
Course 311: Academic Year 2001-02

1. Let x be an integer, and let p be a prime number. Suppose that x3 ≡ 1
(mod p). Prove that either x ≡ 1 (mod p) or else x2 +x ≡ −1 (mod p).

2. Let x be a rational number. Suppose that xn is an integer for some
positive integer n. Explain why x must itself be an integer.

3. Find a function f :Z3 → Z with the property that f(x, y, z) ≡ x
(mod 3), f(x, y, z) ≡ y (mod 5) and f(x, y, z) ≡ z (mod 7) for all
integers x, y, z.

4. Is 273 a quadratic residue or quadratic non-residue of 137?

5. Let p be a prime number. Prove that there exist integers x and y
coprime to p satisfying x2 + y2 ≡ 0 (mod p) if and only if p ≡ 1
(mod 4).

6. Let p be a odd prime number, and let g be a primitive root of p.

(a) Let h is an integer satisfying h ≡ g (mod p). Explain why the
order of the congruence class of h modulo p2 is either p− 1 or p(p− 1).
Hence or otherwise prove that h is a primitive root of p2 if and only if
hp−1 6≡ 1 (mod p2).

(b) Use the result of (a) to prove that there exists a primitive root of
p2. (This primitive root will be of the form g + kp for some integer k.)

(c) Let x be an integer, and let m be a positive integer. Use the bino-
mial theorem to prove that if x ≡ 1 (mod pm) and x 6≡ 1 (mod pm+1)
then xp ≡ 1 (mod pm+1) and x 6≡ 1 (mod pm+2)

(d) Use the results of previous parts of this question to show that any
primitive root of p2 is a primitive root of pm for all m ≥ 2. What
does this tell you about the group of congruence classes modulo pm of
integers coprime to p?

(e) Do the above results hold when p = 2 (i.e., when the prime num-
ber p is no longer required to be odd)?

7. Let G be a group. An automorphism of G is an isomorphism sending
G onto itself. Show that the set Aut(G) of automorphisms of G is a
group with respect to the operation of composition of automorphisms.
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8. Let G be a group. The centre Z(G) of G is defined by

Z(G) = {z ∈ G : gz = zg for all g ∈ G}.

Prove that the centre Z(G) of a group G is a normal subgroup of G.
[In particular, you should show that Z(G) is a subgroup of G.]

9. Let H be a subgroup of a group G. The normalizer N(H) of H in G
is defined by N(H) = {g ∈ G : gHg−1 = H}. Verify that N(H) is a
subgroup of G and H is a normal subgroup of N(H).

10. (a) Show that the elements of the alternating group A5 fall into five
conjugacy classes, and calculate the number of elements in each con-
jugacy class. Verify that the sum of the numbers obtained equals the
order of A5.

(b) Any normal subgroup of A5 is a union of conjugacy classes. Show
how information on the sizes of the conjugacy classes of A5 can be com-
bined with Lagrange’s Theorem to show that the group A5 is simple.

11. (a) Show that the alternating group A5 has 10 subgroups of order 3.
Show also that any two of these subgroups are conjugate.

(b) Show that the alternating group A5 has 5 subgroups of order 4.
Show also that any two of these subgroups are conjugate.

(c) Show that the alternating group A5 has 6 subgroups of order 5.
Show also that any two of these subgroups are conjugate.

12. Use Eisenstein’s criterion to verify that the following polynomials are
irreducible over Q:—

(i) t2 − 2; (ii) t3 + 9t+ 3; (iii) t5 + 26t+ 52.

13. Let p be a prime number. Use the fact that the binomial coefficient(
p

k

)
is divisible by p for all integers k satisfying 0 < k < p to show

that if tf(t) = (t+ 1)p− 1 then the polynomial f is irreducible over Q.

The cyclotomic polynomial Φp(t) is defined by Φp(t) = 1+ t+ t2 + · · ·+
tp−1 for each prime number p. Show that tΦp(t+ 1) = (t+ 1)p− 1, and
hence show that the cyclotomic polynomial Φp is irreducible over Q for
all prime numbers p.
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14. The Fundamental Theorem of Algebra ensures that every non-constant
polynomial with complex coefficients factors as a product of polynomi-
als of degree one. Use this result to show that a non-constant polyno-
mial with real coefficients is irreducible over the field R of real numbers
if and only if it is either a polynomial of the form at+ b with a 6= 0 or a
quadratic polynomial of the form at2 + bt+ c with a 6= 0 and b2 < 4ac.

15. Let f1, f2, . . . , fk be non-constant polynomials with coefficients in a
field K, and let g = f1f2 · · · fk + 1. Show that g is not divisible by
f1, f2, . . . , fk. Use this result to show that there are infinitely many
irreducible polynomials with coefficients in a field K.

16. A complex number z is said to be algebraic if there f(z) = 0 for some
non-zero polynomial f with rational coefficients. Show that z ∈ C is
algebraic if and only if Q(z):Q is a finite extension Then use the Tower
Law to prove that the set of all algebraic numbers is a subfield of C.

17. Let K, L and M be fields satisfying K ⊂ L ⊂ M . Suppose that the
field extensions M :L and L:K are algebraic (but not necessarily finite).
Prove that the extension M :K is algebraic.

18. Let L be a splitting field for a polynomial of degree n with coefficients
in K. Prove that [L:K] ≤ n!.

19. (a) Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3) and [Q(
√

2,
√

3),Q] = 4.
What is the degree of the minimum polynomial of

√
2 +
√

3 over Q?

(b) Show that
√

2+
√

3 is a root of the polynomial t4−10t2+1, and thus
show that this polynomial is an irreducible polynomial whose splitting
field over Q is Q(

√
2,
√

3).

(c) Find all Q-automorphisms of Q(
√

2,
√

3), and show that they con-
stitute a group of order 4 isomorphic to a direct product of two cyclic
groups of order 2.

20. Let K be a field of characteristic p, where p is prime.

(a) Show that f ∈ K[t] satisfies Df = 0 if and only if f(t) = g(tp) for
some g ∈ K[t].

(b) Let h(t) = a0 + a1t + a2t
2 + · · · + ant

n, where a0, a1, . . . , an ∈ K.
Show that (h(t))p = g(tp), where g(t) = ap0 + ap1t+ ap2t

2 + · · ·+ apnt
n.

3



(c) Now suppose that Frobenius monomorphism of K is an automor-
phism of K. Show that f ∈ K[t] satisfies Df = 0 if and only if
f(t) = (h(t))p for some h ∈ K[t]. Hence show that Df 6= 0 for any
irreducible polynomial f in K[t].

(d) Use these results to show that every algebraic extension L:K of a
finite field K is separable.

21. A field K is said to be algebraically closed if every non-constant polyno-
mial with coefficients in K splits over K. Use the fact that the number
of irreducible polynomials with coefficients in a given field K is infinite
to prove that any algebraically closed field must be infinite.

22. For each positive integer n, let ωn be the primitive nth root of unity in
C given by ωn = exp(2πi/n), where i =

√
−1.

(a) Show that the field extensions Q(ωn):Q and Q(ωn, i):Q are normal
field extensions for all positive integers n.

(b) Show that the minimum polynomial of ωp over Q is the cyclotomic
polynomial Φp(t) given by Φp(t) = 1 + t+ t2 + · · ·+ tp−1. Hence show
that [Q(ωp):Q] = p− 1 if p is prime.

(c) Let p be prime and let αk = ωp2ωkp = exp(2πi(1 + kp)/p2) for all
integers k. Note that α0 = ωp2 and αk = αl if and only if k ≡ l mod p.
Show that if θ is an automorphism of Q(ωp2) which fixes Q(ωp) then
there exists some integer m such that θ(αk) = αk+m for all integers k.
Hence show that α0, α1, . . . , αp−1 all belong to the orbit of ωp2 under
the action of the Galois group Γ(Q(ωp2):Q(ωp)). Use this result to
show that [Q(ωp2):Q(ωp)] = p and [Q(ωp2):Q] = p(p− 1).

23. Show that the field Q(ξ, ω) is a splitting field for the polynomial t5 −
2 over Q, where ω = ω5 = exp(2πi/5) and ξ = 5

√
2. Show that

[Q(ξ, ω):Q] = 20 and the Galois Γ(Q(ξ, ω):Q) consists of the auto-
morphisms θr,s for r = 1, 2, 3, 4 and s = 0, 1, 2, 3, 4, where θr,s(ω) = ωr

and θr,s(ξ) = ωsξ.

24. Let f be a monic polynomial of degree n with coefficients in a field K.
Then

f(t) = (t− α1)(t− α2) · · · (t− αn),

where α1, α2, . . . , αn are the roots of f in some splitting field L for f
over K. The discriminant of the polynomial f is the quantity δ2, where
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δ is the product
∏

1≤i<j≤n
(αj − αi) of the quantities αj − αi taken over

all pairs of integers i and j satisfying 1 ≤ i < j ≤ n.

Show that the quantity δ changes sign whenever αi is interchanged
with αi+1 for some i between 1 and n − 1. Hence show that θ(δ) = δ
for all automorphisms θ in the Galois group Γ(L:K) that induce even
permutations of the roots of f , and θ(δ) = −δ for all automorphisms θ
in Γ(L:K) that induce odd permutations of the roots. Then apply the
Galois correspondence to show that the discriminant δ2 of the polyno-
mial f belongs to the field K containing the coefficients of f , and the
field K(δ) is the fixed field of the subgroup of Γ(L:K) consisting of
those automorphisms in Γ(L:K) that induce even permutations of the
roots of f . Hence show that δ ∈ K if and only if all automorphisms in
the Galois group Γ(L:K) induce even permutations of the roots of f .

25. (a) Show that the discriminant of the quadratic polynomial t2 + bt+ c
is b2 − 4c.

(b) Show that the discriminant of the cubic polynomial t3 − pt − q is
4p2 − 27q2.

26. Let f(t) = t3 − pt− q be a cubic polynomial with complex coefficients
p and q, and let the complex numbers α, β and γ be the roots of f .

(a) Give formulae for the coefficients p and q of f in terms of the roots
α, β and γ of f , and verify that α + β + γ = 0 and

α3 + β3 + γ3 = 3αβγ = 3q

(b) Let λ = α + ωβ + ω2γ and µ = α + ω2β + ωγ, where ω is the
complex cube root of unity given by ω = 1

2
(−1 +

√
3i). Verify that

1 + ω + ω2 = 0, and use this result to show that

α =
1

3
(λ+ µ), β =

1

3
(ω2λ+ ωµ), γ =

1

3
(ωλ+ ω2µ).

(c) Let K be the subfield Q(p, q) of C generated by the coefficients of
the polynomial f , and let M be a splitting field for the polynomial f
over K(ω). Show that the extension M :K is normal, and is thus a
Galois extension. Show that any automorphism in the Galois group
Γ(M :K) permutes the roots α, β and γ of f and either fixes ω or else
sends ω to ω2.

5



(d) Let θ ∈ Γ(M :K) be a K-automorphism of M . Suppose that

θ(α) = β, θ(β) = γ, θ(γ) = α.

Show that if θ(ω) = ω then θ(λ) = ω2λ and θ(µ) = ωµ. Show also that
if θ(ω) = ω2 then θ(λ) = ωµ and θ(µ) = ω2λ. Hence show that λµ
and λ3 + µ3 are fixed by any automorphism in Γ(M :K) that cyclically
permutes α, β, γ. Show also that the quantities λµ and λ3 + µ3 are
also fixed by any automorphism in Γ(M :K) that interchanges two of
the roots of f whilst leaving the third root fixed. Hence prove that λµ
and λ3 +µ3 belong to the field K generated by the coefficients of f and
can therefore be expressed as rational functions of p and q.

(e) Show by direct calculation that λµ = 3p and λ3 +µ3 = 27q. Hence
show that λ3 and µ3 are roots of the quadratic polynomial t2 − 27qt+
27p3. Use this result to verify that the roots of the cubic polynomial
t3 − pt− q are of the form

3

√
q

2
+

√
q2

4
− p3

27
+

3

√
q

2
−
√
q2

4
− p3

27

where the two cube roots must be chosen so as to ensure that their
product is equal to 1

3
p.
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