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4 Path Integrals in the Complex Plane

4.1 Path Integrals of Continuous Functions

We say that a path γ: [a, b] → C in the complex plane is continuously dif-
ferentiable (or C1) if the real and imaginary parts of the function γ are
the restrictions to [a, b] of continuously differentiable real-valued functions
defined over some open interval that contains the domain [a, b] of γ.

Let f : D → C be a continuous function defined over a subset D of the
complex plane, and let γ: [a, b] → D be a continuously differentiable path
in D. Let f(z) = u(z) + iv(z) and let γ(t) = α(t) + iβ(t), where u: D →
R, v: D → R, α: [a, b] → R and β: [a, b] → R are continuous real-valued
functions. Let

γ′(t) =
dγ(t)

dt
=

dα(t)

dt
+ i

dβ(t)

dt
,

for all t ∈ [a, b]. The path integral
∫

γ
f(z) dz of f along γ is then defined by

the formulae∫
γ

f(z) dz =

∫ b

a

f(γ(t)) γ′(t) dt

=

∫ b

a

(
u(γ(t))

dα(t)

dt
− v(γ(t))

dβ(t)

dt

)
dt

+ i

∫ b

a

(
u(γ(t))

dβ(t)

dt
+ v(γ(t))

dα(t)

dt

)
dt.

Lemma 4.1 Let f : D → C be a continuous function defined over a subset D
of the complex plane, let γ: [a, b] → D be a continuously differentiable path in
D, and let p: [c, d] → [a, b] be a strictly increasing continuously differentiable
function mapping some closed interval [c, d] onto the domain [a, b] of the
function γ. Then

∫
γ◦p f(z) dz =

∫
γ
f(z) dz.

Proof Let θ: [c, d] → D be the path γ ◦ p defined by θ(s) = γ(p(s)) for all
s ∈ [c, d]. Then∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ d

c

f(γ(p(s)))γ′(p(s))
dp(s)

ds
ds

=

∫ d

c

f(θ(s))θ′(s) ds =

∫
θ

f(z) dz,

as required.
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The length L(γ) of a continuously differentiable path γ: [a, b] → C is
defined by the formula

L(γ) =

∫ b

a

|γ′(t)| dt

Definition We say that a path γ: [a, b] → C is piecewise continuously dif-
ferentiable (or piecewise C1) if γ is continuous and there exist real numbers
s0, s1, . . . , sm, where a = s0 < s1 < . . . < sm = b, such that the restriction
γ|[sj−1, sj]: [sj−1, sj] → C of γ to each interval [sj−1, sj] is C1. We say that
the piecewise continuously differentiable path γ is the concatenation of the
continuously differentiable paths γ1, γ2, . . . , γm, where γj is the restriction
γ|[sj−1, sj] of γ to the interval [sj−1, sj].

Let γ: [a, b] → C be a piecewise continuously differentiable path in C
that is the concatenation of continously differentiable paths γ1, γ2, . . . , γm.
We define the length of γ to be the sum of the lengths of the continuously
differentiable paths γ1, γ2, . . . , γm, and we define∫

γ

f(z) dz =
m∑

j=1

∫
γj

f(z) dz,

for any continuous complex-valued function f whose domain is a subset of
the complex plane that contains [γ].

Lemma 4.2 Let f : D → C be a continuous function defined over a sub-
set D of the complex plane, and let γ: [a, b] → D be a piecewise continuously
differentiable path in D. Then∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ L(γ) sup
z∈[γ]

|f(z)|,

where L(γ) denotes the length of the path γ.

Proof We first prove the result for paths γ: [a, b] → C that are continuously
differentiable. Let M = sup

z∈[γ]

|f(z)|, and let γ(t) = α(t)+iβ(t) for all t ∈ [a, b],

where α and β are real-valued functions on [a, b]. Now there exists a complex
number θ satisfying |θ| = 1 for which θ

∫
γ
f(z) dz is a non-negative real

number. Then∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ = θ

∫
γ

f(z) dz =

∫ b

a

θf(γ(t))γ′(t) dt

≤
∫ b

a

|θf(γ(t))γ′(t)| dt =

∫ b

a

|θ||f(γ(t))||γ′(t)| dt

≤ M

∫ b

a

|γ′(t)| dt = ML(γ),
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The result therefore holds for continuously differentiable paths.
Now let γ: [a, b] → C be a piecewise continuously differentiable path.

Then there exist real numbers s0, s1, . . . , sm satisfing a = s0 < s1 < · · · < sn

such that the restriction γj of γ to the interval [sj−1, sj] is continuously
differentiable for j = 1, 2, . . . ,m. Then∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ =

∣∣∣∣∣
m∑

j=1

∫
γj

f(z) dz

∣∣∣∣∣ ≤
m∑

j=1

∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ m∑
j=1

MjL(γj) ≤ ML(γ),

where Mj = sup
z∈[γj ]

|f(z)| for j = 1, 2, . . . ,m and M = sup
z∈[γ]

|f(z)|.

Let z0, z1, z2, . . . , zn be complex numbers, and let f : D → C be a continu-
ous complex-valued function defined of some subset D of the complex plane
that contains the line segments joining zj−1 to zj for j = 1, 2, . . . , n. We
define ∫

[z0,z1,...,zn]

f(z) dz =
n∑

j=1

∫
γj

f(z) dz =

∫
γ

f(z) dz,

where γj: [0, 1] → D is the path defined by γj(t) = (1 − t)zj−1 + tzj for all
t ∈ [0, 1], and γ: [0, n] → C is the path defined such that γ(t) = γj(t− j + 1)
when j − 1 ≤ t ≤ j for some integer j between 1 and n. The length of the
path γj is |zj − zj−1| for j = 1, 2, . . . , n. It follows from Lemma 4.2 that∣∣∣∣∫

[z0,z1,...,zn]

f(z) dz

∣∣∣∣ ≤ M
n∑

j=1

|zj − zj−1|,

where M = supz∈[γ] |f(z)|.
Note that if r is any integer satisfying 0 < r < n then∫

[z0,z1,...,zn]

f(z) dz =

∫
[z0,z1,...,zr]

f(z) dz +

∫
[zr,zr+1,...,zn]

f(z) dz.

Thus ∫
[z0,z1,...,zn]

f(z) dz =
n∑

j=1

∫
[zi−1,zi]

f(z) dz.

Also ∫
[z0,z1]

f(z) dz = −
∫

[z1,z0]

f(z) dz,

for all complex numbers z0 and z1, and for all continuous functions f defined
along the line segment joining z0 to z1.

45



4.2 Path Integrals and Boundaries

Let us define a closed polygonal set in the complex plane to be a closed
bounded subset X of the complex plane such that X is the closure of its
interior int(X) and the boundary X \ int(X) of X (i.e., the set consisting
of those points of X that do not lie in the interior of X) is a finite union of
line segments. We may express the boundary of such a set X as a union of
a finite collection E1, E2, . . . , Er of line segments in such a way that any two
distinct line segments belonging to this collection intersect, if at all, at some
endpoint common to both line segments. We shall refer to the line segments
in this collection as the edges of the closed polygonal set X.

Let X be a closed polygonal set in the complex plane, and let z0 and z1 be
the endpoints of an edge of X. We say that X lies to the left of the directed
edge from z0 to z1 if the ratio (z − z0)/(z1 − z0) has positive imaginary part
for all points of X that lie sufficiently close to the midpoint of the edge; we
say that X lies to the right of the directed edge from z0 to z1 if these ratios
have negative imaginary part. It follows easily from this that the region X
lies either to the left or to the right of the directed edge from z0 to z1 (and
cannot lie on both sides of this edge). Also if the region lies to the left of the
directed edge from z0 to z1 then it lies to the right of the directed edge from
z1 to z0.

Let X be a closed polygonal set in C with edges E1, E2, . . . , Er, and let
z

(j)
− and z

(j)
+ denote the endpoints of the edge Ej for j = 1, 2, . . . , r, where

these endpoints are ordered such that X lies to the left of the directed edge
from z

(j)
− to z

(j)
+ . Given any continuous complex-valued function f defined

throughout the boundary of X, we define∫
∂X

f(z) dz =
r∑

j=1

∫
[z

(j)
− ,z

(j)
+ ]

f(z) dz.

Example Let z0, z1 and z2 be distinct complex numbers that are not colin-
ear. Then z0, z1 and z2 determine a closed bounded subset T of the complex
plane whose boundary consists of the three line segments that join pairs of
points in {z0, z1, z2}. This closed bounded set consists of all points of the
complex plane that may be expressed in the form t0z0 + t1z1 + t2z2 for some
real numbers t0, t1, t2 that satisfy 0 ≤ tj ≤ 1 for j = 0, 1, 2 and t0+t1+t2 = 1.
We refer to this closed bounded subset T of the complex plane as the closed
triangle with vertices z0, z1 and z2. If z0, z1 and z2 are ordered so that the
ratio (z2− z0)/(z1− z0) has positive imaginary part, then z0, z1 and z2 occur
in anticlockwise order around the boundary of the triangle, the triangle lies
to the left of the directed edges, from z0 to z1, from z1 to z2, and from z2 to
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z0, and therefore∫
∂T

f(z) dz =

∫
[z0,z1]

f(z) dz +

∫
[z0,z2]

f(z) dz +

∫
[z2,z0]

f(z) dz.

Suppose that we are given a collection of closed triangles in the complex
plane. We say that the triangles in this collection intersect regularly if the
intersection of any two distinct triangles in the collection is a common edge,
a common vertex, or the empty set.

Proposition 4.3 Let T1, T2, . . . , Tr be a finite collection of distinct triangles
in the complex plane that intersect regularly, and let X be the closed polygonal
set in the complex plane that is the union of the triangles T1, T2, . . . , Tr. Then∫

∂X

f(z) dz =
r∑

j=1

∫
∂Tj

f(z) dz.

Proof Let z0 and z1 be the endpoints of an edge of a triangle in the collec-
tion. Now this edge can be an edge of at most two triangles in the collection.
If it is the edge of exactly two triangles Tj and Tk then one of these triangles
lies to the left and the other to the right of the directed edge from z0 and z1.
It follows that the contribution to

∫
∂Tj

f(z) dz deriving from the edge E is the

negative of the corresponding contribution
∫

∂Tk
f(z) dz. It follows therefore

that
r∑

j=1

∫
∂Tj

f(z) dz reduces to a sum of path integrals taken along line seg-

ments that are edges of exactly one triangle in the collection T1, T2, . . . , Tk.
The collection of such edges constitutes the boundary of X, and the defini-
tion of

∫
∂X

f(z) dz ensures that this quantity is the sum of the contributions

to
r∑

j=1

∫
∂Tj

f(z) dz deriving from those edges that bound exactly one triangle

in the collection T1, T2, . . . , Tr.
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