Course 311: Michaelmas Term 2005 Part I: Topics in Number Theory

D. R. Wilkins

Copyright © David R. Wilkins 1997–2005

Contents

1	Topi	ics in Number Theory	2
	1.1	Subgroups of the Integers	2
	1.2	Greatest Common Divisors	2
	1.3	The Euclidean Algorithm	3
	1.4	Prime Numbers	4
	1.5	The Fundamental Theorem of Arithmetic	5
	1.6	The Infinitude of Primes	6
	1.7	Congruences	6
	1.8	The Chinese Remainder Theorem	8
	1.9	The Euler Totient Function	9
	1.10	The Theorems of Fermat, Wilson and Euler	11
	1.11	Solutions of Polynomial Congruences	13
	1.12	Primitive Roots	14
	1.13	Quadratic Residues	16
	1.14	Quadratic Reciprocity	21
	1.15	The Jacobi Symbol	22

1 Topics in Number Theory

1.1 Subgroups of the Integers

A subset S of the set \mathbb{Z} of integers is a subgroup of \mathbb{Z} if $0 \in S, -x \in S$ and $x + y \in S$ for all $x \in S$ and $y \in S$.

It is easy to see that a non-empty subset S of Z is a subgroup of Z if and only if $x - y \in S$ for all $x \in S$ and $y \in S$.

Let *m* be an integer, and let $m\mathbb{Z} = \{mn : n \in \mathbb{Z}\}$. Then $m\mathbb{Z}$ (the set of integer multiples of *m*) is a subgroup of \mathbb{Z} .

Theorem 1.1 Let S be a subgroup of \mathbb{Z} . Then $S = m\mathbb{Z}$ for some nonnegative integer m.

Proof If $S = \{0\}$ then $S = m\mathbb{Z}$ with m = 0. Suppose that $S \neq \{0\}$. Then S contains a non-zero integer, and therefore S contains a positive integer (since $-x \in S$ for all $x \in S$). Let m be the smallest positive integer belonging to S. A positive integer n belonging to S can be written in the form n = qm + r, where q is a positive integer and r is an integer satisfying $0 \le r < m$. Then $qm \in S$ (because $qm = m + m + \cdots + m$). But then $r \in S$, since r = n - qm. It follows that r = 0, since m is the smallest positive integer in S. Therefore n = qm, and thus $n \in m\mathbb{Z}$. It follows that $S = m\mathbb{Z}$, as required.

1.2 Greatest Common Divisors

Definition Let a_1, a_2, \ldots, a_r be integers, not all zero. A common divisor of a_1, a_2, \ldots, a_r is an integer that divides each of a_1, a_2, \ldots, a_r . The greatest common divisor of a_1, a_2, \ldots, a_r is the greatest positive integer that divides each of a_1, a_2, \ldots, a_r . The greatest common divisor of a_1, a_2, \ldots, a_r . The greatest common divisor of a_1, a_2, \ldots, a_r is denoted by (a_1, a_2, \ldots, a_r) .

Theorem 1.2 Let a_1, a_2, \ldots, a_r be integers, not all zero. Then there exist integers u_1, u_2, \ldots, u_r such that

 $(a_1, a_2, \dots, a_r) = u_1 a_1 + u_2 a_2 + \dots + u_r a_r.$

where (a_1, a_2, \ldots, a_r) is the greatest common divisor of a_1, a_2, \ldots, a_r .

Proof Let S be the set of all integers that are of the form

$$n_1a_1 + n_2a_2 + \dots + n_ra_r$$

for some $n_1, n_2, \ldots, n_r \in \mathbb{Z}$. Then S is a subgroup of Z. It follows that $S = m\mathbb{Z}$ for some non-negative integer m (Theorem 1.1). Then m is a

common divisor of a_1, a_2, \ldots, a_r , (since $a_i \in S$ for $i = 1, 2, \ldots, r$). Moreover any common divisor of a_1, a_2, \ldots, a_r is a divisor of each element of S and is therefore a divisor of m. It follows that m is the greatest common divisor of a_1, a_2, \ldots, a_r . But $m \in S$, and therefore there exist integers u_1, u_2, \ldots, u_r such that

$$(a_1, a_2, \dots, a_r) = u_1 a_1 + u_2 a_2 + \dots + u_r a_r,$$

as required.

Definition Let a_1, a_2, \ldots, a_r be integers, not all zero. If the greatest common divisor of a_1, a_2, \ldots, a_r is 1 then these integers are said to be *coprime*. If integers a and b are coprime then a is said to be coprime to b. (Thus a is coprime to b if and only if b is coprime to a.)

Corollary 1.3 Let a_1, a_2, \ldots, a_r be integers, not all zero, Then a_1, a_2, \ldots, a_r are coprime if and only if there exist integers u_1, u_2, \ldots, u_r such that

$$1 = u_1 a_1 + u_2 a_2 + \dots + u_r a_r.$$

Proof If a_1, a_2, \ldots, a_r are coprime then the existence of the required integers u_1, u_2, \ldots, u_r follows from Theorem 1.2. On the other hand, if there exist integers u_1, u_2, \ldots, u_r with the required property then any common divisor of a_1, a_2, \ldots, a_r must be a divisor of 1, and therefore a_1, a_2, \ldots, a_r must be coprime.

1.3 The Euclidean Algorithm

Let a and b be positive integers with a > b. Let $r_0 = a$ and $r_1 = b$. If b does not divide a then let r_2 be the remainder on dividing a by b. Then $a = q_1b + r_2$, where q_1 and r_2 are positive integers and $0 < r_2 < b$. If r_2 does not divide b then let r_3 be the remainder on dividing b by r_2 . Then $b = q_2r_2 + r_3$, where q_2 and r_3 are positive integers and $0 < r_3 < r_2$. If r_3 does not divide r_2 then let r_4 be the remainder on dividing r_2 by r_3 . Then $r_2 = q_3r_3 + r_4$, where q_3 and r_4 are positive integers and $0 < r_4 < r_3$. Continuing in this fashion, we construct positive integers r_0, r_1, \ldots, r_n such that $r_0 = a$, $r_1 = b$ and r_i is the remainder on dividing r_{i-2} by r_{i-1} for $i = 2, 3, \ldots, n$. Then $r_{i-2} = q_{i-1}r_{i-1} + r_i$, where q_{i-1} and r_i are positive integers and $0 < r_i < r_{i-1}$. The algorithm for constructing the positive integers r_0, r_1, \ldots, r_n terminates when r_n divides r_{n-1} . Then $r_{n-1} = q_n r_n$ for some positive integer q_n . (The algorithm must clearly terminate in a finite number of steps, since $r_0 > r_1 > r_2 > \cdots > r_n$.) We claim that r_n is the greatest common divisor of a and b. Any divisor of r_n is a divisor of r_{n-1} , because $r_{n-1} = q_n r_n$. Moreover if $2 \le i \le n$ then any common divisor of r_i and r_{i-1} is a divisor of r_{i-2} , because $r_{i-2} = q_{i-1}r_{i-1} + r_i$. If follows that every divisor of r_n is a divisor of all the integers r_0, r_1, \ldots, r_n . In particular, any divisor of r_n is a common divisor of a and b. In particular, r_n is itself a common divisor of a and b.

If $2 \leq i \leq n$ then any common divisor of r_{i-2} and r_{i-1} is a divisor of r_i , because $r_i = r_{i-2} - q_{i-1}r_{i-1}$. It follows that every common divisor of a and bis a divisor of all the integers r_0, r_1, \ldots, r_n . In particular any common divisor of a and b is a divisor of r_n . It follows that r_n is the greatest common divisor of a and b.

There exist integers u_i and v_i such that $r_i = u_i a + v_i b$ for i = 1, 2, ..., n. Indeed $u_i = u_{i-2} - q_{i-1}u_{i-1}$ and $v_i = v_{i-2} - q_{i-1}v_{i-1}$ for each integer i between 2 and n, where $u_0 = 1$, $v_0 = 0$, $u_1 = 0$ and $v_1 = 1$. In particular $r_n = u_n a + v_n b$.

The algorithm described above for calculating the greatest common divisor (a, b) of two positive integers a and b is referred to as the *Euclidean* algorithm. It also enables one to calculate integers u and v such that (a, b) = ua + vb.

Example We calculate the greatest common divisor of 425 and 119. Now

$$425 = 3 \times 119 + 68$$

$$119 = 68 + 51$$

$$68 = 51 + 17$$

$$51 = 3 \times 17.$$

It follows that 17 is the greatest common divisor of 425 and 119. Moreover

$$17 = 68 - 51 = 68 - (119 - 68)$$

= 2 × 68 - 119 = 2 × (425 - 3 × 119) - 119
= 2 × 425 - 7 × 119.

1.4 Prime Numbers

Definition A *prime number* is an integer p greater than one with the property that 1 and p are the only positive integers that divide p.

Let p be a prime number, and let x be an integer. Then the greatest common divisor (p, x) of p and x is a divisor of p, and therefore either (p, x) = p or else (p, x) = 1. It follows that either x is divisible by p or else x is coprime to p.

Theorem 1.4 Let p be a prime number, and let x and y be integers. If p divides xy then either p divides x or else p divides y.

Proof Suppose that p divides xy but p does not divide x. Then p and x are coprime, and hence there exist integers u and v such that 1 = up + vx (Corollary 1.3). Then y = upy + vxy. It then follows that p divides y, as required.

Corollary 1.5 Let p be a prime number. If p divides a product of integers then p divides at least one of the factors of the product.

Proof Let a_1, a_2, \ldots, a_k be integers, where k > 1. Suppose that p divides $a_1a_2 \cdots a_k$. Then either p divides a_k or else p divides $a_1a_2 \cdots a_{k-1}$. The required result therefore follows by induction on the number k of factors in the product.

1.5 The Fundamental Theorem of Arithmetic

Lemma 1.6 Every integer greater than one is a prime number or factors as a product of prime numbers.

Proof Let n be an integer greater than one. Suppose that every integer m satisfying 1 < m < n is a prime number or factors as a product of prime numbers. If n is not a prime number then n = ab for some integers a and b satisfying 1 < a < n and 1 < b < n. Then a and b are prime numbers or products of prime numbers. Thus if n is not itself a prime number then n must be a product of prime numbers. The required result therefore follows by induction on n.

An integer greater than one that is not a prime number is said to be a *composite number*.

Let n be an composite number. We say that n factors uniquely as a product of prime numbers if, given prime numbers p_1, p_2, \ldots, p_r and q_1, q_2, \ldots, q_s such that

$$n = p_1 p_2 \cdots p_r = q_1 q_2 \dots q_s$$

the number of times a prime number occurs in the list p_1, p_2, \ldots, p_r is equal to the number of times it occurs in the list q_1, q_2, \ldots, q_s . (Note that this implies that r = s.)

Theorem 1.7 (The Fundamental Theorem of Arithmetic) *Every composite* number greater than one factors uniquely as a product of prime numbers. **Proof** Let n be a composite number greater than one. Suppose that every composite number greater than one and less than n factors uniquely as a product of prime numbers. We show that n then factors uniquely as a product of prime numbers. Suppose therefore that

$$n = p_1 p_2 \cdots p_r = q_1 q_2 \ldots, q_s,$$

where p_1, p_2, \ldots, p_r and q_1, q_2, \ldots, q_s are prime numbers, $p_1 \leq p_2 \leq \cdots \leq p_r$ and $q_1 \leq q_2 \leq \cdots \leq q_s$. We must prove that r = s and $p_i = q_i$ for all integers *i* between 1 and *r*.

Let p be the smallest prime number that divides n. If a prime number divides a product of integers then it must divide at least one of the factors (Corollary 1.5). It follows that p must divide p_i and thus $p = p_i$ for some integer i between 1 and r. But then $p = p_1$, since p_1 is the smallest of the prime numbers p_1, p_2, \ldots, p_r . Similarly $p = q_1$. Therefore $p = p_1 = q_1$. Let m = n/p. Then

$$m = p_2 p_3 \cdots p_r = q_2 q_3 \cdots q_s.$$

But then r = s and $p_i = q_i$ for all integers *i* between 2 and *r*, because every composite number greater than one and less than *n* factors uniquely as a product of prime numbers. It follows that *n* factors uniquely as a product of prime numbers. The required result now follows by induction on *n*. (We have shown that if all composite numbers *m* satisfying 1 < m < n factor uniquely as a product of prime numbers, then so do all composite numbers *m* satisfying 1 < m < n + 1.)

1.6 The Infinitude of Primes

Theorem 1.8 (Euclid) The number of prime numbers is infinite.

Proof Let p_1, p_2, \ldots, p_r be prime numbers, let $m = p_1 p_2 \cdots p_r + 1$. Now p_i does not divide m for $i = 1, 2, \ldots, r$, since if p_i were to divide m then it would divide $m - p_1 p_2 \cdots p_r$ and thus would divide 1. Let p be a prime factor of m. Then p must be distinct from p_1, p_2, \ldots, p_r . Thus no finite set $\{p_1, p_2, \ldots, p_r\}$ of prime numbers can include all prime numbers.

1.7 Congruences

Let *m* be a positive integer. Integers *x* and *y* are said to be *congruent* modulo *m* if x - y is divisible by *m*. If *x* and *y* are congruent modulo *m* then we denote this by writing $x \equiv y \pmod{m}$.

The congruence class of an integer x modulo m is the set of all integers that are congruent to x modulo m.

Let x, y and z be integers. Then $x \equiv x \pmod{m}$. Also $x \equiv y \pmod{m}$ if and only if $y \equiv x \pmod{m}$. If $x \equiv y \pmod{m}$ and $y \equiv z \pmod{m}$ then $x \equiv z \pmod{m}$. Thus congruence modulo m is an equivalence relation on the set of integers.

Lemma 1.9 Let m be a positive integer, and let x, x', y and y' be integers. Suppose that $x \equiv x' \pmod{m}$ and $y \equiv y' \pmod{m}$. Then $x + y \equiv x' + y' \pmod{m}$ and $xy \equiv x'y' \pmod{m}$.

Proof The result follows immediately from the identities

$$(x+y) - (x'+y') = (x-x') + (y-y'), xy - x'y' = (x-x')y + x'(y-y').$$

Lemma 1.10 Let x, y and m be integers with $m \neq 0$. Suppose that m divides xy and that m and x are coprime. Then m divides y.

Proof There exist integers a and b such that 1 = am + bx, since m and x are coprime (Corollary 1.3). Then y = amy + bxy, and m divides xy, and therefore m divides y, as required.

Lemma 1.11 Let m be a positive integer, and let a, x and y be integers with $ax \equiv ay \pmod{m}$. Suppose that m and a are coprime. Then $x \equiv y \pmod{m}$.

Proof If $ax \equiv ay \pmod{m}$ then a(x - y) is divisible by m. But m and a are coprime. It therefore follows from Lemma 1.10 that x - y is divisible by m, and thus $x \equiv y \pmod{m}$, as required.

Lemma 1.12 Let x and m be non-zero integers. Suppose that x is coprime to m. Then there exists an integer y such that $xy \equiv 1 \pmod{m}$. Moreover y is coprime to m.

Proof There exist integers y and k such that xy + mk = 1, since x and m are coprime (Corollary 1.3). Then $xy \equiv 1 \pmod{m}$. Moreover any common divisor of y and m must divide xy and therefore must divide 1. Thus y is coprime to m, as required.

Lemma 1.13 Let m be a positive integer, and let a and b be integers, where a is coprime to m. Then there exist integers x that satisfy the congruence $ax \equiv b \pmod{m}$. Moreover if x and x' are integers such that $ax \equiv b \pmod{m}$ and $ax' \equiv b \pmod{m}$ then $x \equiv x' \pmod{m}$.

Proof There exists an integer c such that $ac \equiv 1 \pmod{m}$, since a is coprime to m (Lemma 1.12). Then $ax \equiv b \pmod{m}$ if and only if $x \equiv cb \pmod{m}$. The result follows.

Lemma 1.14 Let a_1, a_2, \ldots, a_r be integers, and let x be an integer that is coprime to a_i for $i = 1, 2, \ldots, r$. Then x is coprime to the product $a_1a_2 \cdots a_r$ of the integers a_1, a_2, \ldots, a_r .

Proof Let p be a prime number which divides the product $a_1a_2 \cdots a_r$. Then p divides one of the factors a_1, a_2, \ldots, a_r (Corollary 1.5). It follows that p cannot divide x, since x and a_i are coprime for $i = 1, 2, \ldots, r$. Thus no prime number is a common divisor of x and the product $a_1a_2 \cdots a_r$. It follows that the greatest common divisor of x and $a_1a_2 \cdots a_r$ is 1, since this greatest common divisor cannot have any prime factors. Thus x and $a_1a_2 \cdots a_r$ are coprime, as required.

Let *m* be a positive integer. For each integer *x*, let [x] denote the congruence class of *x* modulo *m*. If *x*, *x'*, *y* and *y'* are integers and if $x \equiv x' \pmod{m}$ and $y \equiv y' \pmod{m}$ then $xy \equiv x'y' \pmod{m}$. It follows that there is a well-defined operation of multiplication defined on congruence classes of integers modulo *m*, where [x][y] = [xy] for all integers *x* and *y*. This operation is commutative and associative, and [x][1] = [x] for all integers *x*. If *x* is an integer coprime to *m*, then it follows from Lemma 1.12 that there exists an integer *y* coprime to *m* such that $xy \equiv 1 \pmod{m}$. Then [x][y] = [1]. Therefore the set \mathbb{Z}_m^* of congruence classes modulo *m* of integers coprime to *m* is an Abelian group (with multiplication of congruence classes defined as above).

1.8 The Chinese Remainder Theorem

Let I be a set of integers. The integers belonging to I are said to be *pairwise* coprime if any two distinct integers belonging to I are coprime.

Proposition 1.15 Let m_1, m_2, \ldots, m_r be non-zero integers that are pairwise coprime. Let x be an integer that is divisible by m_i for $i = 1, 2, \ldots, r$. Then x is divisible by the product $m_1m_2\cdots m_r$ of the integers m_1, m_2, \ldots, m_r .

Proof For each integer k between 1 and r let P_k be the product of the integers m_i with $1 \leq i \leq k$. Then $P_1 = m_1$ and $P_k = P_{k-1}m_k$ for $k = 2, 3, \ldots, r$. Let x be a positive integer that is divisible by m_i for $i = 1, 2, \ldots, r$. We must show that P_r divides x. Suppose that P_{k-1} divides x for some integer k between 2 and r. Let $y = x/P_{k-1}$. Then m_k and P_{k-1} are coprime

(Lemma 1.14) and m_k divides $P_{k-1}y$. It follows from Lemma 1.10 that m_k divides y. But then P_k divides x, since $P_k = P_{k-1}m_k$ and $x = P_{k-1}y$. On successively applying this result with $k = 2, 3, \ldots, r$ we conclude that P_r divides x, as required.

Theorem 1.16 (Chinese Remainder Theorem) Let m_1, m_2, \ldots, m_r be pairwise coprime positive integers. Then, given any integers x_1, x_2, \ldots, x_r , there exists an integer z such that $z \equiv x_i \pmod{m_i}$ for $i = 1, 2, \ldots, r$. Moreover if z' is any integer satisfying $z' \equiv x_i \pmod{m_i}$ for $i = 1, 2, \ldots, r$ then $z' \equiv z \pmod{m}$, where $m = m_1 m_2 \cdots m_r$.

Proof Let $m = m_1 m_2 \cdots m_r$, and let $s_i = m/m_i$ for $i = 1, 2, \ldots, r$. Note that s_i is the product of the integers m_j with $j \neq i$, and is thus a product of integers coprime to m_i . It follows from Lemma 1.14 that m_i and s_i are coprime for $i = 1, 2, \ldots, r$. Therefore there exist integers a_i and b_i such that $a_i m_i + b_i s_i = 1$ for $i = 1, 2, \ldots, r$ (Corollary 1.3). Let $u_i = b_i s_i$ for $i = 1, 2, \ldots, r$. Then $u_i \equiv 1 \pmod{m_i}$, and $u_i \equiv 0 \pmod{m_j}$ when $j \neq i$. Thus if

$$z = x_1 u_1 + x_2 u_2 + \cdots + x_r u_r$$

then $z \equiv x_i \pmod{m_i}$ for $i = 1, 2, \ldots, r$.

Now let z' be an integer with $z' \equiv x_i \pmod{m_i}$ for i = 1, 2, ..., r. Then z' - z is divisible by m_i for i = 1, 2, ..., r. It follows from Proposition 1.15 that z' - z is divisible by the product m of the integers $m_1, m_2, ..., m_r$. Then $z' \equiv z \pmod{m}$, as required.

1.9 The Euler Totient Function

Let n be a positive integer. We define $\varphi(n)$ to be the number of integers x satisfying $0 \le x < n$ that are coprime to n. The function φ on the set of positive integers is referred to as the *Euler totient function*.

Every integer (including zero) is coprime to 1, and therefore $\varphi(1) = 1$.

Let p be a prime number. Then $\varphi(p) = p - 1$, since every positive integer less than p is coprime to p. Moreover $\varphi(p^k) = p^k - p^{k-1}$ for all positive integers k, since there are p^{k-1} integers x satisfying $0 \le x < p^k$ that are divisible by p, and the integers coprime to p^k are those that are not divisible by p.

Theorem 1.17 Let m_1 and m_2 be positive integers. Suppose that m_1 and m_2 are coprime. Then $\varphi(m_1m_2) = \varphi(m_1)\varphi(m_2)$.

Proof Let x be an integer satisfying $0 \le x < m_1$ that is coprime to m_1 , and let y be an integer satisfying $0 \le y < m_2$ that is coprime to m_2 . It follows from the Chinese Remainder Theorem (Theorem 1.16) that there exists exactly one integer z satisfying $0 \le z < m_1m_2$ such that $z \equiv x$ $(\mod m_1)$ and $z \equiv y \pmod{m_2}$. Moreover z must then be coprime to m_1 and to m_2 , and must therefore be coprime to m_1m_2 . Thus every integer zsatisfing $0 \le z < m_1m_2$ that is coprime to m_1m_2 is uniquely determined by its congruence classes modulo m_1 and m_2 , and the congruence classes of zmodulo m_1 and m_2 contain integers coprime to m_1 and m_2 respectively. Thus the number $\varphi(m_1m_2)$ of integers z satisfying $0 \le z < m_1m_2$ that are coprime to m_1m_2 is equal to $\varphi(m_1)\varphi(m_2)$, since $\varphi(m_1)$ is the number of integers xsatisfying $0 \le x < m_1$ that are coprime to m_1 and $\varphi(m_2)$ is the number of integers y satisfying $0 \le y < m_2$ that are coprime to m_2 .

Corollary 1.18 $\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$, for all positive integers n, where $\prod_{p|n} \left(1 - \frac{1}{p}\right)$ denotes the product of $1 - \frac{1}{p}$ taken over all prime numbers p that divide n.

Proof Let $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$, where p_1, p_2, \ldots, p_m are prime numbers and k_1, k_2, \ldots, k_m are positive integers. Then $\varphi(n) = \varphi(p_1^{k_1})\varphi(p_2^{k_2})\cdots\varphi(p_m^{k_m})$, and $\varphi(p_i^{k_i}) = p_i^{k_i}(1 - (1/p_i))$ for $i = 1, 2, \ldots, m$. Thus $\varphi(n) = n \prod_{i=1}^m \left(1 - \frac{1}{p_i}\right)$, as required.

Let f be any function defined on the set of positive integers, and let n be a positive integer. We denote the sum of the values of f(d) over all divisors d of n by $\sum_{d|n} f(d)$.

Lemma 1.19 Let n be a positive integer. Then $\sum_{d|n} \varphi(d) = n$.

Proof If x is an integer satisfying $0 \le x < n$ then (x, n) = n/d for some divisor d of n. It follows that $n = \sum_{d|n} n_d$, where n_d is the number of integers x satisfying $0 \le x < n$ for which (x, n) = n/d. Thus it suffices to show that $n_d = \varphi(d)$ for each divisor d of n.

Let d be a divisor of n, and let a = n/d. Given any integer x satisfying $0 \le x < n$ that is divisible by a, there exists an integer y satisfying $0 \le y < d$

such that x = ay. Then (x, n) is a multiple of a. Moreover a multiple ae of a divides both x and n if and only if e divides both y and d. Therefore (x, n) = a(y, d). It follows that the integers x satisfying $0 \le x < n$ for which (x, n) = a are those of the form ay, where y is an integer, $0 \le y < d$ and (y, d) = 1. It follows that there are exactly $\varphi(d)$ integers x satisfying $0 \le x < n$ for which (x, n) = n/d, and thus $n_d = \varphi(d)$ and $n = \sum_{d|n} \varphi(d)$, as

required.

1.10 The Theorems of Fermat, Wilson and Euler

Theorem 1.20 (Fermat) Let p be a prime number. Then $x^p \equiv x \pmod{p}$ for all integers x. Moreover if x is coprime to p then $x^{p-1} \equiv 1 \pmod{p}$.

We shall give three proofs of this theorem below.

Lemma 1.21 Let p be a prime number. Then the binomial coefficient $\binom{p}{k}$ is divisible by p for all integers k satisfying 0 < k < p.

Proof The binomial coefficient is given by the formula $\binom{p}{k} = \frac{p!}{(p-k)!k!}$. Thus if 0 < k < p then $\binom{p}{k} = \frac{pm}{k!}$, where $m = \frac{(p-1)!}{(p-k)!}$. Thus if 0 < k < p then k! divides pm. Also k! is coprime to p. It follows that k! divides m (Lemma 1.10), and therefore the binomial coefficient $\binom{p}{k}$ is a multiple of p.

First Proof of Theorem 1.20 Let p be prime number. Then

$$(x+1)^p = \sum_{k=0}^p \binom{p}{k} x^k.$$

It then follows from Lemma 1.21 that $(x + 1)^p \equiv x^p + 1 \pmod{p}$. Thus if $f(x) = x^p - x$ then $f(x + 1) \equiv f(x) \pmod{p}$ for all integers x, since $f(x + 1) - f(x) = (x + 1)^p - x^p - 1$. But $f(0) \equiv 0 \pmod{p}$. It follows by induction on |x| that $f(x) \equiv 0 \pmod{p}$ for all integers x. Thus $x^p \equiv x \pmod{p}$ for all integers x. Moreover if x is coprime to p then it follows from Lemma 1.11 that $x^{p-1} \equiv 1 \pmod{p}$, as required. Second Proof of Theorem 1.20 Let x be an integer. If x is divisible by p then $x \equiv 0 \pmod{p}$ and $x^p \equiv 0 \pmod{p}$.

Suppose that x is coprime to p. If j is an integer satisfying $1 \le j \le p-1$ then j is coprime to p and hence xj is coprime to p. It follows that there exists a unique integer u_j such that $1 \le u_j \le p-1$ and $xj \equiv u_j \pmod{p}$. If j and k are integers between 1 and p-1 and if $j \ne k$ then $u_j \ne u_k$. It follows that each integer between 1 and p-1 occurs exactly once in the list $u_1, u_2, \ldots, u_{p-1}$, and therefore $u_1u_2\cdots u_{p-1} = (p-1)!$. Thus if we multiply together the left hand sides and right hand sides of the congruences $xj \equiv u_j \pmod{p}$ for $j = 1, 2, \ldots, p-1$ we obtain the congruence $x^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$. But then $x^{p-1} \equiv 1 \pmod{p}$ by Lemma 1.11, since (p-1)! is coprime to p. But then $x^p \equiv x \pmod{p}$, as required.

Third Proof of Theorem 1.20 Let p be a prime number. The congruence classes modulo p of integers coprime to p constitute a group of order p-1, where the group operation is multiplication of congruence classes. Now it follows from Lagrange's Theorem that that order of any element of a finite group divides the order of the group. If we apply this result to the group of congruence classes modulo p of integers coprime to p we find that if an integer x is not divisible by p then $x^{p-1} \equiv 1 \pmod{p}$. It follows that $x^p \equiv x \pmod{p}$ for all integers x that are not divisible by p. This congruence also holds for all integers x that are divisible by p.

Theorem 1.22 (Wilson's Theorem) (p-1)!+1 is divisible by p for all prime numbers p.

Proof Let p be a prime number. If x is an integer satisfying $x^2 \equiv 1 \pmod{p}$ then p divides (x-1)(x+1) and hence either p divides either x-1 or x+1. Thus if $1 \le x \le p-1$ and $x^2 \equiv 1 \pmod{p}$ then either x = 1 or x = p-1.

For each integer x satisfying $1 \le x \le p-1$, there exists exactly one integer y satisfying $1 \le y \le p-1$ such that $xy \equiv 1 \pmod{p}$. Moreover $y \ne x$ when $2 \le x \le p-2$. It follows that (p-2)! is a product of numbers of the form xy, where x and y are distinct integers between 2 and p-2and $xy \equiv 1 \pmod{p}$. It follows that $(p-2)! \equiv 1 \pmod{p}$. But then $(p-1)! \equiv p-1 \pmod{p}$, and hence $(p-1)!+1 \equiv 0 \pmod{p}$, as required.

The following theorem of Euler generalizes Fermat's Theorem (Theorem 1.20).

Theorem 1.23 (Euler) Let m be a positive integer, and let x be an integer coprime to m. Then $x^{\varphi(m)} \equiv 1 \pmod{m}$.

First Proof of Theorem 1.23 The result is trivially true when m = 1. Suppose that m > 1. Let I be the set of all positive integers less than m that are coprime to m. Then $\varphi(m)$ is by definition the number of integers in I. If y is an integer coprime to m then so is xy. It follows that, to each integer j in I there exists a unique integer u_j in I such that $xj \equiv u_j \pmod{m}$. Moreover if $j \in I$ and $k \in I$ and $j \neq k$ then $u_j \not\equiv u_k$. Therefore $I = \{u_j : j \in I\}$. Thus if we multiply the left hand sides and right hand sides of the congruences $xj \equiv u_j \pmod{m}$ for all $j \in I$ we obtain the congruence $x^{\varphi(m)}z \equiv z \pmod{m}$, where z is the product of all the integers in I. But z is coprime to m, since a product of integers coprime to m is itself coprime to m. It follows from Lemma 1.11 that $x^{\varphi(m)} \equiv 1 \pmod{m}$, as required.

2nd Proof of Theorem 1.23 Let m be a positive integer. Then the congruence classes modulo m of integers coprime to m constitute a group of order $\varphi(m)$, where the group operation is multiplication of congruence classes. Now it follows from Lagrange's Theorem that that order of any element of a finite group divides the order of the group. If we apply this result to the group of congruence classes modulo m of integers coprime to m we find that $x^{\varphi(m)} \equiv 1 \pmod{m}$, as required.

1.11 Solutions of Polynomial Congruences

Let f be a polynomial with integer coefficients, and let m be a positive integer. If x and x' are integers, and if $x \equiv x' \pmod{m}$, then $f(x) \equiv f(x') \pmod{m}$. It follows that the set consisting of those integers x which satisfy the congruence $f(x) \equiv 0 \pmod{m}$ is a union of congruence classes modulo m. The number of solutions modulo m of the congruence $f(x) \equiv 0 \pmod{m}$ is defined to be the number of congruence classes of integers modulo m such that an integer x satisfies the congruence $f(x) \equiv 0 \pmod{m}$ if and only if it belongs to one of those congruence classes. Thus a congruence $f(x) \equiv 0 \pmod{m}$ has n solutions modulo m if and only if there exist nintegers a_1, a_2, \ldots, a_n satisfying the congruence such that every solution of the congruence $f(x) \equiv 0 \pmod{m}$ is congruence of the exactly one of the integers a_1, a_2, \ldots, a_n .

Note that the number of solutions of the congruence $f(x) \equiv 0 \pmod{m}$ is equal to the number of integers x satisfying $0 \le x < m$ for which $f(x) \equiv 0 \pmod{m}$. This follows immediately from the fact that each congruence class of integers modulo m contains exactly one integer x satisfying $0 \le x < m$.

Theorem 1.24 Let f be a polynomial with integer coefficients, and let p be a prime number. Suppose that the coefficients of f are not all divisible by p.

Then the number of solutions modulo p of the congruence $f(x) \equiv 0 \pmod{p}$ is at most the degree of the polynomial f.

Proof The result is clearly true when f is a constant polynomial. We can prove the result for non-constant polynomials by induction on the degree of the polynomial.

First we observe that, given any integer a, there exists a polynomial g with integer coefficients such that f(x) = f(a) + (x - a)g(x). Indeed f(y + a) is a polynomial in y with integer coefficients, and therefore f(y+a) = f(a)+yh(y) for some polynomial h with integer coefficients. Thus if g(x) = h(x - a) then g is a polynomial with integer coefficients and f(x) = f(a) + (x - a)g(x).

Suppose that $f(a) \equiv 0 \pmod{p}$ and $f(b) \equiv 0 \pmod{p}$. Let f(x) = f(a) + (x - a)g(x), where g is a polynomial with integer coefficients. The coefficients of f are not all divisible by p, but f(a) is divisible by p, and therefore the coefficients of g cannot all be divisible by p.

Now f(a) and f(b) are both divisible by the prime number p, and therefore (b-a)g(b) is divisible by p. But a prime number divides a product of integers if and only if it divides one of the factors. Therefore either b-a is divisible by p or else g(b) is divisible by p. Thus either $b \equiv a \pmod{p}$ or else $g(b) \equiv 0 \pmod{p}$. The required result now follows easily by induction on the degree of the polynomial f.

1.12 Primitive Roots

Lemma 1.25 Let m be a positive integer, and let x be an integer coprime to m. Then there exists a positive integer n such that $x^n \equiv 1 \pmod{m}$.

Proof There are only finitely many congruence classes modulo m. Therefore there exist positive integers j and k with j < k such that $x^j \equiv x^k \pmod{m}$. Let n = k - j. Then $x^j x^n \equiv x^j \pmod{m}$. But x^j is coprime to m. It follows from Lemma 1.11 that $x^n \equiv 1 \pmod{m}$.

Remark The above lemma also follows directly from Euler's Theorem (Theorem 1.23).

Let *m* be a positive integer, and let *x* be an integer coprime to *m*. The order of the congruence class of *x* modulo *m* is by definition the smallest positive integer *d* such that $x^d \equiv 1 \pmod{m}$.

Lemma 1.26 Let m be a positive integer, let x be an integer coprime to m, and let j and k be positive integers. Then $x^j \equiv x^k \pmod{m}$ if and only if $j \equiv k \pmod{d}$, where d is the order of the congruence class of x modulo m.

Proof We may suppose without loss of generality that j < k. If $j \equiv k \pmod{d}$ then k - j is divisible by d, and hence $x^{k-j} \equiv 1 \pmod{m}$. But then $x^k \equiv x^j x^{k-j} \equiv x^j \pmod{m}$. Conversely suppose that $x^j \equiv x^k \pmod{m}$ and j < k. Then $x^j x^{k-j} \equiv x^j \pmod{m}$. But x^j is coprime to m. It follows from Lemma 1.11 that $x^{k-j} \equiv 1 \pmod{m}$. Thus if k - j = qd + r, where q and r are integers and $0 \le r < d$, then $x^r \equiv 1 \pmod{m}$. But then r = 0, since d is the smallest positive integer for which $x^d \equiv 1 \pmod{m}$. Therefore k - j is divisible by d, and thus $j \equiv k \pmod{d}$.

Lemma 1.27 Let p be a prime number, and let x and y be integers coprime to p. Suppose that the congruence classes of x and y modulo p have the same order. Then there exists a non-negative integer k, coprime to the order of the congruence classes of x and y, such that $y \equiv x^k \pmod{p}$.

Proof Let d be the order of the congruence class of x modulo p. The solutions of the congruence $x^d \equiv 1 \pmod{p}$ include x^j with $0 \leq j < d$. But the congruence $x^d \equiv 1 \pmod{p}$ has at most d solutions modulo p, since p is prime (Theorem 1.24), and the congruence classes of $1, x, x^2, \ldots, x^{d-1}$ modulo p are distinct (Lemma 1.26). It follows that any solution of the congruence $x^d \equiv 1 \pmod{p}$ is congruent to x^k for some positive integer k. Thus if y is an integer coprime to p whose congruence class is of order d then $y \equiv x^k \pmod{p}$ for some positive integer k. Moreover k is coprime to d, for if e is a common divisor of k and d then $y^{d/e} \equiv x^{d(k/e)} \equiv 1 \pmod{p}$, and hence e = 1.

Let *m* be a positive integer. An integer *g* is said to be a *primitive root* modulo *m* if, given any integer *x* coprime to *m*, there exists an integer *j* such that $x \equiv g^j \pmod{m}$.

A primitive root modulo m is necessarily coprime to m. For if g is a primitive root modulo m then there exists an integer n such that $g^n \equiv 1 \pmod{m}$. But then any common divisor of g and m must divide 1, and thus g and m are coprime.

Theorem 1.28 Let p be a prime number. Then there exists a primitive root modulo p.

Proof If x is an integer coprime to p then it follows from Fermat's Theorem (Theorem 1.20) that $x^{p-1} \equiv 1 \pmod{p}$. It then follows from Lemma 1.26 that the order of the congruence class of x modulo p divides p-1. For each divisor d of p-1, let $\psi(d)$ denote the number of congruence classes modulo p of integers coprime to p that are of order d. Clearly $\sum_{d|p=1} \psi(d) = p-1$.

Let x be an integer coprime to p whose congruence class is of order d, where d is a divisor of p-1. If k is coprime to d then the congruence class of x^k is also of order d, for if $(x^k)^n \equiv 1 \pmod{p}$ then d divides kn and hence d divides n (Lemma 1.10). Let y be an integer coprime to p whose congruence class is also of order d. It follows from Lemma 1.27 that there exists a non-negative integer k coprime to d such that $y \equiv x^k \pmod{p}$. It then follows from Lemma 1.26 that there exists a unique integer k coprime to d such that $0 \le k \le d$ and $y \equiv x^k \pmod{p}$. Thus if there exists at least one integer x coprime to p whose congruence class modulo p is of order d then the congruence classes modulo p of integers coprime to p that are of order dare the congruence classes of x^k for those integers k satisfying $0 \le k \le d$ that are coprime to d. Thus if $\psi(d) > 0$ then $\psi(d) = \varphi(d)$, where $\varphi(d)$ is the number of integers k satisfying $0 \le k < d$ that are coprime to d.

Now $0 \le \psi(d) \le \varphi(d)$ for each divisor d of p-1. But $\sum_{d|p-1} \psi(d) = p-1$ and

 $\sum_{d|p-1} \varphi(d) = p-1 \text{ (Lemma 1.19). Therefore } \psi(d) = \varphi(d) \text{ for each divisor } d \text{ of }$

p-1. In particular $\psi(p-1) = \varphi(p-1) \ge 1$. Thus there exists an integer g whose congruence class modulo p is of order p-1. The congruence classes of $1, q, q^2, \ldots, q^{p-2}$ modulo p are then distinct. But there are exactly p-1congruence classes modulo p of integers coprime to p. It follows that any integer that is coprime to p must be congruent to q^{j} for some non-negative integer j. Thus g is a primitive root modulo p.

Corollary 1.29 Let p be a prime number. Then the group of congruence classes modulo p of integers coprime to p is a cyclic group of order p-1.

Remark It can be shown that there exists a primitive root modulo m if m = 1, 2 or 4, if $m = p^k$ or if $m = 2p^k$, where p is some odd prime number and k is a positive integer. In all other cases there is no primitive root modulo m.

1.13Quadratic Residues

Definition Let p be a prime number, and let x be an integer coprime to p. The integer x is said to be a *quadratic residue* of p if there exists an integer ysuch that $x \equiv y^2 \pmod{p}$. If x is not a quadratic residue of p then x is said to be a *quadratic non-residue* of p.

Proposition 1.30 Let p be an odd prime number, and let a, b and c be integers, where a is coprime to p. Then there exist integers x satisfying the congruence $ax^2 + bx + c \equiv 0 \pmod{p}$ if and only if either $b^2 - 4ac$ is a quadratic residue of p or else $b^2 - 4ac \equiv 0 \pmod{p}$.

Proof Let x be an integer. Then $ax^2 + bx + c \equiv 0 \pmod{p}$ if and only if $4a^2x^2 + 4abx + 4ac \equiv 0 \pmod{p}$, since 4a is coprime to p (Lemma 1.11). But $4a^2x^2 + 4abx + 4ac \equiv (2ax + b)^2 - (b^2 - 4ac)$. It follows that $ax^2 + bx + c \equiv 0 \pmod{p}$ if and only if $(2ax + b)^2 \equiv b^2 - 4ac \pmod{p}$. Thus if there exist integers x satisfying the congruence $ax^2 + bx + c \equiv 0 \pmod{p}$ then either $b^2 - 4ac$ is a quadratic residue of p or else $b^2 - 4ac \equiv 0 \pmod{p}$. Conversely suppose that either $b^2 - 4ac$ is a quadratic residue of p or $b^2 - 4ac \equiv 0 \pmod{p}$. Also there exists an integer d such that $2ad \equiv 1 \pmod{p}$, since 2a is coprime to p (Lemma 1.12). If $x \equiv d(y - b) \pmod{p}$ then $2ax + b \equiv y \pmod{p}$, and hence $(2ax + b)^2 \equiv b^2 - 4ac \pmod{p}$. But then $ax^2 + bx + c \equiv 0 \pmod{p}$, as required.

Lemma 1.31 Let p be an odd prime number, and let x and y be integers. Suppose that $x^2 \equiv y^2 \pmod{p}$. Then either $x \equiv y \pmod{p}$ or else $x \equiv -y \pmod{p}$.

Proof $x^2 - y^2$ is divisible by p, since $x^2 \equiv y^2 \pmod{p}$. But $x^2 - y^2 = (x - y)(x + y)$, and a prime number divides a product of integers if and only if it divides at least one of the factors. Therefore either x - y is divisible by p or else x + y is divisible by p. Thus either $x \equiv y \pmod{p}$ or else $x \equiv -y \pmod{p}$.

Lemma 1.32 Let p be an odd prime number, and let m = (p-1)/2. Then there are exactly m congruence classes of integers coprime to p that are quadratic residues of p. Also there are exactly m congruence classes of integers coprime to p that are quadratic non-residues of p.

Proof If *i* and *j* are integers between 1 and *m*, and if $i \neq j$ then $i \not\equiv j \pmod{p}$ and $i \not\equiv -j \pmod{p}$. It follows from Lemma 1.31 that if *i* and *j* are integers between 1 and *m*, and if $i \neq j$ then $i^2 \not\equiv j^2$. Thus the congruence classes of $1^2, 2^2, \ldots, m^2$ modulo *p* are distinct. But, given any integer *x* coprime to *p*, there is an integer *i* such that $1 \leq i \leq m$ and either $x \equiv i \pmod{p}$ or $x \equiv -i \pmod{p}$, and therefore $x^2 \equiv i^2 \pmod{p}$. Thus every quadratic residue of *p* is congruent to i^2 for exactly one integer *i* between 1 and *m*. Thus there are *m* congruence classes of quadratic residues of *p*.

There are 2m congruence classes of integers modulo p that are coprime to p. It follows that there are m congruence classes of quadratic non-residues of p, as required.

Theorem 1.33 Let p be an odd prime number, let R be the set of all integers coprime to p that are quadratic residues of p, and let N be the set of all integers coprime to p that are quadratic non-residues of p. If $x \in R$ and $y \in R$ then $xy \in R$. If $x \in R$ and $y \in N$ then $xy \in N$. If $x \in N$ and $y \in N$ then $xy \in R$.

Proof Let m = (p-1)/2. Then there are exactly *m* congruence classes of integers coprime to *p* that are quadratic residues of *p*. Let these congruence classes be represented by the integers r_1, r_2, \ldots, r_m , where $r_i \not\equiv r_j \pmod{p}$ when $i \neq j$. Also there are exactly *m* congruence classes of integers coprime to *p* that are quadratic non-residues modulo *p*.

The product of two quadratic residues of p is itself a quadratic residue of p. Therefore $xy \in R$ for all $x \in R$ and $y \in R$.

Suppose that $x \in R$. Then $xr_i \in R$ for i = 1, 2, ..., m, and $xr_i \not\equiv xr_j$ when $i \neq j$. It follows that the congruence classes of $xr_1, xr_2, ..., xr_m$ are distinct, and consist of quadratic residues of p. But there are exactly mcongruence classes of quadratic residues of p. It follows that every quadratic residue of p is congruent to exactly one of the integers $xr_1, xr_2, ..., xr_m$. But if $y \in N$ then $y \not\equiv r_i$ and hence $xy \not\equiv xr_i$ for i = 1, 2, ..., m. It follows that $xy \in N$ for all $x \in R$ and $y \in N$.

Now suppose that $x \in N$. Then $xr_i \in N$ for i = 1, 2, ..., m, and $xr_i \not\equiv xr_j$ when $i \neq j$. It follows that the congruence classes of $xr_1, xr_2, ..., xr_m$ are distinct, and consist of quadratic non-residues modulo p. But there are exactly m congruence classes of quadratic non-residues modulo p. It follows that every quadratic non-residue of p is congruent to exactly one of the integers $xr_1, xr_2, ..., xr_m$. But if $y \in N$ then $y \not\equiv r_i$ and hence $xy \not\equiv xr_i$ for i = 1, 2, ..., m. It follows that $xy \in R$ for all $x \in N$ and $y \in N$.

Let p be an odd prime number. The Legendre symbol $\left(\frac{x}{p}\right)$ is defined for integers x as follows: if x is coprime to p and x is a quadratic residue of p then $\left(\frac{x}{p}\right) = +1$; if x is coprime to p and x is a quadratic non-residue of p then $\left(\frac{x}{p}\right) = -1$; if x is divisible by p then $\left(\frac{x}{p}\right) = 0$.

The following result follows directly from Theorem 1.33.

Corollary 1.34 Let p be an odd prime number. Then

$$\left(\frac{x}{p}\right)\left(\frac{y}{p}\right) = \left(\frac{xy}{p}\right)$$

for all integers x and y.

Lemma 1.35 (Euler) Let p be an odd prime number, and let x be an integer coprime to p. Then x is a quadratic residue of p if and only if $x^{(p-1)/2} \equiv 1 \pmod{p}$. Also x is a quadratic non-residue of p if and only if $x^{(p-1)/2} \equiv -1 \pmod{p}$.

Proof Let m = (p-1)/2. If x is a quadratic residue of p then $x \equiv y^2 \pmod{p}$ for some integer y coprime to p. Then $x^m = y^{p-1}$, and $y^{p-1} \equiv 1 \pmod{p}$ by Fermat's Theorem (Theorem 1.20), and thus $x^m \equiv 1 \pmod{p}$.

It follows from Theorem 1.24 that there are at most m congruence classes of integers x satisfying $x^m \equiv 1 \pmod{p}$. However all quadratic residues modulo p satisfy this congruence, and there are exactly m congruence classes of quadratic residues modulo p. It follows that an integer x coprime to psatisfies the congruence $x^m \equiv 1 \pmod{p}$ if and only if x is a quadratic residue of p.

Now let x be a quadratic non-residue of p and let $u = x^m$. Then $u^2 \equiv 1 \pmod{p}$ but $u \not\equiv 1 \pmod{p}$. It follows from Lemma 1.31 that $u \equiv -1 \pmod{p}$. It follows that an integer x coprime to p is a quadratic non-residue of p if and only if $x^m \equiv -1 \pmod{p}$.

Corollary 1.36 Let p be an odd prime number. Then

$$x^{(p-1)/2} \equiv \left(\frac{x}{p}\right) \pmod{p}$$

for all integers x.

Proof If x is coprime to p then the result follows from Lemma 1.35. If x is divisible by p then so is $x^{(p-1)/2}$. In that case $x^{(p-1)/2} \equiv 0 \pmod{p}$ and $\left(\frac{x}{n}\right) = 0 \pmod{p}$.

Corollary 1.37 $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$ for all odd prime numbers p.

Proof It follows from Corollary 1.36 that $\left(\frac{-1}{p}\right) \equiv (-1)^{(p-1)/2} \pmod{p}$ for all odd prime numbers p. But $\left(\frac{-1}{p}\right) = \pm 1$, by the definition of the Legendre symbol. Therefore $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$, as required.

Remark Let p be an odd prime number. It follows from Theorem 1.28 that there exists a primitive root g modulo p. Moreover the congruence class of

 $g \mod p$ is of order p-1. It follows that $g^j \equiv g^k \pmod{p}$, where j and k are positive integers, if and only if j-k is divisible by p-1. But p-1 is even. Thus if $g^j \equiv g^k$ then j-k is even. It follows easily from this that an integer x is a quadratic residue of p if and only if $x \equiv g^k \pmod{p}$ for some even integer k. The results of Theorem 1.33 and Lemma 1.35 follow easily from this fact.

Let p be an odd prime number, and let m = (p-1)/2. Then each integer not divisible by p is congruent to exactly one of the integers $\pm 1, \pm 2, \ldots, \pm m$.

The following lemma was proved by Gauss.

Lemma 1.38 Let p be an odd prime number, let m = (p-1)/2, and let x be an integer that is not divisible by p. Then $\left(\frac{x}{p}\right) = (-1)^r$, where r is the number of pairs (j, u) of integers satisfying $1 \le j \le m$ and $1 \le u \le m$ for which $xj \equiv -u \pmod{p}$.

Proof For each integer j satisfying $1 \leq j \leq m$ there is a unique integer u_j satisfying $1 \leq u_j \leq m$ such that $xj \equiv e_j u_j \pmod{p}$ with $e_j = \pm 1$. Then $e_1 e_2 \cdots e_m = (-1)^r$.

If j and k are integers between 1 and m and if $j \neq k$, then $j \not\equiv k \pmod{p}$ and $j \not\equiv -k \pmod{p}$. But then $xj \not\equiv xk \pmod{p}$ and $xj \not\equiv -xk \pmod{p}$ since x is not divisible by p. Thus if $1 \leq j \leq m, 1 \leq k \leq m$ and $j \neq k$ then $u_j \neq u_k$. It follows that each integer between 1 and m occurs exactly once in the list u_1, u_2, \ldots, u_m , and therefore $u_1u_2 \cdots u_m = m!$. Thus if we multiply the congruences $xj \equiv e_ju_j \pmod{p}$ for $j = 1, 2, \ldots, m$ we obtain the congruence $x^m m! \equiv (-1)^r m! \pmod{p}$. But m! is not divisible by p, since p is prime and m < p. It follows that $x^m \equiv (-1)^r \pmod{p}$. But $x^m \equiv \left(\frac{x}{p}\right) \pmod{p}$ by Lemma 1.35. Therefore $\left(\frac{x}{p}\right) \equiv (-1)^r \pmod{p}$, and hence $\left(\frac{x}{p}\right) = (-1)^r$, as required.

Let n be an odd integer. Then n = 2k + 1 for some integer k. Then $n^2 = 4(k^2 + k) + 1$, and $k^2 + k$ is an even integer. It follows that if n is an odd integer then $n^2 \equiv 1 \pmod{8}$, and hence $(-1)^{(n^2-1)/8} = \pm 1$.

Theorem 1.39 Let p be an odd prime number. Then
$$\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$$

Proof The value of $(-1)^{(p^2-1)/8}$ is determined by the congruence class of p modulo 8. Indeed $(-1)^{(p^2-1)/8} = 1$ when $p \equiv 1 \pmod{8}$ or $p \equiv -1 \pmod{8}$, and $(-1)^{(p^2-1)/8} = -1$ when $p \equiv 3 \pmod{8}$ or $p \equiv -3 \pmod{8}$.

Let m = (p-1)/2. It follows from Lemma 1.38 that $\left(\frac{2}{p}\right) = (-1)^r$, where r is the number of integers x between 1 and m for which 2x is not congruent modulo p to any integer between 1 and m. But the integers x with this property are those for which $m/2 < x \le m$. Thus r = m/2 if m is even, and r = (m+1)/2 if m is odd.

If $p \equiv 1 \pmod{8}$ then *m* is divisible by 4 and hence *r* is even. If $p \equiv 3 \pmod{8}$ then $m \equiv 1 \pmod{4}$ and hence *r* is odd. If $p \equiv 5 \pmod{8}$ then $m \equiv 2 \pmod{4}$ and hence *r* is odd. If $p \equiv 7 \pmod{8}$ then $m \equiv 3 \pmod{4}$ and hence *r* is even. Therefore $\left(\frac{2}{p}\right) = 1$ when $p \equiv 1 \pmod{8}$ and when $p \equiv 7 \pmod{8}$, and $\left(\frac{2}{p}\right) = -1$ when $p \equiv 3 \pmod{8}$ and $p \equiv 5 \pmod{8}$. Thus $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$ for all odd prime numbers *p*, as required.

1.14 Quadratic Reciprocity

Theorem 1.40 (Quadratic Reciprocity Law) Let p and q be distinct odd prime numbers. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}$$

Proof Let S be the set of all ordered pairs (x, y) of integers x and y satisfying $1 \le x \le m$ and $1 \le y \le n$, where p = 2m + 1 and q = 2n + 1. We must prove that $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{mn}$.

First we show that $\left(\frac{p}{q}\right) = (-1)^a$, where *a* is the number of pairs (x, y) of integers in *S* satisfying $-n \leq py - qx \leq -1$. If (x, y) is a pair of integers in *S* satisfying $-n \leq py - qx \leq -1$, and if z = qx - py, then $1 \leq y \leq n$, $1 \leq z \leq n$ and $py \equiv -z \pmod{q}$. On the other hand, if (y, z) is a pair of integers such that $1 \leq y \leq n$, $1 \leq z \leq n$ and $py \equiv -z \pmod{q}$ then there is a unique positive integer *x* such that z = qx - py. Moreover $qx = py + z \leq (p+1)n = 2n(m+1)$ and q > 2n, and therefore x < m+1. It follows that the pair (x, y) of integers is in *S*, and $-n \leq py - qx \leq -1$. We deduce that the number *a* of pairs (x, y) of integers in *S* satisfying $1 \leq y \leq n$, $1 \leq z \leq n$ and $py \equiv -z \pmod{q}$. Similarly $\left(\frac{q}{p}\right) = (-1)^b$, where *b* is the number of pairs (x, y) in *S* satisfying $1 \leq py - qx \leq m$.

If x and y are integers satisfying py - qx = 0 then x is divisible by p and y is divisible by q. It follows from this that $py - qx \neq 0$ for all pairs (x, y) in S. The total number of pairs (x, y) in S is mn. Therefore mn = a+b+c+d, where c is the number of pairs (x, y) in S satisfying py - qx < -n and d is the number of pairs (x, y) in S satisfying py - qx > m.

Let (x, y) be a pair of integers in S, and let and let x' = m + 1 - x and y' = n + 1 - y. Then the pair (x', y') also belongs to S, and py' - qx' = m - n - (py - qx). It follows that py - qx > m if and only if py' - qx' < -n. Thus there is a one-to-one correspondence between pairs (x, y) in S satisfying py - qx > m and pairs (x', y') in S satisfying py' - qx' < -n, where (x', y') = (m + 1 - x, n + 1 - y) and (x, y) = (m + 1 - x', n + 1 - y'). Therefore c = d, and thus mn = a + b + 2c. But then $(-1)^{mn} = (-1)^a (-1)^b = \left(\frac{p}{q}\right) \left(\frac{q}{p}\right)$, as required.

Corollary 1.41 Let p and q be distinct odd prime numbers. If $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$ then $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$. If $p \equiv 3 \pmod{4}$ and $q \equiv 3 \pmod{4}$ then $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$.

Example We wish to determine whether or not 654 is a quadratic residue modulo the prime number 239. Now $654 = 2 \times 239 + 176$ and thus $654 \equiv 176 \pmod{239}$. Also $176 = 16 \times 11$. Therefore

$$\left(\frac{654}{239}\right) = \left(\frac{176}{239}\right) = \left(\frac{16}{239}\right) \left(\frac{11}{239}\right) = \left(\frac{4}{239}\right)^2 \left(\frac{11}{239}\right) = \left(\frac{11}{239}\right)$$

But $\left(\frac{11}{239}\right) = -\left(\frac{239}{11}\right)$ by the Law of Quadratic Reciprocity. Also $239 \equiv 8 \pmod{11}$. Therefore

$$\left(\frac{239}{11}\right) = \left(\frac{8}{11}\right) = \left(\frac{2}{11}\right)^3 = (-1)^3 = -1$$

It follows that $\left(\frac{654}{239}\right) = +1$ and thus 654 is a quadratic residue of 239, as required.

1.15 The Jacobi Symbol

Let s be an odd positive integer. If s > 1 then $s = p_1 p_2 \cdots p_m$, where p_1, p_2, \ldots, p_m are odd prime numbers. For each integer x we define the *Jacobi*

symbol $\left(\frac{x}{s}\right)$ by

$$\left(\frac{x}{s}\right) = \prod_{i=1}^{m} \left(\frac{x}{p_i}\right)$$

(i.e., $\left(\frac{x}{s}\right)$ is the product of the Legendre symbols $\left(\frac{x}{p_i}\right)$ for i = 1, 2, ..., m.) We define $\left(\frac{x}{1}\right) = 1$.

Note that the Jacobi symbol can have the values 0, +1 and -1.

Lemma 1.42 Let s be an odd positive integer, and let x be an integer. Then $\left(\frac{x}{s}\right) \neq 0$ if and only if x is coprime to s.

Proof Let $s = p_1 p_2 \cdots p_m$, where p_1, p_2, \ldots, p_m are odd prime numbers. Suppose that x is coprime to s. Then x is coprime to each prime factor of s, and hence $\left(\frac{x}{p_i}\right) = \pm 1$ for $i = 1, 2, \ldots, m$. It follows that $\left(\frac{x}{s}\right) = \pm 1$ and thus $\left(\frac{x}{s}\right) \neq 0$.

Next suppose that x is not coprime to s. Let p be a prime factor of the greatest common divisor of x and s. Then $p = p_i$, and hence $\left(\frac{x}{p_i}\right) = 0$ for some integer i between 1 and m. But then $\left(\frac{x}{s}\right) = 0$.

Lemma 1.43 Let s be an odd positive integer, and let x and x' be integers. Suppose that $x \equiv x' \pmod{s}$. Then $\left(\frac{x}{s}\right) = \left(\frac{x'}{s}\right)$.

Proof If $x \equiv x' \pmod{s}$ then $x \equiv x' \pmod{p}$ for each prime factor p of s, and therefore $\left(\frac{x}{p}\right) = \left(\frac{x'}{p}\right)$ for each prime factor of s. Therefore $\left(\frac{x}{s}\right) = \left(\frac{x'}{s}\right)$.

Lemma 1.44 Let x and y be integers, and let s and t be odd positive integers. Then $\left(\frac{xy}{s}\right) = \left(\frac{x}{s}\right) \left(\frac{y}{s}\right)$ and $\left(\frac{x}{st}\right) = \left(\frac{x}{s}\right) \left(\frac{x}{t}\right)$.

Proof $\left(\frac{xy}{p}\right) = \left(\frac{x}{p}\right)\left(\frac{y}{p}\right)$ for all prime numbers p (Corollary 1.34). The required result therefore follows from the definition of the Jacobi symbol.

Lemma 1.45 $\left(\frac{x^2}{s}\right) = 1$ and $\left(\frac{x}{s^2}\right) = 1$ for for all odd positive integers s and all integers x that are coprime to s.

Proof This follows directly from Lemma 1.44 and Lemma 1.42.

Theorem 1.46
$$\left(\frac{-1}{s}\right) = (-1)^{(s-1)/2}$$
 for all odd positive integers s.

Proof Let $f(s) = (-1)^{(s-1)/2} \left(\frac{-1}{s}\right)$ for each odd positive integer s. We must prove that f(s) = 1 for all odd positive integers s. If s and t are odd positive integers then

$$(st - 1) - (s - 1) - (t - 1) = st - s - t + 1 = (s - 1)(t - 1)$$

But (s-1)(t-1) is divisible by 4, since s and t are odd positive integers. Therefore $(st-1)/2 \equiv (s-1)/2 + (t-1)/2 \pmod{2}$, and hence $(-1)^{(st-1)/2} = (-1)^{(s-1)/2}(-1)^{(t-1)/2}$. It now follows from Lemma 1.44 that f(st) = f(s)f(t) for all odd numbers s and t. But f(p) = 1 for all prime numbers p, since $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$ (Lemma 1.37). It follows that f(s) = 1 for all odd positive integers s, as required.

Theorem 1.47 $\left(\frac{2}{s}\right) = (-1)^{(s^2-1)/8}$ for all odd positive integers s.

Proof Let $g(s) = (-1)^{(s^2-1)/8} \left(\frac{2}{s}\right)$ for each odd positive integer s. We must prove that g(s) = 1 for all odd positive integers s. If s and t are odd positive integers then

$$(s^{2}t^{2}-1) - (s^{2}-1) - (t^{2}-1) = s^{2}t^{2} - s^{2} - t^{2} + 1 = (s^{2}-1)(t^{2}-1).$$

But $(s^2 - 1)(t^2 - 1)$ is divisible by 64, since $s^2 \equiv 1 \pmod{8}$ and $t^2 \equiv 1 \pmod{8}$. (mod 8). Therefore $(s^2t^2 - 1)/8 \equiv (s^2 - 1)/8 + (t^2 - 1)/8 \pmod{8}$, and hence $(-1)^{(s^2t^2-1)/8} = (-1)^{(s^2-1)/8}(-1)^{(t^2-1)/8}$. It now follows from Lemma 1.44 that g(st) = g(s)g(t) for all odd numbers s and t. But g(p) = 1 for all prime numbers p, since $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$ (Lemma 1.39). It follows that g(s) = 1 for all odd positive integers, as required.

Theorem 1.48 $\left(\frac{s}{t}\right)\left(\frac{t}{s}\right) = (-1)^{(s-1)(t-1)/4}$ for all odd positive integers s and t.

Proof Let $h(s,t) = (-1)^{(s-1)(t-1)/4} {s \choose t} {t \choose s}$. We must prove that h(s,t) = 1 for all odd positive integers s and t. Now $h(s_1s_2,t) = h(s_1,t)h(s_2,t)$ and $h(s,t_1)h(s,t_2) = h(s,t_1t_2)$ for all odd positive integers s, s_1, s_2, t, t_1 and t_2 .

Also h(s,t) = 1 when s and t are prime numbers by the Law of Quadratic Reciprocity (Theorem 1.40). It follows from this that h(s,t) = 1 when s is an odd positive integer and t is a prime number, since any odd positive integer is a product of odd prime numbers. But then h(s,t) = 1 for all odd positive integers s and t, as required.

The results proved above can be used to calculate Jacobi symbols, as in the following example.

Example We wish to determine whether or not 442 is a quadratic residue modulo the prime number 751. Now $\left(\frac{442}{751}\right) = \left(\frac{2}{751}\right)\left(\frac{221}{751}\right)$. Also $\left(\frac{2}{751}\right) = 1$, since $751 \equiv 7 \pmod{8}$ (Theorem 1.39). Also $\left(\frac{221}{751}\right) = \left(\frac{751}{221}\right)$ (Theorem 1.48), and $751 \equiv 88 \pmod{221}$). Thus

$$\left(\frac{442}{751}\right) = \left(\frac{751}{221}\right) = \left(\frac{88}{221}\right) = \left(\frac{2}{221}\right)^3 \left(\frac{11}{221}\right)$$

Now $\left(\frac{2}{221}\right) = -1$, since $221 \equiv 5 \pmod{8}$ (Theorem 1.47). Also it follows from Theorem 1.48 that

$$\left(\frac{11}{221}\right) = \left(\frac{221}{11}\right) = \left(\frac{1}{11}\right) = 1,$$

since $221 \equiv 1 \pmod{4}$ and $221 \equiv 1 \pmod{11}$. Therefore $\left(\frac{442}{751}\right) = -1$, and thus 442 is a quadratic non-residue of 751. The number 221 is not prime, since $221 = 13 \times 17$. Thus the above calculation made use of Jacobi symbols that are not Legendre symbols.