Course 2BA1: Academic Year 2000–1.
Assignment III.

To be handed in by Friday 2nd February, 2001.
Please include both name and student number on any work handed in.

1. Let \(E \) denote the set

\[
\{\ldots, -6, -4, -2, 0, 2, 4, 6, \ldots\}
\]

of even integers, let + and \(\times \) denote the usual arithmetic operations of addition and multiplication respectively, and let \(# \) denote the binary operation on \(E \) defined by \(x \# y = \frac{1}{2}xy \) for all even integers \(x \) and \(y \).

(a) Is \((E, +)\) a monoid?

(b) Is \((E, \times)\) a monoid?

(c) Is \((E, \#)\) a monoid?

[Briefly justify your answers.]

2. Let \(q \) and \(r \) be the quaternions given by \(q = 1 - i \) and \(r = 2i - j - k \).

Calculate the quaternion products \(q \times r \) and \(r \times q \) in the form \(w + xi + yj + zk \) for appropriate real numbers \(w, x, y \) and \(z \).

3. Let \((A, \ast)\) be a monoid, let \(s \) be an invertible element of \(A \), and let \(f: A \to A \) be the function from \(A \) to itself defined by \(f(x) = (s \ast x) \ast s^{-1} \) for all elements \(x \) of \(A \) (where \(s^{-1} \) denotes the inverse of \(s \)).

(a) Prove that the function \(f \) is a homomorphism.

(b) Let \(g: A \to A \) be the function defined by \(g(x) = (s^{-1} \ast x) \ast s \) for all elements \(x \) of \(A \). Prove that the function \(g \) is the inverse of the function \(f \).

(c) Is the function \(f \) an isomorphism?