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1 Topics in Number Theory

1.1 Subgroups of the Integers

A subset S of the set Z of integers is a subgroup of Z if 0 ∈ S, −x ∈ S and
x+ y ∈ S for all x ∈ S and y ∈ S.

It is easy to see that a non-empty subset S of Z is a subgroup of Z if and
only if x− y ∈ S for all x ∈ S and y ∈ S.

Let m be an integer, and let mZ = {mn : n ∈ Z}. Then mZ (the set of
integer multiples of m) is a subgroup of Z.

Theorem 1.1 Let S be a subgroup of Z. Then S = mZ for some non-
negative integer m.

Proof If S = {0} then S = mZ with m = 0. Suppose that S 6= {0}. Then S
contains a non-zero integer, and therefore S contains a positive integer (since
−x ∈ S for all x ∈ S). Let m be the smallest positive integer belonging to S.
A positive integer n belonging to S can be written in the form n = qm + r,
where q is a positive integer and r is an integer satisfying 0 ≤ r < m. Then
qm ∈ S (because qm = m+m+ · · ·+m). But then r ∈ S, since r = n− qm.
It follows that r = 0, since m is the smallest positive integer in S. Therefore
n = qm, and thus n ∈ mZ. It follows that S = mZ, as required.

1.2 Greatest Common Divisors

Definition Let a1, a2, . . . , ar be integers, not all zero. A common divisor
of a1, a2, . . . , ar is an integer that divides each of a1, a2, . . . , ar. The greatest
common divisor of a1, a2, . . . , ar is the greatest positive integer that divides
each of a1, a2, . . . , ar. The greatest common divisor of a1, a2, . . . , ar is denoted
by (a1, a2, . . . , ar).

Theorem 1.2 Let a1, a2, . . . , ar be integers, not all zero. Then there exist
integers u1, u2, . . . , ur such that

(a1, a2, . . . , ar) = u1a1 + u2a2 + · · ·+ urar.

where (a1, a2, . . . , ar) is the greatest common divisor of a1, a2, . . . , ar.

Proof Let S be the set of all integers that are of the form

n1a1 + n2a2 + · · ·+ nrar

for some n1, n2, . . . , nr ∈ Z. Then S is a subgroup of Z. It follows that
S = mZ for some non-negative integer m (Theorem 1.1). Then m is a
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common divisor of a1, a2, . . . , ar, (since ai ∈ S for i = 1, 2, . . . , r). Moreover
any common divisor of a1, a2, . . . , ar is a divisor of each element of S and is
therefore a divisor of m. It follows that m is the greatest common divisor
of a1, a2, . . . , ar. But m ∈ S, and therefore there exist integers u1, u2, . . . , ur
such that

(a1, a2, . . . , ar) = u1a1 + u2a2 + · · ·+ urar,

as required.

Definition Let a1, a2, . . . , ar be integers, not all zero. If the greatest com-
mon divisor of a1, a2, . . . , ar is 1 then these integers are said to be coprime.
If integers a and b are coprime then a is said to be coprime to b. (Thus a is
coprime to b if and only if b is coprime to a.)

Corollary 1.3 Let a1, a2, . . . , ar be integers, not all zero, Then a1, a2, . . . , ar
are coprime if and only if there exist integers u1, u2, . . . , ur such that

1 = u1a1 + u2a2 + · · ·+ urar.

Proof If a1, a2, . . . , ar are coprime then the existence of the required integers
u1, u2, . . . , ur follows from Theorem 1.2. On the other hand, if there exist
integers u1, u2, . . . , ur with the required property then any common divisor
of a1, a2, . . . , ar must be a divisor of 1, and therefore a1, a2, . . . , ar must be
coprime.

1.3 The Euclidean Algorithm

Let a and b be positive integers with a > b. Let r0 = a and r1 = b. If b
does not divide a then let r2 be the remainder on dividing a by b. Then
a = q1b + r2, where q1 and r2 are positive integers and 0 < r2 < b. If r2

does not divide b then let r3 be the remainder on dividing b by r2. Then
b = q2r2 + r3, where q2 and r3 are positive integers and 0 < r3 < r2. If
r3 does not divide r2 then let r4 be the remainder on dividing r2 by r3.
Then r2 = q3r3 + r4, where q3 and r4 are positive integers and 0 < r4 < r3.
Continuing in this fashion, we construct positive integers r0, r1, . . . , rn such
that r0 = a, r1 = b and ri is the remainder on dividing ri−2 by ri−1 for
i = 2, 3, . . . , n. Then ri−2 = qi−1ri−1 + ri, where qi−1 and ri are positive
integers and 0 < ri < ri−1. The algorithm for constructing the positive
integers r0, r1, . . . , rn terminates when rn divides rn−1. Then rn−1 = qnrn for
some positive integer qn. (The algorithm must clearly terminate in a finite
number of steps, since r0 > r1 > r2 > · · · > rn.) We claim that rn is the
greatest common divisor of a and b.
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Any divisor of rn is a divisor of rn−1, because rn−1 = qnrn. Moreover if
2 ≤ i ≤ n then any common divisor of ri and ri−1 is a divisor of ri−2, because
ri−2 = qi−1ri−1 + ri. If follows that every divisor of rn is a divisor of all the
integers r0, r1, . . . , rn. In particular, any divisor of rn is a common divisor of
a and b. In particular, rn is itself a common divisor of a and b.

If 2 ≤ i ≤ n then any common divisor of ri−2 and ri−1 is a divisor of ri,
because ri = ri−2− qi−1ri−1. It follows that every common divisor of a and b
is a divisor of all the integers r0, r1, . . . , rn. In particular any common divisor
of a and b is a divisor of rn. It follows that rn is the greatest common divisor
of a and b.

There exist integers ui and vi such that ri = uia+ vib for i = 1, 2, . . . , n.
Indeed ui = ui−2−qi−1ui−1 and vi = vi−2−qi−1vi−1 for each integer i between 2
and n, where u0 = 1, v0 = 0, u1 = 0 and v1 = 1. In particular rn = una+vnb.

The algorithm described above for calculating the greatest common di-
visor (a, b) of two positive integers a and b is referred to as the Euclidean
algorithm. It also enables one to calculate integers u and v such that (a, b) =
ua+ vb.

Example We calculate the greatest common divisor of 425 and 119. Now

425 = 3× 119 + 68

119 = 68 + 51

68 = 51 + 17

51 = 3× 17.

It follows that 17 is the greatest common divisor of 425 and 119. Moreover

17 = 68− 51 = 68− (119− 68)

= 2× 68− 119 = 2× (425− 3× 119)− 119

= 2× 425− 7× 119.

1.4 Prime Numbers

Definition A prime number is an integer p greater than one with the prop-
erty that 1 and p are the only positive integers that divide p.

Let p be a prime number, and let x be an integer. Then the greatest
common divisor (p, x) of p and x is a divisor of p, and therefore either (p, x) =
p or else (p, x) = 1. It follows that either x is divisible by p or else x is coprime
to p.
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Theorem 1.4 Let p be a prime number, and let x and y be integers. If p
divides xy then either p divides x or else p divides y.

Proof Suppose that p divides xy but p does not divide x. Then p and x
are coprime, and hence there exist integers u and v such that 1 = up + vx
(Corollary 1.3). Then y = upy + vxy. It then follows that p divides y, as
required.

Corollary 1.5 Let p be a prime number. If p divides a product of integers
then p divides at least one of the factors of the product.

Proof Let a1, a2, . . . , ak be integers, where k > 1. Suppose that p divides
a1a2 · · · ak. Then either p divides ak or else p divides a1a2 · · · ak−1. The
required result therefore follows by induction on the number k of factors in
the product.

1.5 The Fundamental Theorem of Arithmetic

Lemma 1.6 Every integer greater than one is a prime number or factors as
a product of prime numbers.

Proof Let n be an integer greater than one. Suppose that every integer m
satisfying 1 < m < n is a prime number or factors as a product of prime
numbers. If n is not a prime number then n = ab for some integers a and
b satisfying 1 < a < n and 1 < b < n. Then a and b are prime numbers or
products of prime numbers. Thus if n is not itself a prime number then n
must be a product of prime numbers. The required result therefore follows
by induction on n.

An integer greater than one that is not a prime number is said to be a
composite number.

Let n be an composite number. We say that n factors uniquely as a prod-
uct of prime numbers if, given prime numbers p1, p2, . . . , pr and q1, q2, . . . , qs
such that

n = p1p2 · · · pr = q1q2 . . . qs,

the number of times a prime number occurs in the list p1, p2, . . . , pr is equal
to the number of times it occurs in the list q1, q2, . . . , qs. (Note that this
implies that r = s.)

Theorem 1.7 (The Fundamental Theorem of Arithmetic) Every composite
number greater than one factors uniquely as a product of prime numbers.
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Proof Let n be a composite number greater than one. Suppose that every
composite number greater than one and less than n factors uniquely as a
product of prime numbers. We show that n then factors uniquely as a product
of prime numbers. Suppose therefore that

n = p1p2 · · · pr = q1q2 . . . , qs,

where p1, p2, . . . , pr and q1, q2, . . . , qs are prime numbers, p1 ≤ p2 ≤ · · · ≤ pr
and q1 ≤ q2 ≤ · · · ≤ qs. We must prove that r = s and pi = qi for all
integers i between 1 and r.

Let p be the smallest prime number that divides n. If a prime number
divides a product of integers then it must divide at least one of the factors
(Corollary 1.5). It follows that p must divide pi and thus p = pi for some
integer i between 1 and r. But then p = p1, since p1 is the smallest of the
prime numbers p1, p2, . . . , pr. Similarly p = q1. Therefore p = p1 = q1. Let
m = n/p. Then

m = p2p3 · · · pr = q2q3 · · · qs.

But then r = s and pi = qi for all integers i between 2 and r, because every
composite number greater than one and less than n factors uniquely as a
product of prime numbers. It follows that n factors uniquely as a product of
prime numbers. The required result now follows by induction on n. (We have
shown that if all composite numbers m satisfying 1 < m < n factor uniquely
as a product of prime numbers, then so do all composite numbers m satisfying
1 < m < n+ 1.)

1.6 The Infinitude of Primes

Theorem 1.8 (Euclid) The number of prime numbers is infinite.

Proof Let p1, p2, . . . , pr be prime numbers, let m = p1p2 · · · pr + 1. Now pi
does not divide m for i = 1, 2, . . . , r, since if pi were to divide m then it would
divide m− p1p2 · · · pr and thus would divide 1. Let p be a prime factor of m.
Then p must be distinct from p1, p2, . . . , pr. Thus no finite set {p1, p2, . . . , pr}
of prime numbers can include all prime numbers.

1.7 Congruences

Let m be a positive integer. Integers x and y are said to be congruent
modulo m if x−y is divisible by m. If x and y are congruent modulo m then
we denote this by writing x ≡ y (modm).
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The congruence class of an integer x modulo m is the set of all integers
that are congruent to x modulo m.

Let x, y and z be integers. Then x ≡ x (modm). Also x ≡ y (modm)
if and only if y ≡ x (modm). If x ≡ y (modm) and y ≡ z (modm) then
x ≡ z (modm). Thus congruence modulo m is an equivalence relation on
the set of integers.

Lemma 1.9 Let m be a positive integer, and let x, x′, y and y′ be integers.
Suppose that x ≡ x′ (modm) and y ≡ y′ (modm). Then x + y ≡ x′ + y′

(modm) and xy ≡ x′y′ (modm).

Proof The result follows immediately from the identities

(x+ y)− (x′ + y′) = (x− x′) + (y − y′),
xy − x′y′ = (x− x′)y + x′(y − y′).

Lemma 1.10 Let x, y and m be integers with m 6= 0. Suppose that m
divides xy and that m and x are coprime. Then m divides y.

Proof There exist integers a and b such that 1 = am + bx, since m and x
are coprime (Corollary 1.3). Then y = amy + bxy, and m divides xy, and
therefore m divides y, as required.

Lemma 1.11 Let m be a positive integer, and let a, x and y be integers
with ax ≡ ay (modm). Suppose that m and a are coprime. Then x ≡ y
(modm).

Proof If ax ≡ ay (modm) then a(x − y) is divisible by m. But m and a
are coprime. It therefore follows from Lemma 1.10 that x− y is divisible by
m, and thus x ≡ y (modm), as required.

Lemma 1.12 Let x and m be non-zero integers. Suppose that x is coprime
to m. Then there exists an integer y such that xy ≡ 1 (modm). Moreover
y is coprime to m.

Proof There exist integers y and k such that xy + mk = 1, since x and m
are coprime (Corollary 1.3). Then xy ≡ 1 (modm). Moreover any common
divisor of y and m must divide xy and therefore must divide 1. Thus y is
coprime to m, as required.

Lemma 1.13 Let m be a positive integer, and let a and b be integers, where
a is coprime to m. Then there exist integers x that satisfy the congruence
ax ≡ b (modm). Moreover if x and x′ are integers such that ax ≡ b
(modm) and ax′ ≡ b (modm) then x ≡ x′ (modm).
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Proof There exists an integer c such that ac ≡ 1 (modm), since a is coprime
to m (Lemma 1.12). Then ax ≡ b (modm) if and only if x ≡ cb (modm).
The result follows.

Lemma 1.14 Let a1, a2, . . . , ar be integers, and let x be an integer that is
coprime to ai for i = 1, 2, . . . , r. Then x is coprime to the product a1a2 · · · ar
of the integers a1, a2, . . . , ar.

Proof Let p be a prime number which divides the product a1a2 · · · ar. Then
p divides one of the factors a1, a2, . . . , ar (Corollary 1.5). It follows that p
cannot divide x, since x and ai are coprime for i = 1, 2, . . . , r. Thus no prime
number is a common divisor of x and the product a1a2 · · · ar. It follows
that the greatest common divisor of x and a1a2 · · · ar is 1, since this greatest
common divisor cannot have any prime factors. Thus x and a1a2 · · · ar are
coprime, as required.

Let m be a positive integer. For each integer x, let [x] denote the congru-
ence class of x modulo m. If x, x′, y and y′ are integers and if x ≡ x′ (modm)
and y ≡ y′ (modm) then xy ≡ x′y′ (modm). It follows that there is a
well-defined operation of multiplication defined on congruence classes of in-
tegers modulo m, where [x][y] = [xy] for all integers x and y. This operation
is commutative and associative, and [x][1] = [x] for all integers x. If x is
an integer coprime to m, then it follows from Lemma 1.12 that there exists
an integer y coprime to m such that xy ≡ 1 (modm). Then [x][y] = [1].
Therefore the set Z∗m of congruence classes modulo m of integers coprime to
m is an Abelian group (with multiplication of congruence classes defined as
above).

1.8 The Chinese Remainder Theorem

Let I be a set of integers. The integers belonging to I are said to be pairwise
coprime if any two distinct integers belonging to I are coprime.

Proposition 1.15 Let m1,m2, . . . ,mr be non-zero integers that are pairwise
coprime. Let x be an integer that is divisible by mi for i = 1, 2, . . . , r. Then
x is divisible by the product m1m2 · · ·mr of the integers m1,m2, . . . ,mr.

Proof For each integer k between 1 and r let Pk be the product of the
integers mi with 1 ≤ i ≤ k. Then P1 = m1 and Pk = Pk−1mk for k =
2, 3, . . . , r. Let x be a positive integer that is divisible by mi for i = 1, 2, . . . , r.
We must show that Pr divides x. Suppose that Pk−1 divides x for some
integer k between 2 and r. Let y = x/Pk−1. Then mk and Pk−1 are coprime
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(Lemma 1.14) and mk divides Pk−1y. It follows from Lemma 1.10 that mk

divides y. But then Pk divides x, since Pk = Pk−1mk and x = Pk−1y. On
successively applying this result with k = 2, 3, . . . , r we conclude that Pr
divides x, as required.

Theorem 1.16 (Chinese Remainder Theorem) Let m1,m2, . . . ,mr be pair-
wise coprime positive integers. Then, given any integers x1, x2, . . . , xr, there
exists an integer z such that z ≡ xi (modmi) for i = 1, 2, . . . , r. More-
over if z′ is any integer satisfying z′ ≡ xi (modmi) for i = 1, 2, . . . , r then
z′ ≡ z (modm), where m = m1m2 · · ·mr.

Proof Let m = m1m2 · · ·mr, and let si = m/mi for i = 1, 2, . . . , r. Note
that si is the product of the integers mj with j 6= i, and is thus a product
of integers coprime to mi. It follows from Lemma 1.14 that mi and si are
coprime for i = 1, 2, . . . , r. Therefore there exist integers ai and bi such
that aimi + bisi = 1 for i = 1, 2, . . . , r (Corollary 1.3). Let ui = bisi for
i = 1, 2, . . . , r. Then ui ≡ 1 (modmi), and ui ≡ 0 (modmj) when j 6= i.
Thus if

z = x1u1 + x2u2 + · · ·xrur
then z ≡ xi (modmi) for i = 1, 2, . . . , r.

Now let z′ be an integer with z′ ≡ xi (modmi) for i = 1, 2, . . . , r. Then
z′ − z is divisible by mi for i = 1, 2, . . . , r. It follows from Proposition 1.15
that z′−z is divisible by the product m of the integers m1,m2, . . . ,mr. Then
z′ ≡ z (modm), as required.

1.9 The Euler Totient Function

Let n be a positive integer. We define ϕ(n) to be the number of integers x
satisfying 0 ≤ x < n that are coprime to n. The function ϕ on the set of
positive integers is referred to as the Euler totient function.

Every integer (including zero) is coprime to 1, and therefore ϕ(1) = 1.
Let p be a prime number. Then ϕ(p) = p− 1, since every positive integer

less than p is coprime to p. Moreover ϕ(pk) = pk − pk−1 for all positive
integers k, since there are pk−1 integers x satisfying 0 ≤ x < pk that are
divisible by p, and the integers coprime to pk are those that are not divisible
by p.

Theorem 1.17 Let m1 and m2 be positive integers. Suppose that m1 and
m2 are coprime. Then ϕ(m1m2) = ϕ(m1)ϕ(m2).
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Proof Let x be an integer satisfying 0 ≤ x < m1 that is coprime to m1,
and let y be an integer satisfying 0 ≤ y < m2 that is coprime to m2. It
follows from the Chinese Remainder Theorem (Theorem 1.16) that there
exists exactly one integer z satisfying 0 ≤ z < m1m2 such that z ≡ x
(modm1) and z ≡ y (modm2). Moreover z must then be coprime to m1

and to m2, and must therefore be coprime to m1m2. Thus every integer z
satisfing 0 ≤ z < m1m2 that is coprime to m1m2 is uniquely determined by
its congruence classes modulo m1 and m2, and the congruence classes of z
modulo m1 and m2 contain integers coprime to m1 and m2 respectively. Thus
the number ϕ(m1m2) of integers z satisfying 0 ≤ z < m1m2 that are coprime
to m1m2 is equal to ϕ(m1)ϕ(m2), since ϕ(m1) is the number of integers x
satisfying 0 ≤ x < m1 that are coprime to m1 and ϕ(m2) is the number of
integers y satisfying 0 ≤ y < m2 that are coprime to m2.

Corollary 1.18 ϕ(n) = n
∏
p|n

(
1− 1

p

)
, for all positive integers n, where

∏
p|n

(
1− 1

p

)
denotes the product of 1 − 1

p
taken over all prime numbers p

that divide n.

Proof Let n = pk1
1 p

k2
2 · · · pkmm , where p1, p2, . . . , pm are prime numbers and

k1, k2, . . . , km are positive integers. Then ϕ(n) = ϕ(pk1
1 )ϕ(pk2

2 ) · · ·ϕ(pkmm ), and

ϕ(pkii ) = pkii (1− (1/pi)) for i = 1, 2, . . . ,m. Thus ϕ(n) = n

m∏
i=1

(
1− 1

pi

)
, as

required.

Let f be any function defined on the set of positive integers, and let n be
a positive integer. We denote the sum of the values of f(d) over all divisors d

of n by
∑
d|n

f(d).

Lemma 1.19 Let n be a positive integer. Then
∑
d|n

ϕ(d) = n.

Proof If x is an integer satisfying 0 ≤ x < n then (x, n) = n/d for some

divisor d of n. It follows that n =
∑
d|n

nd, where nd is the number of integers x

satisfying 0 ≤ x < n for which (x, n) = n/d. Thus it suffices to show that
nd = ϕ(d) for each divisor d of n.

Let d be a divisor of n, and let a = n/d. Given any integer x satisfying
0 ≤ x < n that is divisible by a, there exists an integer y satisfying 0 ≤ y < d
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such that x = ay. Then (x, n) is a multiple of a. Moreover a multiple ae
of a divides both x and n if and only if e divides both y and d. Therefore
(x, n) = a(y, d). It follows that the integers x satisfying 0 ≤ x < n for
which (x, n) = a are those of the form ay, where y is an integer, 0 ≤ y < d
and (y, d) = 1. It follows that there are exactly ϕ(d) integers x satisfying

0 ≤ x < n for which (x, n) = n/d, and thus nd = ϕ(d) and n =
∑
d|n

ϕ(d), as

required.

1.10 The Theorems of Fermat, Wilson and Euler

Theorem 1.20 (Fermat) Let p be a prime number. Then xp ≡ x (mod p)
for all integers x. Moreover if x is coprime to p then xp−1 ≡ 1 (mod p).

We shall give three proofs of this theorem below.

Lemma 1.21 Let p be a prime number. Then the binomial coefficient

(
p

k

)
is divisible by p for all integers k satisfying 0 < k < p.

Proof The binomial coefficient is given by the formula

(
p

k

)
=

p!

(p− k)!k!
.

Thus if 0 < k < p then

(
p

k

)
=
pm

k!
, where m =

(p− 1)!

(p− k)!
. Thus if 0 < k < p

then k! divides pm. Also k! is coprime to p. It follows that k! divides m

(Lemma 1.10), and therefore the binomial coefficient

(
p

k

)
is a multiple of

p.

First Proof of Theorem 1.20 Let p be prime number. Then

(x+ 1)p =

p∑
k=0

(
p

k

)
xk.

It then follows from Lemma 1.21 that (x + 1)p ≡ xp + 1 (mod p). Thus
if f(x) = xp − x then f(x + 1) ≡ f(x) (mod p) for all integers x, since
f(x + 1) − f(x) = (x + 1)p − xp − 1. But f(0) ≡ 0 (mod p). It follows by
induction on |x| that f(x) ≡ 0 (mod p) for all integers x. Thus xp ≡ x
(mod p) for all integers x. Moreover if x is coprime to p then it follows from
Lemma 1.11 that xp−1 ≡ 1 (mod p), as required.
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Second Proof of Theorem 1.20 Let x be an integer. If x is divisible by
p then x ≡ 0 (mod p) and xp ≡ 0 (mod p).

Suppose that x is coprime to p. If j is an integer satisfying 1 ≤ j ≤ p− 1
then j is coprime to p and hence xj is coprime to p. It follows that there exists
a unique integer uj such that 1 ≤ uj ≤ p−1 and xj ≡ uj (mod p). If j and k
are integers between 1 and p−1 and if j 6= k then uj 6= uk. It follows that each
integer between 1 and p − 1 occurs exactly once in the list u1, u2, . . . , up−1,
and therefore u1u2 · · ·up−1 = (p − 1)!. Thus if we multiply together the left
hand sides and right hand sides of the congruences xj ≡ uj (mod p) for
j = 1, 2, . . . , p− 1 we obtain the congruence xp−1(p− 1)! ≡ (p− 1)! (mod p).
But then xp−1 ≡ 1 (mod p) by Lemma 1.11, since (p − 1)! is coprime to p.
But then xp ≡ x (mod p), as required.

Third Proof of Theorem 1.20 Let p be a prime number. The congruence
classes modulo p of integers coprime to p constitute a group of order p − 1,
where the group operation is multiplication of congruence classes. Now it
follows from Lagrange’s Theorem that that order of any element of a finite
group divides the order of the group. If we apply this result to the group
of congruence classes modulo p of integers coprime to p we find that if an
integer x is not divisible by p then xp−1 ≡ 1 (mod p). It follows that
xp ≡ x (mod p) for all integers x that are not divisible by p. This congruence
also holds for all integers x that are divisible by p.

Theorem 1.22 (Wilson’s Theorem) (p−1)!+1 is divisible by p for all prime
numbers p.

Proof Let p be a prime number. If x is an integer satisfying x2 ≡ 1 (mod p)
then p divides (x− 1)(x+ 1) and hence either p divides either x− 1 or x+ 1.
Thus if 1 ≤ x ≤ p− 1 and x2 ≡ 1 (mod p) then either x = 1 or x = p− 1.

For each integer x satisfying 1 ≤ x ≤ p − 1, there exists exactly one
integer y satisfying 1 ≤ y ≤ p − 1 such that xy ≡ 1 (mod p). Moreover
y 6= x when 2 ≤ x ≤ p − 2. It follows that (p − 2)! is a product of numbers
of the form xy, where x and y are distinct integers between 2 and p − 2
and xy ≡ 1 (mod p). It follows that (p − 2)! ≡ 1 (mod p). But then
(p−1)! ≡ p−1 (mod p), and hence (p−1)!+1 ≡ 0 (mod p), as required.

The following theorem of Euler generalizes Fermat’s Theorem (Theo-
rem 1.20).

Theorem 1.23 (Euler) Let m be a positive integer, and let x be an integer
coprime to m. Then xϕ(m) ≡ 1 (modm).
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First Proof of Theorem 1.23 The result is trivially true when m = 1.
Suppose that m > 1. Let I be the set of all positive integers less than m that
are coprime to m. Then ϕ(m) is by definition the number of integers in I. If y
is an integer coprime to m then so is xy. It follows that, to each integer j in I
there exists a unique integer uj in I such that xj ≡ uj (modm). Moreover if
j ∈ I and k ∈ I and j 6= k then uj 6≡ uk. Therefore I = {uj : j ∈ I}. Thus if
we multiply the left hand sides and right hand sides of the congruences xj ≡
uj (modm) for all j ∈ I we obtain the congruence xϕ(m)z ≡ z (modm),
where z is the product of all the integers in I. But z is coprime to m, since
a product of integers coprime to m is itself coprime to m. It follows from
Lemma 1.11 that xϕ(m) ≡ 1 (modm), as required.

2nd Proof of Theorem 1.23 Let m be a positive integer. Then the con-
gruence classes modulo m of integers coprime to m constitute a group of or-
der ϕ(m), where the group operation is multiplication of congruence classes.
Now it follows from Lagrange’s Theorem that that order of any element of
a finite group divides the order of the group. If we apply this result to the
group of congruence classes modulo m of integers coprime to m we find that
xϕ(m) ≡ 1 (modm), as required.

1.11 Solutions of Polynomial Congruences

Let f be a polynomial with integer coefficients, and let m be a positive
integer. If x and x′ are integers, and if x ≡ x′ (modm), then f(x) ≡
f(x′) (modm). It follows that the set consisting of those integers x which
satisfy the congruence f(x) ≡ 0 (modm) is a union of congruence classes
modulo m. The number of solutions modulo m of the congruence f(x) ≡
0 (modm) is defined to be the number of congruence classes of integers
modulo m such that an integer x satisfies the congruence f(x) ≡ 0 (modm)
if and only if it belongs to one of those congruence classes. Thus a congruence
f(x) ≡ 0 (modm) has n solutions modulo m if and only if there exist n
integers a1, a2, . . . , an satisfying the congruence such that every solution of
the congruence f(x) ≡ 0 (modm) is congruent modulo m to exactly one of
the integers a1, a2, . . . , an.

Note that the number of solutions of the congruence f(x) ≡ 0 (modm)
is equal to the number of integers x satisfying 0 ≤ x < m for which f(x) ≡ 0
(modm). This follows immediately from the fact that each congruence class
of integers modulo m contains exactly one integer x satisfying 0 ≤ x < m.

Theorem 1.24 Let f be a polynomial with integer coefficients, and let p be
a prime number. Suppose that the coefficients of f are not all divisible by p.
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Then the number of solutions modulo p of the congruence f(x) ≡ 0 (mod p)
is at most the degree of the polynomial f .

Proof The result is clearly true when f is a constant polynomial. We can
prove the result for non-constant polynomials by induction on the degree of
the polynomial.

First we observe that, given any integer a, there exists a polynomial g with
integer coefficients such that f(x) = f(a) + (x− a)g(x). Indeed f(y+ a) is a
polynomial in y with integer coefficients, and therefore f(y+a) = f(a)+yh(y)
for some polynomial h with integer coefficients. Thus if g(x) = h(x−a) then
g is a polynomial with integer coefficients and f(x) = f(a) + (x− a)g(x).

Suppose that f(a) ≡ 0 (mod p) and f(b) ≡ 0 (mod p). Let f(x) =
f(a) + (x − a)g(x), where g is a polynomial with integer coefficients. The
coefficients of f are not all divisible by p, but f(a) is divisible by p, and
therefore the coefficients of g cannot all be divisible by p.

Now f(a) and f(b) are both divisible by the prime number p, and therefore
(b−a)g(b) is divisible by p. But a prime number divides a product of integers
if and only if it divides one of the factors. Therefore either b− a is divisible
by p or else g(b) is divisible by p. Thus either b ≡ a (mod p) or else
g(b) ≡ 0 (mod p). The required result now follows easily by induction on
the degree of the polynomial f .

1.12 Primitive Roots

Lemma 1.25 Let m be a positive integer, and let x be an integer coprime
to m. Then there exists a positive integer n such that xn ≡ 1 (modm).

Proof There are only finitely many congruence classes modulo m. Therefore
there exist positive integers j and k with j < k such that xj ≡ xk (modm).
Let n = k− j. Then xjxn ≡ xj (modm). But xj is coprime to m. It follows
from Lemma 1.11 that xn ≡ 1 (modm).

Remark The above lemma also follows directly from Euler’s Theorem (The-
orem 1.23).

Let m be a positive integer, and let x be an integer coprime to m. The
order of the congruence class of x modulo m is by definition the smallest
positive integer d such that xd ≡ 1 (modm).

Lemma 1.26 Let m be a positive integer, let x be an integer coprime to m,
and let j and k be positive integers. Then xj ≡ xk (modm) if and only if
j ≡ k (mod d), where d is the order of the congruence class of x modulo m.

14



Proof We may suppose without loss of generality that j < k. If j ≡ k
(mod d) then k− j is divisible by d, and hence xk−j ≡ 1 (modm). But then
xk ≡ xjxk−j ≡ xj (modm). Conversely suppose that xj ≡ xk (modm) and
j < k. Then xjxk−j ≡ xj (modm). But xj is coprime to m. It follows from
Lemma 1.11 that xk−j ≡ 1 (modm). Thus if k − j = qd+ r, where q and r
are integers and 0 ≤ r < d, then xr ≡ 1 (modm). But then r = 0, since d
is the smallest positive integer for which xd ≡ 1 (modm). Therefore k − j
is divisible by d, and thus j ≡ k (mod d).

Lemma 1.27 Let p be a prime number, and let x and y be integers coprime
to p. Suppose that the congruence classes of x and y modulo p have the same
order. Then there exists a non-negative integer k, coprime to the order of
the congruence classes of x and y, such that y ≡ xk (mod p).

Proof Let d be the order of the congruence class of x modulo p. The so-
lutions of the congruence xd ≡ 1 (mod p) include xj with 0 ≤ j < d. But
the congruence xd ≡ 1 (mod p) has at most d solutions modulo p, since
p is prime (Theorem 1.24), and the congruence classes of 1, x, x2, . . . , xd−1

modulo p are distinct (Lemma 1.26). It follows that any solution of the
congruence xd ≡ 1 (mod p) is congruent to xk for some positive integer k.
Thus if y is an integer coprime to p whose congruence class is of order d then
y ≡ xk (mod p) for some positive integer k. Moreover k is coprime to d, for
if e is a common divisor of k and d then yd/e ≡ xd(k/e) ≡ 1 (mod p), and
hence e = 1.

Let m be a positive integer. An integer g is said to be a primitive root
modulo m if, given any integer x coprime to m, there exists an integer j such
that x ≡ gj (modm).

A primitive root modulo m is necessarily coprime to m. For if g is a
primitive root modulo m then there exists an integer n such that gn ≡ 1
(modm). But then any common divisor of g and m must divide 1, and thus
g and m are coprime.

Theorem 1.28 Let p be a prime number. Then there exists a primitive root
modulo p.

Proof If x is an integer coprime to p then it follows from Fermat’s Theorem
(Theorem 1.20) that xp−1 ≡ 1 (mod p). It then follows from Lemma 1.26
that the order of the congruence class of x modulo p divides p− 1. For each
divisor d of p−1, let ψ(d) denote the number of congruence classes modulo p

of integers coprime to p that are of order d. Clearly
∑
d|p−1

ψ(d) = p− 1.
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Let x be an integer coprime to p whose congruence class is of order d,
where d is a divisor of p − 1. If k is coprime to d then the congruence class
of xk is also of order d, for if (xk)n ≡ 1 (mod p) then d divides kn and
hence d divides n (Lemma 1.10). Let y be an integer coprime to p whose
congruence class is also of order d. It follows from Lemma 1.27 that there
exists a non-negative integer k coprime to d such that y ≡ xk (mod p). It
then follows from Lemma 1.26 that there exists a unique integer k coprime to
d such that 0 ≤ k < d and y ≡ xk (mod p). Thus if there exists at least one
integer x coprime to p whose congruence class modulo p is of order d then
the congruence classes modulo p of integers coprime to p that are of order d
are the congruence classes of xk for those integers k satisfying 0 ≤ k < d
that are coprime to d. Thus if ψ(d) > 0 then ψ(d) = ϕ(d), where ϕ(d) is the
number of integers k satisfying 0 ≤ k < d that are coprime to d.

Now 0 ≤ ψ(d) ≤ ϕ(d) for each divisor d of p−1. But
∑
d|p−1

ψ(d) = p−1 and∑
d|p−1

ϕ(d) = p− 1 (Lemma 1.19). Therefore ψ(d) = ϕ(d) for each divisor d of

p− 1. In particular ψ(p− 1) = ϕ(p− 1) ≥ 1. Thus there exists an integer g
whose congruence class modulo p is of order p − 1. The congruence classes
of 1, g, g2, . . . gp−2 modulo p are then distinct. But there are exactly p − 1
congruence classes modulo p of integers coprime to p. It follows that any
integer that is coprime to p must be congruent to gj for some non-negative
integer j. Thus g is a primitive root modulo p.

Corollary 1.29 Let p be a prime number. Then the group of congruence
classes modulo p of integers coprime to p is a cyclic group of order p− 1.

Remark It can be shown that there exists a primitive root modulo m if
m = 1, 2 or 4, if m = pk or if m = 2pk, where p is some odd prime number
and k is a positive integer. In all other cases there is no primitive root
modulo m.

1.13 Quadratic Residues

Definition Let p be a prime number, and let x be an integer coprime to p.
The integer x is said to be a quadratic residue of p if there exists an integer y
such that x ≡ y2 (mod p). If x is not a quadratic residue of p then x is said
to be a quadratic non-residue of p.

Proposition 1.30 Let p be an odd prime number, and let a, b and c be
integers, where a is coprime to p. Then there exist integers x satisfying the
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congruence ax2 + bx + c ≡ 0 (mod p) if and only if either b2 − 4ac is a
quadratic residue of p or else b2 − 4ac ≡ 0 (mod p).

Proof Let x be an integer. Then ax2 + bx + c ≡ 0 (mod p) if and only if
4a2x2 +4abx+4ac ≡ 0 (mod p), since 4a is coprime to p (Lemma 1.11). But
4a2x2 + 4abx+ 4ac = (2ax+ b)2 − (b2 − 4ac). It follows that ax2 + bx+ c ≡
0 (mod p) if and only if (2ax + b)2 ≡ b2 − 4ac (mod p). Thus if there exist
integers x satisfying the congruence ax2 + bx + c ≡ 0 (mod p) then either
b2 − 4ac is a quadratic residue of p or else b2 − 4ac ≡ 0 (mod p). Conversely
suppose that either b2−4ac is a quadratic residue of p or b2−4ac ≡ 0 (mod p).
Then there exists an integer y such that y2 ≡ b2 − 4ac (mod p). Also there
exists an integer d such that 2ad ≡ 1 (mod p), since 2a is coprime to p
(Lemma 1.12). If x ≡ d(y − b) (mod p) then 2ax + b ≡ y (mod p), and
hence (2ax + b)2 ≡ b2 − 4ac (mod p). But then ax2 + bx + c ≡ 0 (mod p),
as required.

Lemma 1.31 Let p be an odd prime number, and let x and y be integers.
Suppose that x2 ≡ y2 (mod p). Then either x ≡ y (mod p) or else x ≡ −y
(mod p).

Proof x2 − y2 is divisible by p, since x2 ≡ y2 (mod p). But x2 − y2 =
(x− y)(x+ y), and a prime number divides a product of integers if and only
if it divides at least one of the factors. Therefore either x − y is divisible
by p or else x + y is divisible by p. Thus either x ≡ y (mod p) or else
x ≡ −y (mod p).

Lemma 1.32 Let p be an odd prime number, and let m = (p− 1)/2. Then
there are exactly m congruence classes of integers coprime to p that are
quadratic residues of p. Also there are exactly m congruence classes of inte-
gers coprime to p that are quadratic non-residues of p.

Proof If i and j are integers between 1 and m, and if i 6= j then i 6≡
j (mod p) and i 6≡ −j (mod p). It follows from Lemma 1.31 that if i
and j are integers between 1 and m, and if i 6= j then i2 6≡ j2. Thus
the congruence classes of 12, 22, . . . ,m2 modulo p are distinct. But, given
any integer x coprime to p, there is an integer i such that 1 ≤ i ≤ m and
either x ≡ i (mod p) or x ≡ −i (mod p), and therefore x2 ≡ i2 (mod p).
Thus every quadratic residue of p is congruent to i2 for exactly one integer i
betweeen 1 and m. Thus there are m congruence classes of quadratic residues
of p.

There are 2m congruence classes of integers modulo p that are coprime
to p. It follows that there are m congruence classes of quadratic non-residues
of p, as required.
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Theorem 1.33 Let p be an odd prime number, let R be the set of all integers
coprime to p that are quadratic residues of p, and let N be the set of all
integers coprime to p that are quadratic non-residues of p. If x ∈ R and
y ∈ R then xy ∈ R. If x ∈ R and y ∈ N then xy ∈ N . If x ∈ N and y ∈ N
then xy ∈ R.

Proof Let m = (p − 1)/2. Then there are exactly m congruence classes of
integers coprime to p that are quadratic residues of p. Let these congruence
classes be represented by the integers r1, r2, . . . , rm, where ri 6≡ rj (mod p)
when i 6= j. Also there are exactly m congruence classes of integers coprime
to p that are quadratic non-residues modulo p.

The product of two quadratic residues of p is itself a quadratic residue of
p. Therefore xy ∈ R for all x ∈ R and y ∈ R.

Suppose that x ∈ R. Then xri ∈ R for i = 1, 2, . . . ,m, and xri 6≡ xrj
when i 6= j. It follows that the congruence classes of xr1, xr2, . . . , xrm are
distinct, and consist of quadratic residues of p. But there are exactly m
congruence classes of quadratic residues of p. It follows that every quadratic
residue of p is congruent to exactly one of the integers xr1, xr2, . . . , xrm. But
if y ∈ N then y 6≡ ri and hence xy 6≡ xri for i = 1, 2, . . . ,m. It follows that
xy ∈ N for all x ∈ R and y ∈ N .

Now suppose that x ∈ N . Then xri ∈ N for i = 1, 2, . . . ,m, and xri 6≡ xrj
when i 6= j. It follows that the congruence classes of xr1, xr2, . . . , xrm are
distinct, and consist of quadratic non-residues modulo p. But there are
exactly m congruence classes of quadratic non-residues modulo p. It follows
that every quadratic non-residue of p is congruent to exactly one of the
integers xr1, xr2, . . . , xrm. But if y ∈ N then y 6≡ ri and hence xy 6≡ xri for
i = 1, 2, . . . ,m. It follows that xy ∈ R for all x ∈ N and y ∈ N .

Let p be an odd prime number. The Legendre symbol
(x
p

)
is defined for

integers x as follows: if x is coprime to p and x is a quadratic residue of p

then
(x
p

)
= +1; if x is coprime to p and x is a quadratic non-residue of p

then
(x
p

)
= −1; if x is divisible by p then

(x
p

)
= 0.

The following result follows directly from Theorem 1.33.

Corollary 1.34 Let p be an odd prime number. Then(x
p

)(y
p

)
=
(xy
p

)
for all integers x and y.
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Lemma 1.35 (Euler) Let p be an odd prime number, and let x be an integer
coprime to p. Then x is a quadratic residue of p if and only if x(p−1)/2 ≡ 1
(mod p). Also x is a quadratic non-residue of p if and only if x(p−1)/2 ≡ −1
(mod p).

Proof Letm = (p−1)/2. If x is a quadratic residue of p then x ≡ y2 (mod p)
for some integer y coprime to p. Then xm = yp−1, and yp−1 ≡ 1 (mod p) by
Fermat’s Theorem (Theorem 1.20), and thus xm ≡ 1 (mod p).

It follows from Theorem 1.24 that there are at most m congruence classes
of integers x satisfying xm ≡ 1 (mod p). However all quadratic residues
modulo p satisfy this congruence, and there are exactly m congruence classes
of quadratic residues modulo p. It follows that an integer x coprime to p
satisfies the congruence xm ≡ 1 (mod p) if and only if x is a quadratic
residue of p.

Now let x be a quadratic non-residue of p and let u = xm. Then u2 ≡
1 (mod p) but u 6≡ 1 (mod p). It follows from Lemma 1.31 that u ≡ −1
(mod p). It follows that an integer x coprime to p is a quadratic non-residue
of p if and only if xm ≡ −1 (mod p).

Corollary 1.36 Let p be an odd prime number. Then

x(p−1)/2 ≡
(x
p

)
(mod p)

for all integers x.

Proof If x is coprime to p then the result follows from Lemma 1.35. If x
is divisible by p then so is x(p−1)/2. In that case x(p−1)/2 ≡ 0 (mod p) and(x
p

)
= 0 (mod p).

Corollary 1.37
(−1

p

)
= (−1)(p−1)/2 for all odd prime numbers p.

Proof It follows from Corollary 1.36 that
(−1

p

)
≡ (−1)(p−1)/2 (mod p) for

all odd prime numbers p. But
(−1

p

)
= ±1, by the definition of the Legendre

symbol. Therefore
(−1

p

)
= (−1)(p−1)/2, as required.

Remark Let p be an odd prime number. It follows from Theorem 1.28 that
there exists a primitive root g modulo p. Moreover the congruence class of
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g modulo p is of order p − 1. It follows that gj ≡ gk (mod p), where j and
k are positive integers, if and only if j − k is divisible by p− 1. But p− 1 is
even. Thus if gj ≡ gk then j − k is even. It follows easily from this that an
integer x is a quadratic residue of p if and only if x ≡ gk (mod p) for some
even integer k. The results of Theorem 1.33 and Lemma 1.35 follow easily
from this fact.

Let p be an odd prime number, and let m = (p−1)/2. Then each integer
not divisible by p is congruent to exactly one of the integers ±1,±2, . . . ,±m.

The following lemma was proved by Gauss.

Lemma 1.38 Let p be an odd prime number, let m = (p − 1)/2, and let x

be an integer that is not divisible by p. Then
(x
p

)
= (−1)r, where r is the

number of pairs (j, u) of integers satisfying 1 ≤ j ≤ m and 1 ≤ u ≤ m for
which xj ≡ −u (mod p).

Proof For each integer j satisfying 1 ≤ j ≤ m there is a unique integer uj
satisfying 1 ≤ uj ≤ m such that xj ≡ ejuj (mod p) with ej = ±1. Then
e1e2 · · · em = (−1)r.

If j and k are integers between 1 and m and if j 6= k, then j 6≡ k (mod p)
and j 6≡ −k (mod p). But then xj 6≡ xk (mod p) and xj 6≡ −xk (mod p)
since x is not divisible by p. Thus if 1 ≤ j ≤ m, 1 ≤ k ≤ m and j 6= k
then uj 6= uk. It follows that each integer between 1 and m occurs exactly
once in the list u1, u2, . . . , um, and therefore u1u2 · · ·um = m!. Thus if we
multiply the congruences xj ≡ ejuj (mod p) for j = 1, 2, . . . ,m we obtain
the congruence xmm! ≡ (−1)rm! (mod p). But m! is not divisible by p,
since p is prime and m < p. It follows that xm ≡ (−1)r (mod p). But

xm ≡
(x
p

)
(mod p) by Lemma 1.35. Therefore

(x
p

)
≡ (−1)r (mod p), and

hence
(x
p

)
= (−1)r, as required.

Let n be an odd integer. Then n = 2k + 1 for some integer k. Then
n2 = 4(k2 + k) + 1, and k2 + k is an even integer. It follows that if n is an
odd integer then n2 ≡ 1 (mod 8), and hence (−1)(n2−1)/8 = ±1.

Theorem 1.39 Let p be an odd prime number. Then
(2

p

)
= (−1)(p2−1)/8.

Proof The value of (−1)(p2−1)/8 is determined by the congruence class of p
modulo 8. Indeed (−1)(p2−1)/8 = 1 when p ≡ 1 (mod 8) or p ≡ −1 (mod 8),
and (−1)(p2−1)/8 = −1 when p ≡ 3 (mod 8) or p ≡ −3 (mod 8).
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Let m = (p−1)/2. It follows from Lemma 1.38 that
(2

p

)
= (−1)r, where

r is the number of integers x between 1 and m for which 2x is not congruent
modulo p to any integer between 1 and m. But the integers x with this
property are those for which m/2 < x ≤ m. Thus r = m/2 if m is even, and
r = (m+ 1)/2 if m is odd.

If p ≡ 1 (mod 8) then m is divisible by 4 and hence r is even. If p ≡
3 (mod 8) then m ≡ 1 (mod 4) and hence r is odd. If p ≡ 5 (mod 8) then
m ≡ 2 (mod 4) and hence r is odd. If p ≡ 7 (mod 8) then m ≡ 3 (mod 4)

and hence r is even. Therefore
(2

p

)
= 1 when p ≡ 1 (mod 8) and when

p ≡ 7 (mod 8), and
(2

p

)
= −1 when p ≡ 3 (mod 8) and p ≡ 5 (mod 8).

Thus
(2

p

)
= (−1)(p2−1)/8 for all odd prime numbers p, as required.

1.14 Quadratic Reciprocity

Theorem 1.40 (Quadratic Reciprocity Law) Let p and q be distinct odd
prime numbers. Then (p

q

)(q
p

)
= (−1)(p−1)(q−1)/4

Proof Let S be the set of all ordered pairs (x, y) of integers x and y satisfying
1 ≤ x ≤ m and 1 ≤ y ≤ n, where p = 2m + 1 and q = 2n + 1. We must

prove that
(p
q

)(q
p

)
= (−1)mn.

First we show that
(p
q

)
= (−1)a, where a is the number of pairs (x, y)

of integers in S satisfying −n ≤ py − qx ≤ −1. If (x, y) is a pair of integers
in S satisfying −n ≤ py − qx ≤ −1, and if z = qx − py, then 1 ≤ y ≤ n,
1 ≤ z ≤ n and py ≡ −z (mod q). On the other hand, if (y, z) is a pair of
integers such that 1 ≤ y ≤ n, 1 ≤ z ≤ n and py ≡ −z (mod q) then there is
a unique positive integer x such that z = qx− py. Moreover qx = py + z ≤
(p + 1)n = 2n(m + 1) and q > 2n, and therefore x < m + 1. It follows that
the pair (x, y) of integers is in S, and −n ≤ py − qx ≤ −1. We deduce that
the number a of pairs (x, y) of integers in S satisfying −n ≤ py− qx ≤ −1 is
equal to the number of pairs (y, z) of integers satisfying 1 ≤ y ≤ n, 1 ≤ z ≤ n

and py ≡ −z (mod q). It now follows from Lemma 1.38 that
(p
q

)
= (−1)a.

Similarly
(q
p

)
= (−1)b, where b is the number of pairs (x, y) in S satisfying

1 ≤ py − qx ≤ m.
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If x and y are integers satisfying py− qx = 0 then x is divisible by p and
y is divisible by q. It follows from this that py− qx 6= 0 for all pairs (x, y) in
S. The total number of pairs (x, y) in S is mn. Therefore mn = a+b+c+d,
where c is the number of pairs (x, y) in S satisfying py − qx < −n and d is
the number of pairs (x, y) in S satisfying py − qx > m.

Let (x, y) be a pair of integers in S, and let and let x′ = m + 1 − x and
y′ = n + 1 − y. Then the pair (x′, y′) also belongs to S, and py′ − qx′ =
m−n− (py− qx). It follows that py− qx > m if and only if py′− qx′ < −n.
Thus there is a one-to-one correspondence between pairs (x, y) in S satisfying
py− qx > m and pairs (x′, y′) in S satisfying py′− qx′ < −n, where (x′, y′) =
(m+ 1− x, n+ 1− y) and (x, y) = (m+ 1− x′, n+ 1− y′). Therefore c = d,

and thus mn = a + b + 2c. But then (−1)mn = (−1)a(−1)b =
(p
q

)(q
p

)
, as

required.

Corollary 1.41 Let p and q be distinct odd prime numbers. If p ≡ 1

(mod 4) or q ≡ 1 (mod 4) then
(p
q

)
=
(q
p

)
. If p ≡ 3 (mod 4) and

q ≡ 3 (mod 4) then
(p
q

)
= −

(q
p

)
.

Example We wish to determine whether or not 654 is a quadratic residue
modulo the prime number 239. Now 654 = 2 × 239 + 176 and thus 654 ≡
176 (mod 239). Also 176 = 16× 11. Therefore(654

239

)
=
(176

239

)
=
( 16

239

)( 11

239

)
=
( 4

239

)2( 11

239

)
=
( 11

239

)
But

( 11

239

)
= −

(239

11

)
by the Law of Quadratic Reciprocity. Also 239 ≡ 8

(mod 11). Therefore(239

11

)
=
( 8

11

)
=
( 2

11

)3

= (−1)3 = −1

It follows that
(654

239

)
= +1 and thus 654 is a quadratic residue of 239, as

required.

1.15 The Jacobi Symbol

Let s be an odd positive integer. If s > 1 then s = p1p2 · · · pm, where
p1, p2, . . . , pm are odd prime numbers. For each integer x we define the Jacobi
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symbol
(x
s

)
by (x

s

)
=

m∏
i=1

( x
pi

)
(i.e.,

(x
s

)
is the product of the Legendre symbols

( x
pi

)
for i = 1, 2, . . . ,m.)

We define
(x

1

)
= 1.

Note that the Jacobi symbol can have the values 0, +1 and −1.

Lemma 1.42 Let s be an odd positive integer, and let x be an integer. Then(x
s

)
6= 0 if and only if x is coprime to s.

Proof Let s = p1p2 · · · pm, where p1, p2, . . . , pm are odd prime numbers. Sup-
pose that x is coprime to s. Then x is coprime to each prime factor of s, and

hence
( x
pi

)
= ±1 for i = 1, 2, . . . ,m. It follows that

(x
s

)
= ±1 and thus(x

s

)
6= 0.

Next suppose that x is not coprime to s. Let p be a prime factor of the

greatest common divisor of x and s. Then p = pi, and hence
( x
pi

)
= 0 for

some integer i between 1 and m. But then
(x
s

)
= 0.

Lemma 1.43 Let s be an odd positive integer, and let x and x′ be integers.

Suppose that x ≡ x′ (mod s). Then
(x
s

)
=
(x′
s

)
.

Proof If x ≡ x′ (mod s) then x ≡ x′ (mod p) for each prime factor p of

s, and therefore
(x
p

)
=
(x′
p

)
for each prime factor of s. Therefore

(x
s

)
=(x′

s

)
.

Lemma 1.44 Let x and y be integers, and let s and t be odd positive integers.

Then
(xy
s

)
=
(x
s

)(y
s

)
and

( x
st

)
=
(x
s

)(x
t

)
.

Proof
(xy
p

)
=
(x
p

)(y
p

)
for all prime numbers p (Corollary 1.34). The

required result therefore follows from the definition of the Jacobi symbol.

Lemma 1.45
(x2

s

)
= 1 and

( x
s2

)
= 1 for for all odd positive integers s

and all integers x that are coprime to s.

23



Proof This follows directly from Lemma 1.44 and Lemma 1.42.

Theorem 1.46
(−1

s

)
= (−1)(s−1)/2 for all odd positive integers s.

Proof Let f(s) = (−1)(s−1)/2
(−1

s

)
for each odd positive integer s. We must

prove that f(s) = 1 for all odd positive integers s. If s and t are odd positive
integers then

(st− 1)− (s− 1)− (t− 1) = st− s− t+ 1 = (s− 1)(t− 1)

But (s − 1)(t − 1) is divisible by 4, since s and t are odd positive integers.
Therefore (st−1)/2 ≡ (s−1)/2+(t−1)/2 (mod 2), and hence (−1)(st−1)/2 =
(−1)(s−1)/2(−1)(t−1)/2. It now follows from Lemma 1.44 that f(st) = f(s)f(t)
for all odd numbers s and t. But f(p) = 1 for all prime numbers p, since(−1

p

)
= (−1)(p−1)/2 (Lemma 1.37). It follows that f(s) = 1 for all odd

positive integers s, as required.

Theorem 1.47
(2

s

)
= (−1)(s2−1)/8 for all odd positive integers s.

Proof Let g(s) = (−1)(s2−1)/8
(2

s

)
for each odd positive integer s. We must

prove that g(s) = 1 for all odd positive integers s. If s and t are odd positive
integers then

(s2t2 − 1)− (s2 − 1)− (t2 − 1) = s2t2 − s2 − t2 + 1 = (s2 − 1)(t2 − 1).

But (s2 − 1)(t2 − 1) is divisible by 64, since s2 ≡ 1 (mod 8) and t2 ≡ 1
(mod 8). Therefore (s2t2−1)/8 ≡ (s2−1)/8 + (t2−1)/8 (mod 8), and hence
(−1)(s2t2−1)/8 = (−1)(s2−1)/8(−1)(t2−1)/8. It now follows from Lemma 1.44
that g(st) = g(s)g(t) for all odd numbers s and t. But g(p) = 1 for all prime

numbers p, since
(2

p

)
= (−1)(p2−1)/8 (Lemma 1.39). It follows that g(s) = 1

for all odd positive integers, as required.

Theorem 1.48
(s
t

)( t
s

)
= (−1)(s−1)(t−1)/4 for all odd positive integers s

and t.

Proof Let h(s, t) = (−1)(s−1)(t−1)/4
(s
t

)( t
s

)
. We must prove that h(s, t) = 1

for all odd positive integers s and t. Now h(s1s2, t) = h(s1, t)h(s2, t) and
h(s, t1)h(s, t2) = h(s, t1t2) for all odd positive integers s, s1, s2, t, t1 and t2.
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Also h(s, t) = 1 when s and t are prime numbers by the Law of Quadratic
Reciprocity (Theorem 1.40). It follows from this that h(s, t) = 1 when s is an
odd positive integer and t is a prime number, since any odd positive integer
is a product of odd prime numbers. But then h(s, t) = 1 for all odd positive
integers s and t, as required.

The results proved above can be used to calculate Jacobi symbols, as in
the following example.

Example We wish to determine whether or not 442 is a quadratic residue

modulo the prime number 751. Now
(442

751

)
=
( 2

751

)(221

751

)
. Also

( 2

751

)
=

1, since 751 ≡ 7 (mod 8) (Theorem 1.39). Also
(221

751

)
=
(751

221

)
(Theo-

rem 1.48), and 751 ≡ 88 (mod 221). Thus(442

751

)
=
(751

221

)
=
( 88

221

)
=
( 2

221

)3( 11

221

)
.

Now
( 2

221

)
= −1, since 221 ≡ 5 (mod 8) (Theorem 1.47). Also it follows

from Theorem 1.48 that( 11

221

)
=
(221

11

)
=
( 1

11

)
= 1,

since 221 ≡ 1 (mod 4) and 221 ≡ 1 (mod 11). Therefore
(442

751

)
= −1, and

thus 442 is a quadratic non-residue of 751. The number 221 is not prime,
since 221 = 13× 17. Thus the above calculation made use of Jacobi symbols
that are not Legendre symbols.
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