4 Abstract Algebra

4.1 Binary Operations on Sets

4.2 Commutative Binary Operations

4.3 Associative Binary Operations

4.4 Semigroups

4.5 The General Associative Law

4.6 Identity elements

4.7 Monoids

4.8 Inverses

4.9 Groups

4.10 Homomorphisms and Isomorphisms
4 Abstract Algebra

4.1 Binary Operations on Sets

Definition A binary operation $*$ on a set A is an operation which, when applied to any elements x and y of the set A, yields an element $x * y$ of A.

Example The arithmetic operations of addition, subtraction and multiplication are binary operations on the set \mathbb{R} of real numbers which, when applied to real numbers x and y, yield the real numbers $x + y$, $x - y$ and xy respectively.

However division is not a binary operation on the set of real numbers, since the quotient x/y is not defined when $y = 0$. (Under a binary operation $*$ on a set must determine an element $x * y$ of the set for every pair of elements x and y of that set.)

4.2 Commutative Binary Operations

Definition A binary operation $*$ on a set A is said to be commutative if $x * y = y * x$ for all elements x and y of A.

Example The operations of addition and multiplication on the set \mathbb{R} of real numbers are commutative, since $x + y = y + x$ and $x \times y = y \times x$ for all real numbers x and y. However the operation of subtraction is not commutative, since $x - y \neq y - x$ in general. (Indeed the identity $x - y = y - x$ holds only when $x = y$.)

4.3 Associative Binary Operations

Let $*$ be a binary operation on a set A. Given any three elements x, y and z of a set A, the binary operation, applied to the elements $x * y$ and z of A, yields an element $(x * y) * z$ of A, and, applied to the elements x and $y * z$ of A, yields an element $x * (y * z)$ of A.

Definition A binary operation $*$ on a set A is said to be associative if $(x * y) * z = x * (y * z)$ for all elements x, y and z of A.

Example The operations of addition and multiplication on the set \mathbb{R} of real numbers are associative, since $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$ for all real numbers x, y and z. However the operation of subtraction is not associative. For example $(1 - 2) - 3 = -4$, but $1 - (2 - 3) = 2$.

56
When a binary operation \(* \) is associative it is not necessary to retain the parentheses in expressions such as \((x * y) * z\) or \(x * (y * z)\). These two expressions may both be written without ambiguity as \(x * y * z\).

4.4 Semigroups

Definition A semigroup consists of a set on which is defined an associative binary operation.

We may denote by \((A, *)\) a semigroup consisting of a set \(A\) together with an associative binary operation \(\ast\) on \(A\).

Definition A semigroup \((A, *)\) is said to be commutative (or Abelian) if the binary operation \(\ast\) is commutative.

Example The set of natural numbers, with the operation of addition, is a commutative semigroup, as is the set of natural numbers with the operation of multiplication.

Let \((A, \ast)\) be a semigroup. Given any element \(a\) of \(A\), we define

\[
\begin{align*}
 a^1 &= a, \\
 a^2 &= a \ast a, \\
 a^3 &= a \ast a^2 = a \ast (a \ast a), \\
 a^4 &= a \ast a^3 = a \ast (a \ast (a \ast a)), \\
 a^5 &= a \ast a^4 = a \ast (a \ast (a \ast (a \ast a)))
\end{align*}
\]

In general we define \(a^n\) recursively for all natural numbers \(n\) so that \(a^1 = a\) and \(a^n = a \ast a^{n-1}\) whenever \(n > 1\).

Remark In the case of the semigroup consisting of the set of natural numbers with the operation of multiplication, the value of \(a^n\) given by the above rule is the \(n\)th power of a natural number \(a\). However in the case of the semigroup consisting of the set of natural numbers with the operation of addition it is not the \(n\)th power of \(a\), but is \(na\).

Theorem 4.1 Let \((A, \ast)\) be a semigroup, and let \(a\) be an element of \(A\). Then \(a^m \ast a^n = a^{m+n}\) for all natural numbers \(m\) and \(n\).
Proof We prove this theorem by induction on \(m \).

Now it follows immediately from the definition of \(a^{n+1} \) that \(a \ast a^n = a^{1+n} \) for all natural numbers \(n \). Thus the theorem is true in the case when \(m = 1 \).

Suppose that the required result is true in the case when \(m = s \) for some natural number \(s \), so that \(a^s \ast a^n = a^{s+n} \) for all natural numbers \(n \). Then

\[
a^{s+1} \ast a^n = (a \ast a^s) \ast a^n = a \ast (a^s \ast a^n) = a \ast a^{s+n} = a^{s+1+n}
\]

for all natural numbers \(n \). Thus if the required result is true when \(m = s \) then it is also true when \(m = s + 1 \). We conclude using the Principle of Mathematical Induction that the identity \(a^m \ast a^n = a^{m+n} \) holds for all natural numbers \(m \) and \(n \), as required.

Theorem 4.2 Let \((A, \ast)\) be a semigroup, and let \(a \) be an element of \(A \). Then \((a^m)^n = a^{mn}\) for all natural numbers \(m \) and \(n \).

Proof The result may be proved by induction on the natural number \(n \). The identity \((a^m)^n = a^{mn}\) clearly holds whenever \(n = 1 \). Suppose that \(s \) is a natural number with the property that \((a^m)^s = a^{ms}\) for all natural numbers \(m \). Then

\[
(a^m)^{s+1} = (a^m)^s \ast a^m = a^{ms} \ast a^m = a^{ms+m} = a^{m(s+1)}.
\]

Thus if the identity \((a^m)^n = a^{mn}\) holds when \(n = s \) then it also holds when \(n = s + 1 \). We conclude from the Principle of Mathematical Induction that this identity holds for all natural numbers \(n \).

Remark Note that the above proof made use of the fact that the binary operation on a semigroup is associative.

4.5 The General Associative Law

Let \((A, \ast)\) be a semigroup, and let \(x, y, z \) and \(w \) be elements of \(A \). We can use the associative property of \(\ast \) to show that the value of a product involving \(x, y, z, w \) is independent of the manner in which that product is bracketed, though it generally depends on the order in which \(x, y, z \) and \(w \) occur in that product (unless that binary operation is also commutative). For example,

\[
(x \ast (y \ast z)) \ast w = ((x \ast y) \ast z) \ast w
\]

\[
= (x \ast y) \ast (z \ast w)
\]

\[
= x \ast (y \ast (z \ast w))
\]

\[
= x \ast ((y \ast z) \ast w)
\]

58
All the above products may therefore be denoted without ambiguity by the expression \(x \ast y \ast z \ast w \) from which the parentheses have been dropped.

The analogous property holds for products involving five or more elements of the semigroup.

In any semigroup, the value of a product of three or more elements of the semigroup depends in general on the order in which those elements occur in the product (unless the binary operation is commutative), but the value of the product is independent of the manner in which the product is bracketed. This general result is often referred to as the General Associative Law, and can be proved using induction on the number of elements that occur in the product.

4.6 Identity elements

Definition Let \((A, \ast)\) be a semigroup. An element \(e\) of \(A\) is said to be an identity element for the binary operation \(\ast\) if \(e \ast x = x \ast e = x\) for all elements \(x\) of \(A\).

Example The number 1 is an identity element for the operation of multiplication on the set \(\mathbb{N}\) of natural numbers.

Example The number 0 is an identity element for the operation of addition on the set \(\mathbb{Z}\) of integers.

Theorem 4.3 A binary operation on a set cannot have more than one identity element.

Proof Let \(e\) and \(f\) be identity elements for a binary operation \(\ast\) on a set \(A\). Then \(e \ast f = f\). Thus there cannot be more than one identity element.

4.7 Monoids

Definition A monoid consists of a set on which is defined an associative binary operation with an identity element.

We see immediately from the above definition that a semigroup is a monoid if and only if it has an identity element.

Definition A monoid \((A, \ast)\) is said to be commutative (or Abelian) if the binary operation \(\ast\) is commutative.
Example The set \(\mathbb{N} \) of natural numbers with the operation of multiplication is a commutative monoid. Indeed the operation of multiplication is both commutative and associative, and the identity element is the natural number 1.

Example The set \(\mathbb{N} \) of natural numbers with the operation of addition is not a monoid, since there is no identity element for the operation of addition that belongs to the set of natural numbers.

Let \(a \) be an element of a monoid \((A, \ast)\). We define \(a^0 = e \), where \(e \) is the identity element.

Theorem 4.4 Let \((A, \ast)\) be a monoid, and let \(a \) be an element of \(A \). Then \(a^m \ast a^n = a^{m+n} \) for all non-negative integers \(m \) and \(n \).

Proof Any monoid is a semigroup. It therefore follows from Theorem 4.1 that \(a^m \ast a^n = a^{m+n} \) when \(m > 0 \) and \(n > 0 \). It also follows directly from the definition of the identity element that the result is also true if \(m = 0 \) or if \(n = 0 \).

Theorem 4.5 Let \((A, \ast)\) be a monoid, and let \(a \) be an element of \(A \). Then \((a^m)^n = a^{mn}\) for all non-negative integers \(m \) and \(n \).

Proof It follows directly from Theorem 4.2 that \((a^m)^n = a^{mn}\) whenever \(m \) and \(n \) are both positive. But this identity holds also when \(m \) or \(n \) is zero, since both sides of the identity are then equal to the identity element of the monoid.

4.8 Inverses

Definition Let \((A, \ast)\) be a monoid with identity element \(e \), and let \(x \) be an element of \(A \). An element \(y \) of \(A \) is said to be the inverse of \(x \) if \(x \ast y = y \ast x = e \). An element \(x \) of \(A \) is said to be invertible if there exists an element of \(A \) which is an inverse of \(x \).

Theorem 4.6 An element of a monoid can have at most one inverse.

Proof Let \((A, \ast)\) be a monoid with identity element \(e \), and let \(x, y \) and \(z \) be elements of \(A \). Suppose that \(x \ast y = y \ast x = e \) and \(x \ast z = z \ast x = e \). Then

\[
y = y \ast e = y \ast (x \ast z) = (y \ast x) \ast z = e \ast z = z,
\]

and thus \(y = z \). Thus an element of a monoid cannot have more than one inverse.
Remark The above proof shows in fact that if \(x \) is an element of a monoid \((A,\ast)\), and if \(y \) and \(z \) are elements of \(A \) satisfying \(y \ast x = x \ast z = e \), where \(e \) is the identity element of the monoid, then \(y = z \).

Let \((A,\ast)\) be a monoid, and let \(x \) be an invertible element of \(A \). We shall denote the inverse of \(x \) by \(x^{-1} \). (This inverse element \(x^{-1} \) is uniquely determined by \(x \), by Theorem 4.6.)

Theorem 4.7 Let \((A,\ast)\) be a monoid, and let \(x \) and \(y \) be invertible elements of \(A \). Then \(x \ast y \) is also invertible, and \((x \ast y)^{-1} = y^{-1} \ast x^{-1}\).

Proof Let \(e \) denote the identity element of the monoid. Then \(x \ast x^{-1} = x^{-1} \ast x = e \) and \(y \ast y^{-1} = y^{-1} \ast y = e \), and therefore

\[
(x \ast y) \ast (y^{-1} \ast x^{-1}) = (x \ast y) \ast (y \ast y^{-1}) \ast x^{-1} = (x \ast (y \ast y^{-1})) \ast x^{-1} = (x \ast e) \ast x^{-1} = x \ast x^{-1} = e,
\]

\[
(y^{-1} \ast x^{-1}) \ast (x \ast y) = y^{-1} \ast (x^{-1} \ast (x \ast y)) = y^{-1} \ast ((x^{-1} \ast x) \ast y) = y^{-1} \ast (e \ast y) = y^{-1} \ast y = e.
\]

and thus the element \(y^{-1} \ast x^{-1} \) has the properties required of an inverse of the element \(x \ast y \). We conclude that \(x \ast y \) is indeed invertible, and \((x \ast y)^{-1} = y^{-1} \ast x^{-1}\).

Theorem 4.8 Let \((A,\ast)\) be a monoid, let \(a \) and \(b \) be elements of \(A \), and let \(x \) be an invertible element of \(A \). Then \(a = b \ast x \) if and only if \(b = a \ast x^{-1} \). Similarly \(a = x \ast b \) if and only if \(b = x^{-1} \ast a \).

Proof Let \(e \) denote the identity element of the monoid. Suppose that \(a = b \ast x \). Then

\[
a \ast x^{-1} = (b \ast x) \ast x^{-1} = b \ast (x \ast x^{-1}) = b \ast e = b.
\]

Conversely, if \(b = a \ast x^{-1} \), then

\[
b \ast x = (a \ast x^{-1}) \ast x = a \ast (x^{-1} \ast x) = a \ast e = a.
\]

Similarly if \(a = x \ast b \) then

\[
x^{-1} \ast a = x^{-1} \ast (x \ast b) = (x^{-1} \ast x) \ast b = e \ast b = b,
\]

and, conversely, if \(b = x^{-1} \ast a \) then

\[
x \ast b = x \ast (x^{-1} \ast a) = (x \ast x^{-1}) \ast a = e \ast a = a.
\]

61
Let \((A, \ast)\) be a monoid, and let \(a\) be an invertible element of \(A\). We extend the definition of \(a^n\) to negative integers \(n\) by defining \(a^n\) to be the inverse \((a^q)^{-1}\) of \(a^q\) whenever \(q > 0\) and \(n = -q\).

Theorem 4.9 Let \((A, \ast)\) be a monoid, and let \(a\) be an invertible element of \(A\). Then \(a^m \ast a^n = a^{m+n}\) for all integers \(m\) and \(n\).

Proof The proof breaks down into a case-by-case analysis, depending on the signs of the integers \(m\) and \(n\).

The appropriate definitions ensure that the identity \(a^m \ast a^n = a^{m+n}\) holds if \(m = 0\) or if \(n = 0\).

The result has already been verified if both \(m\) and \(n\) are positive (see Theorem 4.1 and Theorem 4.4).

Suppose that \(m\) and \(n\) are both negative. Then \(a^m = (a^{-m})^{-1}, a^n = (a^{-n})^{-1}\) and \(a^{m+n} = (a^{-m-n})^{-1}\). Now \(a^{-n} \ast a^{-m} = a^{-n-m} = a^{-m-n}\). It follows from Theorem 4.7 that

\[
a^{m+n} = (a^{-m-n})^{-1} = (a^{-n} \ast a^{-m})^{-1} = (a^{-m})^{-1} \ast (a^{-n})^{-1} = a^m \ast a^n.
\]

The only remaining cases to consider are those when \(m\) and \(n\) have different signs.

Let \(p\) and \(q\) be non-negative integers. Now \(a^{p+q} = a^p \ast a^q = a^q \ast a^p\). It follows from Theorem 4.8 that

\[
a^p = a^{p+q} \ast a^{-q} = a^{-q} \ast a^{p+q}, \quad a^q = a^{p+q} \ast a^{-p} = a^{-p} \ast a^{p+q},
\]

and hence

\[
a^{-p} = a^q \ast a^{-(p+q)} = a^{-(p+q)} \ast a^q, \quad a^{-q} = a^p \ast a^{-(p+q)} = a^{-(p+q)} \ast a^p.
\]

Suppose that \(m < 0, n > 0\) and \(m + n \geq 0\). On setting \(p = -m\) and \(q = m + n\) we see that \(a^{m+n} = a^q = a^{-p} \ast a^{p+q} = a^m \ast a^n\). Next suppose that \(m < 0, n > 0\) and \(m + n < 0\). On setting \(p = -m - n\) and \(q = n\) we see that \(a^{m+n} = a^{-p} = a^{-(p+q)} \ast a^q = a^m \ast a^n\). Next suppose that \(m > 0, n < 0\) and \(m + n \geq 0\). On setting \(p = m + n\) and \(q = -n\) we see that \(a^{m+n} = a^p = a^{p+q} \ast a^{-q} = a^m \ast a^n\). Finally suppose that \(m > 0, n < 0\) and \(m + n < 0\). On setting \(p = m\) and \(q = -m - n\) we see that \(a^{m+n} = a^{-q} = a^p \ast a^{-(p+q)} = a^m \ast a^n\). The result has now been verified for all integers \(m\) and \(n\), as required.

Theorem 4.10 Let \((A, \ast)\) be a monoid, and let \(a\) be an invertible element of \(A\). Then \((a^m)^n = a^{mn}\) for all integers \(m\) and \(n\).
Proof Let m be an integer. First we prove by induction on n that $(a^m)^n = a^{mn}$ for all positive integers n. The result clearly holds when $n = 1$. Suppose $(a^m)^s = a^{ms}$ for some positive integer s. It then follows from Theorem 4.9 that

$$(a^m)^{s+1} = (a^m)^s * a^m = a^{ms} * a^m = a^{m(s+1)}.$$

It follows from the Principle of Mathematical Induction that $(a^m)^n = a^{mn}$ for all positive integers n. The result is also true when $n = 0$, since both sides of the identity are then equal to the identity element of the monoid. Finally suppose that n is a negative integer. Then $n = -q$ for some positive integer q, and $(a^m)^q = a^{mq}$. On taking the inverses of both sides of this identity, we find that

$$(a^m)^n = ((a^m)^q)^{-1} = (a^{mq})^{-1} = a^{-mq} = a^{mn},$$

as required. We can now conclude that the identity $(a^m)^n = a^{mn}$ holds for all integers m and n.

4.9 Groups

Definition A group consists of a set A together with a binary operation $*$ on A with the following properties:—

(i) $x * (y * z) = (x * y) * z$ for all elements x, y and z of A (i.e., the operation $*$ is associative);

(ii) there exists an element e of A with the property that $e * x = x * e = x$ for all elements x of A (i.e., there exists an identity element e for the binary operation $*$ on A);

(iii) given any element x of A, there exists an element y of A satisfying $x * y = y * x = e$ (i.e., every element of A is invertible).

We see immediately from this definition that a group can be characterized as a monoid in which every element is invertible.

Definition A group $(A, *)$ is said to be commutative (or Abelian) if the binary operation $*$ is commutative.

Example The set of integers with the operation of addition is a commutative group.

Example The set of real numbers with the operation of addition is a commutative group.
Example The set of non-zero real numbers with the operation of multiplication is a commutative group.

Example The set of integers with the operation of multiplication is not a group, since not every element is invertible. Indeed the only integers that are invertible are +1 and −1.

Example Let \(n \) be a natural number, and let \(\mathbb{Z}_n = \{0, 1, \ldots, n - 1\} \).

Any integer \(k \) may be expressed uniquely in the form \(k = qn + r \) for some integers \(q \) and \(r \) with \(0 \leq r < n \). (When \(k \) is positive, \(q \) and \(r \) are the quotient and remainder respectively, when \(k \) is divided by \(n \) in integer arithmetic.) Then \(r \) is the unique element of \(\mathbb{Z}_n \) for which \(k - r \) is divisible by \(n \). In particular, given any elements \(x \) and \(y \) of \(\mathbb{Z}_n \), there exist unique elements \(s \) and \(p \) of \(\mathbb{Z}_n \) such that \(x + y - s \) and \(xy - p \) are divisible by \(n \). We define \(x \oplus_n y = s \) and \(x \otimes_n y = p \). Then \(\oplus_n \) and \(\otimes_n \) are binary operations on the set \(\mathbb{Z}_n \).

We show that the binary operation \(\oplus_n \) is associative. Let \(x, y \) and \(z \) be integers belonging to \(\mathbb{Z}_n \), and let \(u = x \oplus_n y \) and \(v = y \oplus_n z \). Then \(x + y - u \) and \(y + z - v \) are both divisible by \(n \). Now

\[
(u + z) - (x + v) = (y + z - v) - (x + y - u).
\]

It follows that \((u + z) - (x + v) \) is divisible by \(n \), and hence \(u \oplus_n z = x \oplus_n v \). Thus \((x \oplus_n y) \oplus_n z = x \oplus_n (y \oplus_n z) \).

We also show that the binary operation \(\otimes_n \) is associative. Let \(x, y \) and \(z \) be integers belonging to \(\mathbb{Z}_n \), and let \(p = x \otimes_n y \) and \(q = y \otimes_n z \). Then \(xy - p \) and \(yz - q \) are both divisible by \(n \). Now

\[
pz - xq = x(yz - q) - (xy - p)z.
\]

It follows that \(pz - xq \) is divisible by \(n \), and hence \(p \otimes_n z = x \otimes_n q \). Thus \((x \otimes_n y) \otimes_n z = x \otimes_n (y \otimes_n z) \).

Now \(0 \oplus_n x = x \oplus_n 0 = x \) and \(1 \otimes_n x = x \otimes_n 1 = x \) for all \(x \in \mathbb{Z}_n \). It follows that \((\mathbb{Z}_n, \oplus_n) \) is a monoid with identity element \(0 \), and \((\mathbb{Z}_n, \otimes_n) \) is a monoid with identity element \(1 \).

Every element \(x \) of the monoid \((\mathbb{Z}_n, \oplus_n) \) is invertible: the inverse of \(x \) is \(n - x \) if \(x \neq 0 \), and is \(0 \) if \(x = 0 \). Thus \((\mathbb{Z}_n, \oplus_n) \) is a group.

However \((\mathbb{Z}_n, \otimes_n) \) is not a group if \(n > 1 \). Indeed \(0 \) is not an invertible element, since \(0 \otimes_n x = 0 \) for all elements \(x \) of \(\mathbb{Z}_n \), and therefore there cannot exist any element \(x \) of \(\mathbb{Z}_n \) for which \(0 \otimes_n x = 1 \).
It can be shown that an element \(x \) of \((\mathbb{Z}_n, \otimes)\) is invertible in this monoid if and only if the highest common factor of \(x \) and \(n \) is equal to 1. It follows from this that the non-zero elements of \(\mathbb{Z}_n \) constitute a group under \(\otimes \) if and only if the natural number \(n \) is a prime number.

Let us consider the particular case when \(n = 9 \). The ‘multiplication table’ for the monoid \((\mathbb{Z}_9, \otimes_9)\) is the following:

<table>
<thead>
<tr>
<th>(\otimes_9)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

From this table we see that the invertible elements are 1, 2, 4, 5, 7 and 8. Indeed \(1 \otimes_9 1 = 1 \), \(2 \otimes_9 5 = 1 \), \(4 \otimes_9 7 = 1 \), \(8 \otimes_9 8 = 1 \).

4.10 Homomorphisms and Isomorphisms

Definition Let \((A, \ast)\) and \((B, \ast)\) be semigroups, monoids or groups. A function \(f: A \rightarrow B \) from \(A \) to \(B \) is said to be a homomorphism if \(f(x \ast y) = f(x) \ast f(y) \) for all elements \(x \) and \(y \) of \(A \).

Example Let \(q \) be an integer, and let \(f: \mathbb{Z} \rightarrow \mathbb{Z} \) be a the function from the set of integers to itself defined by \(f(n) = qn \) for all integers \(n \). Then \(f \) is a homomorphism from the group \((\mathbb{Z}, +) \) to itself, since

\[
f(m + n) = q(m + n) = qm + qn = f(m) + f(n)
\]

for all integers \(m \) and \(n \).

Example Let \(\mathbb{R}^* \) denote the set of non-zero real numbers, let \(a \) be a non-zero real number, and let \(f: \mathbb{Z} \rightarrow \mathbb{R}^* \) be the function defined by \(f(n) = a^n \) for all integers \(m \) and \(n \). Then \(f: \mathbb{Z} \rightarrow \mathbb{R}^* \) is a homomorphism from the group \((\mathbb{Z}, +) \) of integers under addition to the group \((\mathbb{R}^*, \times) \) of non-zero real numbers under multiplication, since

\[
f(m + n) = a^{m+n} = a^m a^n = f(m)f(n)
\]

for all integers \(m \) and \(n \).
Example This last example can be generalized. Let a be an invertible element of a monoid (A, \ast), and let $f: \mathbb{Z} \to A$ be the function from \mathbb{Z} to A defined by $f(n) = a^n$. Then this function is a homomorphism from the group $(\mathbb{Z}, +)$ of integers under addition to the monoid (A, \ast) since it follows from Theorem 4.9 that

$$f(m + n) = a^{m+n} = a^m \ast a^n = f(m) \ast f(n)$$

for all integers m and n.

We recall that a function $f: A \to B$ is said to be injective if distinct elements of A get mapped to distinct elements of B (i.e., if x and y are elements of A and if $x \neq y$ then $f(x) \neq f(y)$). Also a function $f: A \to B$ is said to be surjective if each element of B is the image $f(a)$ of at least one element a of A. A function $f: A \to B$ is said to be bijective if it is both injective and surjective. One can prove that a function $f: A \to B$ has a well-defined inverse $f^{-1}: B \to A$ if and only if it is bijective.

Definition Let (A, \ast) and (B, \ast) be semigroups, monoids or groups. A function $f: A \to B$ from A to B is said to be an isomorphism if it is both a homomorphism and a bijective function.

Theorem 4.11 Let (A, \ast) and (B, \ast) be semigroups, monoids or groups. Then the inverse $f^{-1}: B \to A$ of any isomorphism $f: A \to B$ is itself an isomorphism.

Proof The inverse $f^{-1}: B \to A$ of an isomorphism $f: A \to B$ is itself a bijective function whose inverse is the function $f: A \to B$. It remains to show that $f^{-1}: B \to A$ is a homomorphism. Let u and v be elements of B, and let $x = f^{-1}(u)$ and $y = f^{-1}(v)$. Then $u = f(x)$ and $v = f(y)$, and therefore

$$f(x \ast y) = f(x) \ast f(y) = u \ast v$$

and therefore

$$f^{-1}(u \ast v) = x \ast y = f^{-1}(u) \ast f^{-1}(v),$$

showing that the function $f^{-1}: B \to A$ is a homomorphism from (B, \ast) to (A, \ast), as required.

Definition Let (A, \ast) and (B, \ast) be semigroups, monoids or groups. If there exists an isomorphism from (A, \ast) to (B, \ast) then (A, \ast) and (B, \ast) are said to be isomorphic.
Problems

1. Let E denote the set

$$\{\ldots, -6, -4, -2, 0, 2, 4, 6, \ldots\}$$

of even integers, let $+$ and \times denote the usual arithmetic operations of addition and multiplication respectively, and let $#$ denote the binary operation on E defined by $x \# y = \frac{1}{2}xy$ for all even integers x and y.

(a) Is $(E, +)$ a monoid?

(b) Is (E, \times) a monoid?

(c) Is $(E, #)$ a monoid?

[Briefly justify your answers.]

2. Let X denote the set

$$\{\ldots, -5, -3, -1, 1, 3, 5, \ldots\}$$

of odd integers, and let $#$ denote the binary operation on X defined by $x \# y = \frac{1}{2}(xy - x - y + 3)$ for all odd integers x and y.

(a) Is $(X, #)$ a monoid? If so, what is its identity element?

(a) Is $(X, #)$ a group?

[Briefly justify your answers.]

3. Let \oplus be the binary operation on the set Z of integers defined by $x \oplus y = x + y - 7$. Prove that (Z, \oplus) is a monoid. What is the identity element of this monoid? Is this monoid a group?

4. Let c be a fixed positive integer, and let \otimes denote the binary operation on the set Z of integers defined by the formula

$$x \otimes y = xy + c(x + y) + c^2 - c$$

for all integers x, y and z.

(a) Is (Z, \otimes) a semigroup? [Justify your answer.]
(b) Is \((\mathbb{Z}, \otimes)\) a monoid? If so, what is its identity element?

(c) Which of the elements of \(\mathbb{Z}\) are invertible? Is \((\mathbb{Z}, \otimes)\) a group?

5. Let \(\mathbb{R}^2\) denote the set of all ordered pairs \((x, y)\), where \(x\) and \(y\) are real numbers, and let \(\otimes_1\) and \(\otimes_2\) denote the binary operations on \(\mathbb{R}^2\) defined by the formulae

\[
(x, y) \otimes_1 (u, v) = (xv + yu, yv + xu),
\]
\[
(x, y) \otimes_2 (u, v) = (xv + yu, yv - xu)
\]

for all real numbers \(x, y, u, v\). Is \((\mathbb{R}^2, \otimes_1)\) a monoid? Is \((\mathbb{R}^2, \otimes_2)\) a monoid?

6. Let \(A\) be the set consisting of all ordered pairs \((x, y)\), where \(x\) and \(y\) are integers, and let \(\otimes\) denote the binary operation on \(A\) defined by

\[
(x_1, y_1) \otimes (x_2, y_2) = (x_1x_2 + 2y_1y_2, x_1y_2 + y_1x_2).
\]

for all integers \(x_1, x_2, y_1\) and \(y_2\). Prove that \((A, \otimes)\) is a monoid. What is its identity element?

7. Let \((A, \ast)\) be a monoid, let \(s\) be an invertible element of \(A\), and let \(f : A \rightarrow A\) be the function from \(A\) to itself defined by \(f(x) = (s \ast x) \ast s^{-1}\) for all elements \(x\) of \(A\) (where \(s^{-1}\) denotes the inverse of \(s\)).

(a) Prove that the function \(f\) is a homomorphism.

(b) Let \(g : A \rightarrow A\) be the function defined by \(g(x) = (s^{-1} \ast x) \ast s\) for all elements \(x\) of \(A\). Prove that the function \(g\) is the inverse of the function \(f\).

(c) Is the function \(f\) an isomorphism?