Course 311: Academic Year 2001-02

1. Let x be an integer, and let p be a prime number. Suppose that $x^{3} \equiv 1$ $(\bmod p)$. Prove that either $x \equiv 1(\bmod p)$ or else $x^{2}+x \equiv-1(\bmod p)$.
2. Let x be a rational number. Suppose that x^{n} is an integer for some positive integer n. Explain why x must itself be an integer.
3. Find a function $f: \mathbb{Z}^{3} \rightarrow \mathbb{Z}$ with the property that $f(x, y, z) \equiv x$ $(\bmod 3), f(x, y, z) \equiv y(\bmod 5)$ and $f(x, y, z) \equiv z(\bmod 7)$ for all integers x, y, z.
4. Is 273 a quadratic residue or quadratic non-residue of 137 ?
5. Let p be a prime number. Prove that there exist integers x and y coprime to p satisfying $x^{2}+y^{2} \equiv 0(\bmod p)$ if and only if $p \equiv 1$ $(\bmod 4)$.
6. Let p be a odd prime number, and let g be a primitive root of p.
(a) Let h is an integer satisfying $h \equiv g(\bmod p)$. Explain why the order of the congruence class of h modulo p^{2} is either $p-1$ or $p(p-1)$. Hence or otherwise prove that h is a primitive root of p^{2} if and only if $h^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$.
(b) Use the result of (a) to prove that there exists a primitive root of p^{2}. (This primitive root will be of the form $g+k p$ for some integer k.)
(c) Let x be an integer, and let m be a positive integer. Use the binomial theorem to prove that if $x \equiv 1\left(\bmod p^{m}\right)$ and $x \not \equiv 1\left(\bmod p^{m+1}\right)$ then $x^{p} \equiv 1\left(\bmod p^{m+1}\right)$ and $x \not \equiv 1\left(\bmod p^{m+2}\right)$
(d) Use the results of previous parts of this question to show that any primitive root of p^{2} is a primitive root of p^{m} for all $m \geq 2$. What does this tell you about the group of congruence classes modulo p^{m} of integers coprime to p ?
(e) Do the above results hold when $p=2$ (i.e., when the prime number p is no longer required to be odd)?
7. Let G be a group. An automorphism of G is an isomorphism sending G onto itself. Show that the $\operatorname{set} \operatorname{Aut}(G)$ of automorphisms of G is a group with respect to the operation of composition of automorphisms.
8. Let G be a group. The centre $Z(G)$ of G is defined by

$$
Z(G)=\{z \in G: g z=z g \text { for all } g \in G\} .
$$

Prove that the centre $Z(G)$ of a group G is a normal subgroup of G. [In particular, you should show that $Z(G)$ is a subgroup of G.]
9. Let H be a subgroup of a group G. The normalizer $N(H)$ of H in G is defined by $N(H)=\left\{g \in G: g H g^{-1}=H\right\}$. Verify that $N(H)$ is a subgroup of G and H is a normal subgroup of $N(H)$.
10. (a) Show that the elements of the alternating group A_{5} fall into five conjugacy classes, and calculate the number of elements in each conjugacy class. Verify that the sum of the numbers obtained equals the order of A_{5}.
(b) Any normal subgroup of A_{5} is a union of conjugacy classes. Show how information on the sizes of the conjugacy classes of A_{5} can be combined with Lagrange's Theorem to show that the group A_{5} is simple.
11. (a) Show that the alternating group A_{5} has 10 subgroups of order 3 . Show also that any two of these subgroups are conjugate.
(b) Show that the alternating group A_{5} has 5 subgroups of order 4 . Show also that any two of these subgroups are conjugate.
(c) Show that the alternating group A_{5} has 6 subgroups of order 5 . Show also that any two of these subgroups are conjugate.
12. Use Eisenstein's criterion to verify that the following polynomials are irreducible over \mathbb{Q} :-
(i) $t^{2}-2$;
(ii) $t^{3}+9 t+3$;
(iii) $t^{5}+26 t+52$.
13. Let p be a prime number. Use the fact that the binomial coefficient $\binom{p}{k}$ is divisible by p for all integers k satisfying $0<k<p$ to show that if $t f(t)=(t+1)^{p}-1$ then the polynomial f is irreducible over \mathbb{Q}.
The cyclotomic polynomial $\Phi_{p}(t)$ is defined by $\Phi_{p}(t)=1+t+t^{2}+\cdots+$ t^{p-1} for each prime number p. Show that $t \Phi_{p}(t+1)=(t+1)^{p}-1$, and hence show that the cyclotomic polynomial Φ_{p} is irreducible over \mathbb{Q} for all prime numbers p.
14. The Fundamental Theorem of Algebra ensures that every non-constant polynomial with complex coefficients factors as a product of polynomials of degree one. Use this result to show that a non-constant polynomial with real coefficients is irreducible over the field \mathbb{R} of real numbers if and only if it is either a polynomial of the form $a t+b$ with $a \neq 0$ or a quadratic polynomial of the form $a t^{2}+b t+c$ with $a \neq 0$ and $b^{2}<4 a c$.
15. Let $f_{1}, f_{2}, \ldots, f_{k}$ be non-constant polynomials with coefficients in a field K, and let $g=f_{1} f_{2} \cdots f_{k}+1$. Show that g is not divisible by $f_{1}, f_{2}, \ldots, f_{k}$. Use this result to show that there are infinitely many irreducible polynomials with coefficients in a field K.
16. A complex number z is said to be algebraic if there $f(z)=0$ for some non-zero polynomial f with rational coefficients. Show that $z \in \mathbb{C}$ is algebraic if and only if $\mathbb{Q}(z): \mathbb{Q}$ is a finite extension Then use the Tower Law to prove that the set of all algebraic numbers is a subfield of \mathbb{C}.
17. Let K, L and M be fields satisfying $K \subset L \subset M$. Suppose that the field extensions $M: L$ and $L: K$ are algebraic (but not necessarily finite). Prove that the extension $M: K$ is algebraic.
18. Let L be a splitting field for a polynomial of degree n with coefficients in K. Prove that $[L: K] \leq n!$.
19. (a) Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$ and $[\mathbb{Q}(\sqrt{2}, \sqrt{3}), \mathbb{Q}]=4$. What is the degree of the minimum polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q} ?
(b) Show that $\sqrt{2}+\sqrt{3}$ is a root of the polynomial $t^{4}-10 t^{2}+1$, and thus show that this polynomial is an irreducible polynomial whose splitting field over \mathbb{Q} is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(c) Find all \mathbb{Q}-automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, and show that they constitute a group of order 4 isomorphic to a direct product of two cyclic groups of order 2 .
20. Let K be a field of characteristic p, where p is prime.
(a) Show that $f \in K[t]$ satisfies $D f=0$ if and only if $f(t)=g\left(t^{p}\right)$ for some $g \in K[t]$.
(b) Let $h(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}$, where $a_{0}, a_{1}, \ldots, a_{n} \in K$. Show that $(h(t))^{p}=g\left(t^{p}\right)$, where $g(t)=a_{0}^{p}+a_{1}^{p} t+a_{2}^{p} t^{2}+\cdots+a_{n}^{p} t^{n}$.
(c) Now suppose that Frobenius monomorphism of K is an automorphism of K. Show that $f \in K[t]$ satisfies $D f=0$ if and only if $f(t)=(h(t))^{p}$ for some $h \in K[t]$. Hence show that $D f \neq 0$ for any irreducible polynomial f in $K[t]$.
(d) Use these results to show that every algebraic extension $L: K$ of a finite field K is separable.
21. A field K is said to be algebraically closed if every non-constant polynomial with coefficients in K splits over K. Use the fact that the number of irreducible polynomials with coefficients in a given field K is infinite to prove that any algebraically closed field must be infinite.
22. For each positive integer n, let ω_{n} be the primitive nth root of unity in \mathbb{C} given by $\omega_{n}=\exp (2 \pi i / n)$, where $i=\sqrt{-1}$.
(a) Show that the field extensions $\mathbb{Q}\left(\omega_{n}\right): \mathbb{Q}$ and $\mathbb{Q}\left(\omega_{n}, i\right): \mathbb{Q}$ are normal field extensions for all positive integers n.
(b) Show that the minimum polynomial of ω_{p} over \mathbb{Q} is the cyclotomic polynomial $\Phi_{p}(t)$ given by $\Phi_{p}(t)=1+t+t^{2}+\cdots+t^{p-1}$. Hence show that $\left[\mathbb{Q}\left(\omega_{p}\right): \mathbb{Q}\right]=p-1$ if p is prime.
(c) Let p be prime and let $\alpha_{k}=\omega_{p^{2}} \omega_{p}^{k}=\exp \left(2 \pi i(1+k p) / p^{2}\right)$ for all integers k. Note that $\alpha_{0}=\omega_{p^{2}}$ and $\alpha_{k}=\alpha_{l}$ if and only if $k \equiv l \bmod p$. Show that if θ is an automorphism of $\mathbb{Q}\left(\omega_{p^{2}}\right)$ which fixes $\mathbb{Q}\left(\omega_{p}\right)$ then there exists some integer m such that $\theta\left(\alpha_{k}\right)=\alpha_{k+m}$ for all integers k. Hence show that $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p-1}$ all belong to the orbit of $\omega_{p^{2}}$ under the action of the Galois group $\Gamma\left(\mathbb{Q}\left(\omega_{p^{2}}\right): \mathbb{Q}\left(\omega_{p}\right)\right)$. Use this result to show that $\left[\mathbb{Q}\left(\omega_{p^{2}}\right): \mathbb{Q}\left(\omega_{p}\right)\right]=p$ and $\left[\mathbb{Q}\left(\omega_{p^{2}}\right): \mathbb{Q}\right]=p(p-1)$.
23. Show that the field $\mathbb{Q}(\xi, \omega)$ is a splitting field for the polynomial $t^{5}-$ 2 over \mathbb{Q}, where $\omega=\omega_{5}=\exp (2 \pi i / 5)$ and $\xi=\sqrt[5]{2}$. Show that $[\mathbb{Q}(\xi, \omega): \mathbb{Q}]=20$ and the Galois $\Gamma(\mathbb{Q}(\xi, \omega): \mathbb{Q})$ consists of the automorphisms $\theta_{r, s}$ for $r=1,2,3,4$ and $s=0,1,2,3,4$, where $\theta_{r, s}(\omega)=\omega^{r}$ and $\theta_{r, s}(\xi)=\omega^{s} \xi$.
24. Let f be a monic polynomial of degree n with coefficients in a field K. Then

$$
f(t)=\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n}\right),
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the roots of f in some splitting field L for f over K. The discriminant of the polynomial f is the quantity δ^{2}, where
δ is the product $\prod_{1 \leq i<j \leq n}\left(\alpha_{j}-\alpha_{i}\right)$ of the quantities $\alpha_{j}-\alpha_{i}$ taken over all pairs of integers i and j satisfying $1 \leq i<j \leq n$.
Show that the quantity δ changes sign whenever α_{i} is interchanged with α_{i+1} for some i between 1 and $n-1$. Hence show that $\theta(\delta)=\delta$ for all automorphisms θ in the Galois group $\Gamma(L: K)$ that induce even permutations of the roots of f, and $\theta(\delta)=-\delta$ for all automorphisms θ in $\Gamma(L: K)$ that induce odd permutations of the roots. Then apply the Galois correspondence to show that the discriminant δ^{2} of the polynomial f belongs to the field K containing the coefficients of f, and the field $K(\delta)$ is the fixed field of the subgroup of $\Gamma(L: K)$ consisting of those automorphisms in $\Gamma(L: K)$ that induce even permutations of the roots of f. Hence show that $\delta \in K$ if and only if all automorphisms in the Galois group $\Gamma(L: K)$ induce even permutations of the roots of f.
25. (a) Show that the discriminant of the quadratic polynomial $t^{2}+b t+c$ is $b^{2}-4 c$.
(b) Show that the discriminant of the cubic polynomial $t^{3}-p t-q$ is $4 p^{2}-27 q^{2}$.
26. Let $f(t)=t^{3}-p t-q$ be a cubic polynomial with complex coefficients p and q, and let the complex numbers α, β and γ be the roots of f.
(a) Give formulae for the coefficients p and q of f in terms of the roots α, β and γ of f, and verify that $\alpha+\beta+\gamma=0$ and

$$
\alpha^{3}+\beta^{3}+\gamma^{3}=3 \alpha \beta \gamma=3 q
$$

(b) Let $\lambda=\alpha+\omega \beta+\omega^{2} \gamma$ and $\mu=\alpha+\omega^{2} \beta+\omega \gamma$, where ω is the complex cube root of unity given by $\omega=\frac{1}{2}(-1+\sqrt{3} i)$. Verify that $1+\omega+\omega^{2}=0$, and use this result to show that

$$
\alpha=\frac{1}{3}(\lambda+\mu), \quad \beta=\frac{1}{3}\left(\omega^{2} \lambda+\omega \mu\right), \quad \gamma=\frac{1}{3}\left(\omega \lambda+\omega^{2} \mu\right) .
$$

(c) Let K be the subfield $\mathbb{Q}(p, q)$ of \mathbb{C} generated by the coefficients of the polynomial f, and let M be a splitting field for the polynomial f over $K(\omega)$. Show that the extension M : K is normal, and is thus a Galois extension. Show that any automorphism in the Galois group $\Gamma(M: K)$ permutes the roots α, β and γ of f and either fixes ω or else sends ω to ω^{2}.
(d) Let $\theta \in \Gamma(M: K)$ be a K-automorphism of M. Suppose that

$$
\theta(\alpha)=\beta, \quad \theta(\beta)=\gamma, \quad \theta(\gamma)=\alpha .
$$

Show that if $\theta(\omega)=\omega$ then $\theta(\lambda)=\omega^{2} \lambda$ and $\theta(\mu)=\omega \mu$. Show also that if $\theta(\omega)=\omega^{2}$ then $\theta(\lambda)=\omega \mu$ and $\theta(\mu)=\omega^{2} \lambda$. Hence show that $\lambda \mu$ and $\lambda^{3}+\mu^{3}$ are fixed by any automorphism in $\Gamma(M: K)$ that cyclically permutes α, β, γ. Show also that the quantities $\lambda \mu$ and $\lambda^{3}+\mu^{3}$ are also fixed by any automorphism in $\Gamma(M: K)$ that interchanges two of the roots of f whilst leaving the third root fixed. Hence prove that $\lambda \mu$ and $\lambda^{3}+\mu^{3}$ belong to the field K generated by the coefficients of f and can therefore be expressed as rational functions of p and q.
(e) Show by direct calculation that $\lambda \mu=3 p$ and $\lambda^{3}+\mu^{3}=27 q$. Hence show that λ^{3} and μ^{3} are roots of the quadratic polynomial $t^{2}-27 q t+$ $27 p^{3}$. Use this result to verify that the roots of the cubic polynomial $t^{3}-p t-q$ are of the form

$$
\sqrt[3]{\frac{q}{2}+\sqrt{\frac{q^{2}}{4}-\frac{p^{3}}{27}}}+\sqrt[3]{\frac{q}{2}-\sqrt{\frac{q^{2}}{4}-\frac{p^{3}}{27}}}
$$

where the two cube roots must be chosen so as to ensure that their product is equal to $\frac{1}{3} p$.

