x0), and hence
〈α.η1〉H = 〈α.η2〉H We have therefore shown that if ỹ1 and ỹ2 are elements
of 〈α,N〉 for which pH(ỹ1) = pH(ỹ2), then ỹ1 = ỹ2. Since we have already
shown that pH(〈α,N〉H) = N we conclude that the continuous map pH maps
〈α,N〉H bijectively onto N for all 〈α〉H ∈ p−1H ({x}). Thus in order to prove
that pH maps 〈α,N〉H homeomorphically onto N it only remains to show
that pH(V ) is open in X for every open subset V of 〈α,N〉H .

Let V be an open subset of 〈α,N〉, where α is some path in X from x0
to x. Let y be an element of pH(V ). There exists a unique element ỹ of V
such that pH(ỹ) = y. Moreover ỹ = 〈γ〉H for some path γ in X from x0 to y.
It follows from the definition of the topology of X̃H that there exists some
open set W1 in X with the property that 〈γ,W1〉H ⊂ V . Moreover there
exists a path-connected open set W in X such that y ∈ W and W ⊂ W1,
since X is a locally path-connected topological space. But then 〈γ,W 〉H ⊂ V
and pH(〈γ,W 〉H) = W (since W is path-connected). Hence W ⊂ pH(V ). We
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conclude from this that pH(V ) is an open set in X. This completes the proof
of the fact that, for each path α in X from x0 to x, the open subset 〈α,N〉
of X̃ is mapped homeomorphically onto N by the map pH .

Let α and β be paths in X from x0 to x. Suppose that 〈α,N〉H ∩〈β,N〉H
is non-empty. Let 〈γ〉H be an element of 〈α,N〉H ∩ 〈β,N〉H Then

〈α,N〉H = 〈γ,N〉H = 〈β,N〉H ,

by Lemma 6.2. In particular 〈β〉H belongs to 〈α,N〉H . But pH(〈β〉H) = x =
pH(〈β〉H), and we have already shown that 〈α,N〉H is mapped bijectively
onto N by the map pH . Therefore 〈β〉H = 〈α〉H . We conclude therefore
that if 〈α〉H and 〈β〉H are distinct elements of p−1H ({x}) then the open sets
〈α,N〉H and 〈β,N〉H are disjoint.

It follows from all the results proved above that, for each point x of X
there exists an open neighbourhood N of x such that p−1(N) is a disjoint
union of open sets of the form 〈α,N〉 for some path α in X from x0 to x.
Each of these open sets is mapped homeomorphically onto N by the map pH .
We have also shown that the map pH : X̃H → X is surjective. We conclude
therefore that the map pH : X̃H → X is a covering map, as required.

Remark Theorem 6.3 can easily be generalized to cover the case when the
topological space X is connected, locally path-connected and semilocally
simply-connected. (A topological space X is said to be semilocally simply-
connected if and only if, for each point x of X, there exists an open neigh-
bourhood N of x with the property that the homomorphism i#: π1(N, x)→
π1(X, x) induced by the inclusion map i:N ↪→ X is the trivial homomorphism
which sends each element of π1(N, x) to the identity element of π1(X, x). Ev-
ery locally simply-connected topological space is both locally path-connected
and semilocally simply-connected.) Indeed ifX is both locally path-connected
and semilocally simply-connected then one can easily show that, for each
point x of X, there exists an open neighbourhood N of X with the following
properties:

(i) every point of N can be joined to x by a continuous path in N ,

(ii) if γ1 and γ2 are paths in N from x to some point x′ of N then the
loop γ1.γ

−1
2 is contractible in X (i.e., this loop represents the identity

element of π1(X, x)).

One can then prove that the open neighbourhood N of X is evenly covered
by the map pH : X̃H → X, exactly as in the proof of Theorem 6.3.
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Definition Let X and X̃ be topological spaces, and let p: X̃ → X be a
covering map. Suppose that X̃ is simply-connected. Then we say that the
space X̃ is a universal covering space of X and that the covering map p: X̃ →
X is a universal covering map over the space X.

Corollary 6.4 Let X be a topological space which is connected and locally
simply-connected. Then there exists a covering map p: X̃ → X over X for
which the covering space X̃ is simply-connected (i.e., there exists a universal
covering map over X).

Proof This follows directly from Theorem 6.3 in the case when the sub-
group H of the fundamental group of X is the trivial subgroup consisting of
the identity element of the group.

Let X be a topological space which is connected and locally simply-
connected. Theorem 6.3 and Theorem 5.6 provide us with a topological
classification of covering maps over the topological space X. Indeed let us
choose some basepoint x0 for the space X. Then to each subgroup H of the
fundametal group π1(X, x0) of X at the point x0 there corresponds a covering
map pH : X̃ → X for which

pH#

(
π1(X̃H , x̃0)

)
= H

(where x̃0 is some appropriate basepoint for the covering space X̃H). Every
covering map over X can be constructed in this fashion, and moreover the
covering maps pH : X̃H → X and pK : X̃K → X corresponding to subgroups H
and K of π1(X, x0) are topologically isomorphic if and only if the subgroups
H and K are conjugate in π1(X, x0). Thus there is a one-to-one correspon-
dence between covering maps over X and conjugacy classes of subgroups
of π1(X, x0).
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A Review of Point Set Topology

Point set topology is the study of topological spaces. We present here a
reasonably comprehensive survey of the basic definitions and important the-
orems of point set topology.

Definition A topological space X consists of a set X together with a collec-
tion of subsets, referred to as open sets, such that the following conditions
are satisfied:

(i) the empty set ∅ and the whole set X are open sets,

(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself an open set.

The collection consisting of all open sets in a topological space X is referred
to as a topology on the set X, and the elements of X are usually called points.

Remark If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X, τ) the topological space whose underlying set
is X and whose topology is τ . However if no confusion will arise then it is
customary to denote this topological space simply by X.

Definition Let X be a topological space. A subset F of X is said to be a
closed set if and only if its complement X \ F is an open set.

Lemma A.1 Let X be a topological space. Then the collection of closed sets
of X has the following properties:

(i) the empty set ∅ and the whole set X are closed sets,

(ii) the intersection of any collection of closed sets is itself a closed set,

(iii) the union of any finite collection of closed sets is itself a closed set.

Proof These three properties follow from the corresponding properties of
open sets stated in the definition of a topological space, in view of the fact
that the intersection of the complements of some collection of subsets of X
is equal the complement of the union of that collection of subsets.

Definition Let X be a topological space and let A be a subset of X. The
closure A of A in X is defined to be the intersection of all of the closed
subsets of X that contain A. The interior A0 of A in X is defined to be the
union of all of the open subsets of X that are contained in A.
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Lemma A.2 Let X be a topological space and let A be a subset of X. Then
the closure A of A is uniquely chararcterized by the following two proper-
ties:

(i) A is a closed set containing A,

(ii) if F is any other closed set containing A then A ⊂ F .

Similarly the interior A0 of A is uniquely characterized by the following two
properties:

(i) A0 is an open set contained in A,

(ii) if U is any other open set contained in A then U ⊂ A0.

Proof Note that the closure A of A contains A since it is the intersection of
some non-empty collection of subsets of X each of which contains the set A.
(One of these subsets is X itself.) Moreover the closure of A is a closed set,
since any intersection of closed sets is closed. It follows directly from the
definition of the closure A of A that if F is a closed subset of X containing A
then A ⊂ F .

The interior A0 is an open set contained in A since it is the union of a
collection of open sets contained in A, and any union of open sets is itself an
open set. It follows directly from the definition of the interior A0 of A that
if U is an open subset of X which is contained in A then U ⊂ A0.

Lemma A.3 Let X be a topological space, let A be a subset of X, and let U
be an open subset of X. Suppose that A ∩ U is non-empty (where A is the
closure of A). Then A ∩ U is non-empty.

Proof Suppose that A∩U = ∅. We shall show that this implies that A∩U =
∅. If A∩U = ∅ then A ⊂ X \U (where X \U is the complement of U in X).
But X \ U is closed (since U is open). Therefore A ⊂ X \ U , and hence
A∩U = ∅, as required. We deduce from this that if A∩U is non-empty then
A ∩ U must also be non-empty.

Definition Let X be a topological space, and let x be a point of X. Let
N be a subset of X which contains the point x. Then N is said to be a
neighbourhood of the point x if and only if there exists an open set U with
the property that x ∈ U and U ⊂ N .

It follows immediately from this definition that if V is an open set in some
topological space X and if x is some point of V then V is a neighbourhood
of x.
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Lemma A.4 Let X be a topological space, and let V be a subset of X. Then
V is open if and only if V is a neighbourhood of every point that belongs to V .

Proof We have already observed that if V is an open set in X then V is a
neighbourhood of every point that belongs to V . Conversely suppose that V
is a neighbourhood of every point that belongs to V . We must show that V
is an open set.

For each point v of V there exists an open set Wv such that v ∈ Wv and
Wv ⊂ V (since V is a neighbourhood of V . Then

⋃
v∈V Wv ⊂ V (where⋃

v∈V Wv is the union of the open sets Wv for all points v of V . But clearly
V ⊂

⋃
v∈V Wv Therefore V =

⋃
v∈V Wv. Thus V is equal to a union of open

sets, and hence V is itself open (since any union of open sets is itself an open
set).

A.1 Subspace Topologies

Let X be a topological space and let A be a subset of X. Let τ be the
topology of X (i.e., τ is the collection consisting of all open subsets of X).
We define a topology τA on the set A, where τA consists of all subsets of A
which are of the form V ∩A for some open subset V of X. The topology τA
on A is referred to as the subspace topology on A. In this way every subset of
a topological space can be regarded as a topological space in its own right.

A subset B of A is closed relative to the subspace topology on A if and
only if A \ B is open relative to the subspace topology on A. Thus B is
closed relative to the subspace topology if and only if B = A \ (A ∩ V ) for
some open subset V of X. But A \ (A∩ V ) = A∩ (X \ V ). It follows that a
subset B of A is closed relative to the subspace topology on A if and only if
B = A ∩ F for some closed subset F of A.

Now suppose that A is an open set in X. Let U be a subset of A which is
open with respect to the subspace topology on A. Then there exists an open
subset V of X such that U = V ∩A. But the intersection of two open subsets
of X is itself an open subset of X. Thus U is an open subset of X. Thus if
A is itself an open subset of X then a subset U of A is open with respect to
the subspace topology on A if and only if U is an open subset of X.

Similarly suppose that A is a closed set in X. Let B be a subset of A
which is closed with respect to the subspace topology on A. Then there exists
a closed subset F of X such that B = F ∩ A. But the intersection of two
closed subsets of X is itself a closed subset of X. Thus B is a closed subset
of X. Thus if A is itself a closed subset of X then a subset B of A is closed
with respect to the subspace topology on A if and only if B is a closed subset
of X.
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A.2 Continuous Maps

Definition Let X and Y be topological spaces. A map f :X → Y is said to
be continuous if and only if f−1(V ) is an open set in X for every open set V
in Y (where

f−1(V ) ≡ {x ∈ X : f(x) ∈ V }).

Lemma A.5 Let X, Y and Z be topological spaces, and let f :X → Y and
g:Y → Z be continuous maps. Then the composition g ◦ f :X → Z of the
maps f and g is continuous.

Proof Let U be an open set in Z. Then g−1(U) is open in Y (since g is
continuous), and hence f−1(g−1(U)) is open in X (since f is continuous). But
f−1(g−1(U) = (g◦f)−1(U). Thus the composition map g◦f is continuous.

Lemma A.6 Let X and Y be topological spaces, and let f :X → Y be a map
from X to Y . The map f is continuous if and only if f−1(A) is closed in X
for every closed subset A of Y .

Proof Let B be a subset of Y . A point x of X belongs to the complement X\
f−1(B) in X of f−1(B) if and only if f(x) belongs to the complement Y \B
in Y of the subset B. Thus X \ f−1(B) = f−1(Y \B).

Suppose that the map f :X → Y is continuous. If A is a closed subset
of Y then Y \ A is an open set in Y , and hence f−1(Y \ A) is an open
subset of X. But the complement in X of this open set is f−1(A). Therefore
f−1(A) is closed. We have therefore shown that if the map f is continuous
then f−1(A) is closed in X for every closed subset A of Y .

Conversely suppose that f−1(A) is closed in X for every closed subset A
of Y . Let U be an open set in Y . Then Y \ U is a closed set, and hence
f−1(Y \U) is a closed set in X. But f−1(Y \U) = X \f−1(U). Thus f−1(U)
is the complement in X of a closed subset of X and is thus open. We have
therefore shown that f−1(U) is an open subset of X for every open subset U
of Y . Thus the map f :X → Y is continuous.

Lemma A.7 Let X be a topological space and let Z1, Z2, . . . , Zr be a finite
collection of closed subsets of X such that

Z1 ∪ Zr ∪ · · · ∪ Zr = X.

Let Y be a topological space, and let f :X → Y be a map from X to Y .
Suppose that the restriction f |Zi:Zi → Y of f to Zi is continuous for i =
1, 2, . . . , r. Then f :X → Y is continuous.
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Proof It suffices to show that f−1(A) is closed in X for every closed subset A
of Y , by Lemma A.6. Let A be a closed subset of Y . Then f−1(A) ∩ Zi is
closed in Zi relative to the subspace topology on Zi for i = 1, 2, . . . , r, since
f |Zi is continuous for all i. However a subset of Zi is closed relative to the
subspace topology on Zi if and only if it is a closed subset of X, since Zi
is itself a closed subset of X. Thus f−1 ∩ Zi is a closed subset of X for
i = 1, 2, . . . , r. But

f−1(A) =
r⋃
i=1

f−1(A) ∩ Zi.

Thus f−1(A) is a finite union of closed sets, so that f−1(A) is itself closed.
We conclude from Lemma A.6 that f :X → Y is continuous.

Situations frequently arise where we have a collection of functions fi:Zi →
Y defined over closed subsets Z1, Z2, . . . , Zr of some topological space X,
where X = Z1 ∪Z2 ∪ · · · ∪Zr. It follows from Lemma A.7 that if fi:Zi → Y
is continuous for i = 1, 2, . . . , r, and if fi(z) = fj(z) for all z ∈ Zi ∩ Zj,
then we can piece together the functions fi in order to obtain a continuous
function f :X → Y (where f is defined such that f |Zi = fi for i = 1, 2, . . . , r).

Definition Let X and Y be topological spaces. A map f :X → Y is said to
be a homeomorphism if and only if the following conditions are satisfied:

(i) the map f :X → Y is both injective and surjective (so that the map
f :X → Y has a well-defined inverse f−1:Y → X),

(ii) the map f :X → Y and its inverse f−1:Y → X are both continuous.

If there exists a homeomorphism f :X → Y from the topological space X to
the topological space Y then the topological spaces X and Y are said to be
homeomorphic.

If f :X → Y is a homeomorphism between topological spaces X and Y
then f induces a one-to-one correspondence between the open sets of X and
the open sets of Y . Thus the topological spaces X and Y can be regarded
as being identical as topological spaces.

A.3 Metric Spaces

Definition A metric space (X, d) consists of a set X together with a distance
function d:X × X → [0,+∞) on X, where this distance function satisfies
the following axioms:
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(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,

(iv) d(x, y) = 0 if and only if x = y.

The quantity d(x, y) should be thought of as measuring the distance be-
tween the points x and y. The inequality d(x, z) ≤ d(x, y)+d(y, z) is referred
to as the Triangle Inequality.

Let (X, d) be a metric space. A subset V of X is said to be an open set
if and only if the following condition is satisfied:

given any point v of V there exists some δ > 0 such that B(v, δ) ⊂
V , where

B(v, δ) ≡ {x ∈ X : d(x, v) < δ}.

The set B(v, δ) is referred to as the open ball of radius δ about v.
If (X, d) is a metric space, then the collection of open sets of X constitutes

a topology on the set X.

A.4 Hausdorff Spaces

Definition A topological space X is said to be a Hausdorff space if and only
if it satisfies the following Hausdorff Axiom:

if x and y are distinct points of X then there exist open sets U
and V such that x ∈ U , y ∈ V and U ∩ V = ∅.

Every metric space is a Hausdorff space. Moreover every subset of a
Hausdorff space is itself a Hausdorff space (with respect to the subspace
topology).

A.5 Discrete and Connected Topological Spaces

Definition A topological space X is said to be discrete if and only if every
subset of X is an open set.

Definition A topological space X is said to be connected if and only if the
empty set ∅ and the whole space X are the only subsets of X that are both
open and closed.
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Lemma A.8 A topological space X is connected if and only if the following
condition is satisfied:

if U and V are non-empty open sets in X such that X = U ∪ V
then U ∩ V is non-empty.

Proof First suppose that X is connected. Let U and V be non-empty open
sets in X such that U∪V = X. Suppose that it were the case that U∩V = ∅.
Then V = X \ U , so that U would be both open and closed. But this is
impossible, since U and X \U are non-empty, and the only subsets of X that
are both open and closed are ∅ and X. Thus U ∩ V must be non-empty.

Conversely suppose that U ∩V is non-empty whenever U and V are non-
empty open sets in X for which X = U ∪ V . Let A be a non-empty subset
of X which is both open and closed. Then X \A is open. Moreover X is the
union of the open sets A and X \ A, and A ∩ (X \ A) = ∅. It follows from
this that X \A = ∅, and hence A = X. Thus the only subsets of X that are
both open and closed are ∅ and X. Thus X is connected.

Let X be a topological space, and let A be a subset of X. It follows
from the definition of connectedness that A is connected (with respect to the
subspace topology) if and only if the following condition is satisfied:

if U and V are open sets in X such that A ∩ U and A ∩ V are
non-empty and A ⊂ U ∪ V then A ∩ U ∩ V is also non-empty.

Lemma A.9 Let X be a topological space and let A be a connected subset
of A. Then the closure A of A is connected.

Proof Let U and V be open sets in X such that A ∩ U and A ∩ V are non-
empty and A ⊂ U∪V . Then A∩U and A∩V are non-empty, by Lemma A.8.
Hence A ∩ U ∩ V is non-empty, since A is connected and A ⊂ U ∪ V . Thus
A ∩ U ∩ V is non-empty. This shows that A is connected.

Lemma A.10 Let X and Y be topological spaces, and let f :X → Y be a
continuous map. Let A be a connected subset of X. Then f(A) is a connected
subset of Y .

Proof Let U and V be open sets in Y such that f(A) ∩ U and f(A) ∩ V
are non-empty and f(A) ⊂ U ∪ V . Then A ∩ f−1(U) and A ∩ f−1(V ) are
non-empty and A ⊂ f−1(U)∪f−1(V ). But f−1(U) and f−1(V ) are open sets
in X (since f is continuous), hence A∩ f−1(U)∩ f−1(V ) is non-empty, since
A is connected. Therefore f(A)∩U ∩V is non-empty. This shows that f(A)
is connected.
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Lemma A.11 Let X be a connected topological space and let Y be a discrete
topological space. Then every continuous map f :X → Y is a constant map
(i.e., there exists some element y0 of Y such that f(x) = y0 for all x ∈ X).

Proof Let y be a point of Y . Then the set {y} is both open and closed
(since every subset of a discrete topological space is both open and closed).
But then f−1{y} is both open and closed (since f :X → Y is continuous).
But the topological space X is connected. Thus either f−1({y}) = ∅ or else
f−1({y}) = X. It follows from this that the map f :X → Y must be a
constant map, as required.

In particular, we can consider continuous maps from a topological spaceX
into the the set Z of integers. This gives us the following criterion for con-
nectedness.

Lemma A.12 Let X be a topological space. Then X is connected if and
only if every continuous map f :X → Z from X to Z is constant.

Proof The set Z of integers is a discrete topological space. Thus if X is
connected then any continuous map f :X → Z is constant, by Lemma A.11.
Conversely suppose that every continuous function from X to Z is constant.
Let A be a non-empty subset of X which is both open and closed. Let
f :X → Z be defined by

f(x) =

{
1 if x ∈ A;
0 if x ∈ X \ A.

Then f is continuous, since the sets A and X \ A are open. Therefore the
function f is constant. But A is non-empty, hence X \A = ∅, so that A = X.
Thus ∅ and X are the only subsets of X that are both open and closed.

Lemma A.13 Let X be a topological space, and let V be a collection of
connected subsets of X. Suppose that V ∩W is non-empty for all V,W ∈ V
Then the union of all the sets belonging to V is connected.

Proof Let U be the union of all the sets belonging to V , and let f :U → Z be
a continuous map from U to Z. Given any set V belonging to the collection V
there exists an integer mV such that f(v) = mV for all v ∈ V , since V is
connected. Moreover if V and W are subsets of X belonging to V then
mV = mW , since V ∩W is non-empty. Thus there exists some integer m
such that mV = m for all V ∈ V . Hence f(u) = m for all u ∈ U , where U is
the union of all the sets belonging to U . Therefore every continuous function
from U to Z is constant, and hence U is connected, by Lemma A.12.
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Definition Let X be a topological space. A subset S of X is said to be
a connected component of X if and only if the following two conditions are
satisfied:

(i) S is connected,

(ii) if A is a connected subset of X which contains S then A = S.

Lemma A.14 Let X be a topological space, and let S be a connected com-
ponent of X. Then S is closed.

Proof If S is connected then so is the closure S of S. It follows that S = S.
Thus S is closed.

Lemma A.15 Let X be a topological space and let x be a point of X. Then
there exists a unique connected component of the set X which contains the
point x.

Proof Let S be the union of the collection consisting of all connected subsets
of X that contain the point x. Then S is itself connected, by Lemma A.13.
Moreover if A is a connected set which contains the set S then the point x
belongs to A, hence A ⊂ S. Thus S is a connected component of the set S.
Suppose that S̃ were another connected component of X which contains the
point x. Then S ∩ S̃ would be non-empty, hence S ∪ S̃ would be connected,
by Lemma A.13. But then S ∪ S̃ ⊂ S and S ∪ S̃ ⊂ S̃ and hence S̃ = S. This
shows that the connected component of X containing the point x is unique,
as required.

We see from Lemma A.15 that if X is a topological space then X is
the disjoint union of the connected components of X (i.e., X is the union
of the connected components of X, and the intersection of any two distinct
components of X is the empty set ∅).

A.6 Compact Topological Spaces

Definition Let X be a topological space. A collection U of open subsets
of X is said to be an open cover of X if and only if every point of X belongs to
at least one of these open sets. If U and V are open covers of the topological
space X then V is said to be a subcover of U if and only if every subset of X
which belongs to V also belongs to U .

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.
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Let X be a topological space and let A be a subset of X. Then A is
compact (with respect to the subspace topology) if and only if the following
condition is satisfied:

if U is a collection of open sets in X such that each point of A
belongs to at least one of the open sets in this collection, then
there exists a finite collection V1, V2, . . . , Vr of open sets belonging
to the collection U such that

A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Lemma A.16 Let X be a compact topological space, and let A be a closed
subset of X. Then A is compact.

Proof Let U be a collection of open sets in X such that each point of A
belongs to one of the open sets belonging to U . If we adjoin the open set X\A
to the collection U then we obtain an open cover of the space X. This
open cover possesses a finite subcover, since X is compact. In particular,
there exists a finite collection V1, V2, . . . , Vr of open sets belonging to the
collection U such that A ⊂ V1 ∪ V2 ∪ Vr, as required.

Lemma A.17 Let X and Y are topological spaces, and f :X → Y be a
continuous map. Let A be a compact subset of X. Then f(A) is a compact
subset of Y .

Proof Let V be a collection of open sets in Y which covers f(A), and let
W be the collection of open sets in X consisting of all open sets of the
form f−1(V ) for some V ∈ V . If x is a point of A then f(x) belongs to some
open set V of the collection V , since V covers f(A). But then x belongs
to f−1(V ). Thus the collection W of open sets covers A. It follows from
the compactness of A that there exist open sets V1, V2, . . . , Vr belonging to V
such that

A ⊂ f−1(V1) ∪ f−1(V2) ∪ · · · ∪ f−1(Vr).
But then

f(A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.
Thus every open cover of f(A) has a finite subcover, so that f(A) is com-
pact.

Lemma A.18 Let X be a Hausdorff topological space, and let K be a com-
pact subset of X. Then K is closed. Moreover if x is a point of the comple-
ment X \ K of K then there exist open subsets Vx and Wx of X such that
x ∈ Vx, K ⊂ Wx and Vx ∩Wx = ∅.
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Proof Let x be a point of X \K. We shall show that there exist open sets
Vx and Wx such that x ∈ Vx, K ⊂ Wx and Vx∩Wx = ∅. Now for each point y
of K there exist open sets Vx,y and Wx,y such that x ∈ Vx,y, y ∈ Wx,y and
Vx,y ∩Wx,y = ∅ (since X is a Hausdorff space). But it then follows from the
compactness of K that there exists a finite set {y1, y2, . . . , yr} of points of K
such that

K ⊂ Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr .

Define

Vx = Vx,y1 ∩ Vx,y2 ∩ · · · ∩ Vx,yr , Wx = Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr .

Then Vx and Wx are open sets, x belongs to Vx, K ⊂ Wx and Vx ∩Wx = ∅,
as required. Note in particular that Vx ⊂ X \K.

We have shown that, for each point x of X \ K, there exists an open
set Vx such that x ∈ Vx and Vx ⊂ X \K (i.e., X \K is a neighbourhood of
the point x). It follows immediately from Lemma A.4 that X \ K is open.
Hence K is closed.

Theorem A.19 Let X and Y be topological spaces, and let f :X → Y be
a continuous map which is both injective and surjective. If X is a compact
space and if Y is Hausdorff space then f :X → Y is a homeomorphism.

Proof Let K be a closed subset of the compact space X. Then K is compact,
and hence f(K) is compact. But then f(K) is closed, since Y is Hausdorff.
Thus the map f sends closed sets in X to closed sets in Y . Let g:Y → X
be the inverse of f :X → Y . Then g−1(K) is a closed subset of Y for every
closed subset K of X (since g−1(K) = f(K)). It follows from Lemma A.6
that the inverse g of f is continuous. Thus f :X → Y is a homeomorphism,
as required.

Lemma A.20 Let X be a compact topological space and let f :X → R be a
continuous real-valued function on X. Then f is bounded above and below
on X. Moreover f attains its upper and lower bounds on X (i.e., there exists
points u and v of X such that f(u) ≤ f(x) ≤ f(v) for all x ∈ X).

Proof It follows from Lemma A.17 that the image f(X) of the map f is a
compact subset of R. But then f(X) is closed and bounded. (Indeed f(X)
can be covered by finitely many open sets of the form {t ∈ R−m < t < m},
so that f(X) must be bounded; f(X) is closed by Lemma A.18, since R is
Hausdorff.) It follows directly from this that the function f is bounded on X
and attains its upper and lower bounds on X.
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Definition Let (X, d) be a metric space, and let A be a subset of X. The
diameter of the set A is defined to be the supremum

sup
u,v∈A

d(u, v)

of the distance from the point u to the point v as u and v range over all the
points of the set A. (If the distance d(u, v) from u to v is not bounded above
as u and v range over the set A then the diameter of A is defined to be +∞.)

We now state and prove the Lebesgue Lemma.

Lemma A.21 (Lebesgue Lemma) Let (X, d) be a compact metric space. Let
U be an open cover of X. Then there exists a positive real number δ such that
every subset of X whose diameter is less than δ is contained wholly within
one of the open sets belonging to the open cover U .

Proof Every point ofX is contained in at least one of the open sets belonging
to the open cover U . It follows from this that, for each point x of X, there
exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about
the point x is contained wholly within one of the open sets belonging to the
open cover U . But then the collection consisting of the open balls B(x, δx)
of radius δx about the points x of X forms an open cover of the compact
space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such
that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi for i = 1, 2, . . . , r. Let δ > 0 be given by

δ = minimum(δ1, δ2, . . . , δr).

Suppose that A is a subset of X whose diameter is less than δ. Let u be a
point of A. Then u belongs to B(xi, δi) for some integer i between 1 and r.
But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets belonging to
the open cover U . Thus A is contained wholly within one of the open sets
belonging to U , as required.

Let U be an open cover of a compact metric space X. A Lebesgue number
for the open cover U is a positive real number δ such that every subset of X
whose diameter is less than δ is contained wholly within one of the open sets
belonging to the open cover U . The Lebesgue Lemma thus states that there
exists a Lebesgue number for every open cover of a compact metric space.
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A.7 Product Spaces

Let X1, X2, . . . , Xr be a finite collection of topological spaces, and let X1 ×
X2 × · · · ×Xr be the Cartesian product of the sets X1, X2, . . . , Xr. There is
a topology on X1 ×X2 × · · · ×Xr characterized by the following property:

a subset U of X1 × X2 × · · · × Xr is open if and only if, for
each point (u1, u2, . . . , ur) of U , there exist open sets Vi in Xi

containing ui for i = 1, 2, . . . , r such that V1× V2× · · · × Vr ⊂ U .

(Here V1× V2× · · · × Vr denotes the subset of X1×X2× · · · ×Xr defined by

V1 × V2 × · · · × Vr = {(x1, x2, . . . , xr) ∈ X1 ×X2 × · · · ×Xr :

xi ∈ Vi for i = 1, 2, . . . , r}.)

One can easily verify that the characterization of open sets does indeed yield
a well-defined topology on the product space X1 × X2 × · · · × Xr. This
topology is referred to as the product topology on X1 ×X2 × · · · ×Xr.

Let pi:X1 ×X2 × · · · ×Xr → Xi denote the projection map which sends
a point (x1, x2, . . . , xr) of X1 ×X2 × · · · ×Xr to xi. It follows directly from
the definition of the product topology that p−1i (U) is an open set in Xi

for each open set U in Xi. Thus the projection map pi is continuous for
i = 1, 2, . . . , r. It follows from this that if Z is a topological space and
if f :Z → X1 × X2 × · · · × Xr is a continuous map then the composition
map pi ◦ f :Z → Xi is continuous for i = 1, 2, . . . , r (since a composition of
continuous maps is continuous by Lemma A.5).

Lemma A.22 The Cartesian product X1 ×X2 × · · · ×Xr of the topological
spaces X1, X2, . . . , Xr satisfies the following universal property:

given any topological space Z, and given any continuous maps
fi:Z → Xi from Z to Xi, for i = 1, 2, . . . , r, there exists a unique
continuous map f :Z → X1 ×X2 × · · · ×Xr such that pi ◦ f = fi
for i = 1, 2, . . . , r.

Proof Let X = X1×X2×· · ·×Xr. Suppose that we are given a topological
space Z continuous maps fi:Z → Xi from Z to Xi for i = 1, 2, . . . , r. Let
f :Z → X be the map defined by f(z) = (f1(z), f2(z), . . . , fr(z)). Then
f is the unique map from Z to X with the property that pi ◦ f = fi for
i = 1, 2, . . . , r. We must prove that the map f is continuous.

Let U be an open set in X. We must show that f−1(U) is open in Z. Let
z be a point of f−1(U), and let ui = fi(z) for i = 1, 2, . . . , r. It follows from
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the definition of the product topology on X that there exists an open set Vi
in Xi containing ui for i = 1, 2, . . . , r such that

V1 × V2 × · · · × Vr ⊂ U.

Let Nz be the subset of Z defined by

Nz = f−11 (V1) ∩ f−12 (V2) ∩ · · · ∩ f−1r (Vr).

Now f−1i (Vi) is an open subset of Z for i = 1, 2, . . . , r, since Vi is open in
Xi and fi:Z → Xi is continuous. Thus Nz is a finite intersection of open
sets containing the point z, and thus Nz is itself an open set containing z.
Moreover

f(Nz) ⊂ V1 × V2 × · · · × Vr ⊂ U,

so that Nz ⊂ f−1(U). We have thus shown that, for each point z of f−1(U),
there exists an open set Nz in Z for which z ∈ Nz and Nz ⊂ f−1(U) (i.e.,
f−1(U) is a neighbourhood of every point belonging to f−1(U)). There-
fore f−1(U) is an open set in Z (see Lemma A.4). This proves that the
map f :Z → X is continuous. Thus the stated universal property is satisfied
by the Cartesian product X of the topological spaces X1, X2, . . . , Xr and the
projection maps pi:X → Xi for i = 1, 2, . . . , r.

Lemma A.23 Let X1, X2, . . . , Xr be Hausdorff spaces. Then the space X1×
X2 × . . . , Xr is Hausdorff.

Proof Let X = X1×X2× . . . , Xr, and let (x1, x2, . . . , xr) and (y1, y2, . . . , yr)
be distinct points of X. Then xi 6= yi for some integer i between 1 and r.
But then there exists open sets U and V in Xi such that xi ∈ U , yi ∈ V
and U ∩ V = ∅ (since Xi is a Hausdorff space). Let pi:X → Xi denote
the projection map. Then p−1i (U) and p−1i (V ) are open sets in X, since
pi is continuous. Moreover (x1, x2, . . . , xr) belongs to p−1i (U), (y1, y2, . . . , yr)
belongs to p−1i (V ) and p−1i (U)∩p−1i (V ) = ∅. This shows that X is Hausdorff,
as required.

We now show that the Cartesian product of two connected topological
spaces is connected. To prove this we use the fact that a topological space X
is connected if and only if every continuous map from X to the set Z of
integers is constant (see Lemma A.12).

Lemma A.24 Let X and Y be connected topological spaces. Then X×Y is
connected.
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Proof It suffices to show that every continuous function f :X × Y → Z is
constant. Let f :X → Z be a continuous function from X to Z. Choose
x0 ∈ X and y0 ∈ Y . Then f(x, y0) = f(x0, y0) for all x ∈ X, since X
is connected and the function x 7→ f(x, y0) is continuous on X. But then
f(x, y) = f(x, y0) for all y ∈ Y , since Y is connected. Hence f(x, y) =
f(x0, y0) for all x ∈ X and y ∈ Y . Thus f :X×Y → Z is constant. It follows
from Lemma A.12 that X × Y is connected.

We deduce immediately that a finite Cartesian product of connected topo-
logical spaces is connected.

We shall show that a finite Cartesian product of compact spaces is com-
pact. To prove this, we apply the following result, known as the Tube Lemma.

Lemma A.25 Let X and Y be topological spaces, let K be a compact subset
of Y , and U be an open set in X × Y . Let V be the subset of X defined by

V = {x ∈ X : {x} ×K ⊂ U}.

Then V is an open set in X.

Proof Let x be a point of V . For each point y of K there exist open
subsets Dy and Ey of X and Y respectively such that (x, y) ∈ Dy × Ey
and Dy × Ey ⊂ U . But K is compact. Therefore there exists a finite set
{y1, y2, . . . , yk} of points of K such that

K = Ey1 ∪ Ey2 ∪ · · · ∪ Eyk .

Set
Nx = Dy1 ∩Dy2 ∩ · · · ∩Dyk .

Then Nx is an open set in X. Moreover

Nx ×K ⊂
k⋃
i=1

(Dyi × Eyi) ⊂ U,

so that Nx ⊂ V . It follows that V is the union of the open sets Nx for all
x ∈ V . Thus V is itself an open set in X, as required.

Theorem A.26 Let X and Y be compact topological spaces. Then X × Y
is compact.
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Proof Let U be an open cover of X×Y . We must show that this open cover
possesses a finite subcover.

Let x be a point of X. The set {x} × Y is a compact subset of X × Y ,
hence there exists a finite collection U1, U2, . . . , Ur of open sets belonging to
the open cover U such that

{x} × Y ⊂ U1 ∪ U2 ∪ · · · ∪ Ur.

Let
Vx = {x′ ∈ X : {x′} × Y ⊂ U1 ∪ U2 ∪ · · · ∪ Ur}.

It follows from Lemma A.25 that Vx is an open set in X. We have therefore
shown that, for each point x in X, there exists an open set Vx in X containing
the point x such that Vx × Y is covered by finitely many of the open sets
belonging to the open cover U .

Now (Vx : x ∈ X) is an open cover of the compact space X. This cover
possesses a finite subcover. Thus there exists a finite set {x1, x2, . . . , xr} of
points of X such that

X = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr .

It follows from this that X × Y can be covered by finitely many open sets
belonging to the open cover U (since X × Y is a finite union of sets of the
form Vx × Y , and each of these sets can be covered by finitely many of the
open sets belonging to U). Therefore X × Y is compact.

We deduce immediately that a finite product of compact topological
spaces is compact.

A.8 Subsets of Euclidean Spaces

We regard the space Rn of n-tuples of real numbers as a metric space, where
the Euclidean distance |u− v| between points u and v of Rn is defined such
that

|u− v|2 =
n∑
j=1

(uj − vj)2,

where u = (u1, u2, . . . , un), and v = (v1, v2, . . . , vn). One can verify that all
the axioms of a metric space are satisfied. In particular

|u−w| ≤ |u− v|+ |v −w|
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for all points u, v and w of Rn. (This inequality is known as the Triangle
Inequality.) A subset U of Rn is open if and only if, given any point u of U ,
there exists some δ > 0 such that

{x ∈ Rn : |x− u| < δ} ⊂ U.

The topological space Rn is referred to as n-dimensional Euclidean space.
This space is Hausdorff. Therefore any subset of Rn is a Hausdorff space
(with respect to the subspace topology).

An important theorem of real analysis states that a subset K of Rn is
compact if and only if K is both closed and bounded. We first prove this
result in the particular case when K is a closed bounded interval in R. In
this case the result is known as the Heine-Borel Theorem. The proof of this
theorem uses the least upper bound principle which states that any set S
of real numbers which is bounded above possesses a least upper bound (or
supremum) denoted by supS.

Theorem A.27 (Heine Borel) Let a and b be real numbers satisfying a < b.
Then the closed bounded interval [a, b] is a compact subset of R.

Proof Let V be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to one of these open sets. We must show
that [a, b] is covered by finitely many of these open sets (i.e., we must prove
that there exists a finite collection of open sets V1, V2, . . . , Vr belonging to V
such that

[a, b] ⊂ V1 ∪ V2 ∪ · · · ∪ Vr).

Let S be the subset of [a, b] consisting of all t ∈ [a, b] with the property that
the closed interval [a, t] is covered by finitely many of the open sets belonging
to V . Let s be the least upper bound supS of the set S. Now a belongs to one
of the open sets belonging to V , and this open set will contain the interval
[a, t] provided that t− a is sufficiently small. Therefore s > a.

There exists some open set W belonging to the collection U such that s
belongs to W . Then there exists some δ > 0 such that if t ∈ [a, b] satisfies
s − δ < t < s + δ then t belongs to W . Choose some element t0 of S such
that s− δ < t0 < s. Then there exist open sets V1, V2, . . . , Vj belonging to V
such that

[a, t0] ⊂ V1 ∪ V2 ∪ · · · ∪ Vj,

since t0 belongs to S. But then if t ∈ [a, b] satisfies t < s+ δ then

[a, t] ⊂ V1 ∪ V2 ∪ · · · ∪ Vj ∪W,
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so that t belongs to S. We conclude from this that the least upper bound s
of the set S belongs to S and that s = b. Thus the closed interval [a, b] can
be covered by finitely many of the open sets belonging to V , as required.

Using the Heine-Borel Theorem, we now prove that a subset K of Rn is
compact if and only if it is both closed and bounded.

Theorem A.28 Let K be a subset of Rn. Then K is compact if and only if
K is both closed and bounded.

Proof Suppose that K is compact. We show that K is closed and bounded.
Note that K is closed, since Rn is Hausdorff, and all compact subsets of
Hausdorff spaces are closed, by Lemma A.18. Consider the open cover of Rn

provided by the sets Uj for all positive integers j, where

Uj = {x ∈ Rn : |x| < j}.

The set K must be covered by finitely many of these open sets, since K is
compact. Thus K is bounded.

Conversely suppose that K is both closed and bounded. Then there exists
some real number L such that K is contained within the closed cube C given
by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.

Now the closed interval [−L,L] is compact by the Heine-Borel Theorem
(Theorem A.27), and C is the Cartesian product of n-copies of the com-
pact set [−L,L]. But repeated application of Theorem A.26 shows that the
Cartesian product of a finite collection of compact topological spaces is com-
pact. Thus C is a compact subset of Rn. But K is a closed subset of C. It
follows from Lemma A.16 that K is compact, as required.

The following result follows directly from the Heine-Borel Theorem (The-
orem A.27) and the Lebesgue Lemma (Lemma A.21).

Theorem A.29 Let X be a topological space, and let U be an open cover of
X. Let a and b be real numbers satisfying a < b, and let γ: [a, b] → X be a
continuous map from the closed bounded interval [a, b] into X. Then there
exist t0, t1, . . . , tr ∈ [a, b], where

a = t0 < t1 < t2 < · · · < tr = b,

such that γ([ti−1, ti]) is contained wholly within one of the open sets belonging
to the open cover U .
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Proof Let V be the open cover of [a, b] consisting of all the subsets of [a, b]
that are of the form γ−1(U) for some open set U belonging to U . The
closed bounded interval [a, b] is a compact metric space. It follows from
the Lebesgue Lemma that one can find t0, t1, . . . , tr so that each interval
[ti−1, ti] is contained within one of the sets belonging to the open cover V
of [a, b]. (If we choose t0, t1, . . . , tr such that t1 − ti−1 < δ for all i, where
δ is a Lebesgue number for the open cover V then the required property is
satisfied by t0, t1, . . . , tr.) But then γ([ti−1, ti]) is contained wholly within one
of the open sets belonging to the open cover U of X, for i = 1, 2, . . . , r, as
required.
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