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3 Winding Numbers of Closed Paths in the

Complex Plane

3.1 Paths in the Complex Plane

Let D be a subset of the complex plane C. We define a path in D to be a
continuous complex-valued function γ: [a, b] → D defined over some closed
interval [a, b]. We shall denote the range γ([a, b]) of the function γ defining
the path by [γ]. It follows from Theorem 1.32 that [γ] is a closed bounded
subset of the complex plane.

A path γ: [a, b] → C in the complex plane is said to be closed if γ(a) =
γ(b). (This use of the technical term closed has no relation to the notions
of open and closed sets.) Thus a closed path is a path that returns to its
starting point.

Let γ: [a, b] → C be a path in the complex plane. We say that a complex
number w lies on the path γ if w ∈ [γ], where [γ] = γ([a, b]).

Lemma 3.1 Let γ: [a, b] → C be a path in the complex plane, and let w be
a complex number that does not lie on the path γ. Then there exists some
positive real number ε0 such that |γ(t)− w| ≥ ε0 > 0 for all t ∈ [a, b].

Proof The closed unit interval [a, b] is a closed bounded subset of R. It
follows from Lemma 1.31 that there exists some positive real number M
such that |γ(t) − w|−1 ≤ M for all t ∈ [a, b]. Let ε0 = M−1. Then the
positive real number ε0 has the required property.

3.2 The Path Lifting Theorem

Theorem 3.2 (Path Lifting Theorem) Let γ: [a, b] → C \ {0} be a path
in the set C \ {0} of non-zero complex numbers. Then there exists a path
γ̃: [a, b] → C in the complex plane which satisfies exp(γ̃(t)) = γ(t) for all
t ∈ [a, b].

Proof The complex number γ(t) is non-zero for all t ∈ [a, b], and therefore
there exists some positive number ε0 such that |γ(t)| ≥ ε0 for all t ∈ [a, b].
(Lemma 3.1). Moreover it follows from Theorem 1.33 that the function
γ: [a, b] → C \ {0} is uniformly continuous, since the domain of this function
is a closed bounded subset of R, and therefore there exists some positive
real number δ such that |γ(t) − γ(s)| < ε0 for all s, t ∈ [a, b] satisfying
|t − s| < δ. Let m be a natural number satisfying m > |b − a|/δ, and
let tj = a + j(b − a)/m for j = 0, 1, 2, . . . ,m. Then |tj − tj−1| < δ for
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j = 1, 2, . . . ,m. It follows from this that |γ(t) − γ(tj)| < ε0 ≤ |γ(tj)| for
all t ∈ [tj−1, tj], and thus γ([tj−1, tj]) ⊂ Dγ(tj),|γ(tj)| for j = 1, 2, . . . , n, where
Dw,|w| = {z ∈ C : |z − w| < |w|} for all w ∈ C. Now it follows from
Corollary 2.13 that there exist continuous functions Fj: Dγ(tj),|γ(tj)| → C with
the property that exp(Fj(z)) = z for all z ∈ Dγ(tj),|γ(tj)|. Let γ̃j(t) = Fj(γ(t))
for all t ∈ [tj−1, tj]. Then, for each integer j between 1 and m, the function
γ̃j: [tj−1, tj] → C is continuous, and is thus a path in the complex plane with
the property that exp(γ̃j(t)) = γ(t) for all t ∈ [tj−1, tj].

Now exp(γ̃j(tj)) = γ(tj) = exp(γ̃j+1(tj)) for each integer j between 1 and
m− 1. The periodicity properties of the exponential function (Lemma 2.11)
therefore ensure that there exist integers k1, k2, . . . , km−1 such that γ̃j+1(tj) =
γ̃j(tj)+2πikj for j = 1, 2, . . . ,m−1. It follows from this that there is a well-
defined function γ̃: [a, b] → C, where γ̃(t) = γ̃1(t) whenever t ∈ [a, t1], and

γ̃(t) = γ̃j(t)− 2πi

j−1∑
r=1

kr

whenever t ∈ [tj−1, tj] for some integer j between 2 and m. This function γ̃ is
continuous on each interval [tj−1, tj], and is therefore continuous throughout
[a, b]. Moreover exp(γ̃(t)) = γ(t) for all t ∈ [a, b]. We have thus proved the
existence of a path γ̃ in the complex plane with the required properties.

3.3 Winding Numbers

Let γ: [a, b] → C be a closed path in the complex plane, and let w be a
complex number that does not lie on γ. It follows from the Path Lifting
Theorem (Theorem 3.2) that there exists a path γ̃w: [a, b] → C in the complex
plane such that exp(γ̃w(t)) = γ(t) − w for all t ∈ [a, b]. Now the definition
of closed paths ensures that γ(b) = γ(a). Also two complex numbers z1

and z2 satisfy exp z1 = exp z2 if and only if (2πi)−1(z2 − z1) is an integer
(Lemma 2.11). It follows that there exists some integer n(γ, w) such that
γ̃w(b) = γ̃w(a) + 2πin(γ, w).

Now let ϕ: [a, b] → C be any path with the property that exp(ϕ(t)) =
γ(t)−w for all t ∈ [a, b]. Then the function sending t ∈ [a, b] to (2πi)−1(ϕ(t)−
γ̃w(t)) is a continuous integer-valued function on the interval [a, b], and is
therefore constant on this interval (Proposition 1.17). It follows that

ϕ(b)− ϕ(a) = γ̃w(b)− γ̃w(a) = 2πin(γ, w).

It follows from this that the value of the integer n(γ, w) depends only on the
choice of γ and w, and is independent of the choice of path γ̃w satisfying
exp(γ̃w(t)) = γ(t)− w for all t ∈ [a, b].
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Definition Let γ: [a, b] → C be a closed path in the complex plane, and let
w be a complex number that does not lie on γ. The winding number of γ
about w is defined to be the unique integer n(γ, w) with the property that
ϕ(b) − ϕ(a) = 2πin(γ, w) for all paths ϕ: [a, b] → C in the complex plane
that satisfy exp(ϕ(t)) = γ(t)− w for all t ∈ [a, b].

Example Let n be an integer, and let γn: [0, 1] → C be the closed path in the
complex plane defined by γn(t) = exp(2πint). Then γn(t) = exp(ϕn(t)) for
all t ∈ [0, 1] where ϕn: [0, 1] → C is the path in the complex plane defined such
that ϕn(t) = 2πint for all t ∈ [0, 1]. It follows that n(γn, 0) = (2πi)−1(ϕn(1)−
ϕn(0)) = n.

Given a closed path γ, and given a complex number w that does not lie
on γ, the winding number n(γ, w) measures the number of times that the
path γ winds around the point w of the complex plane in the anticlockwise
direction.

Proposition 3.3 Let γ1: [a, b] → C and γ2: [a, b] → C be closed paths in the
complex plane, and let w be a complex number that does not lie on γ1. Suppose
that |γ2(t)− γ1(t)| < |γ1(t)− w| for all t ∈ [a, b]. Then n(γ2, w) = n(γ1, w).

Proof Note that the inequality satisfied by the functions γ1 and γ2 ensures
that w does not lie on the path γ2. Let ϕ1: [0, 1] → C be a path in the
complex plane such that exp(ϕ1(t)) = γ1(t)− w for all t ∈ [a, b], and let

ρ(t) =
γ2(t)− w

γ1(t)− w

for all t ∈ [a, b] Then |ρ(t) − 1| < 1 for all t ∈ [a, b], and therefore [ρ] does
not intersect the set {x ∈ R : x ≤ 0}. It follows that

log: C \ {x ∈ R : x ≤ 0} → C,

the principal branch of the logarithm function, is defined and continuous
throughout [ρ] (see Proposition 2.12). Let ϕ2: [0, 1] → C be the path in the
complex plane defined such that ϕ2(t) = log(ρ(t)) + ϕ1(t) for all t ∈ [a, b].
Then

exp(ϕ2(t)) = exp(log(ρ(t))) exp(ϕ1(t)) = ρ(t)(γ1(t)− w) = γ2(t)− w.

Now ρ(b) = ρ(a). It follows that

2πin(γ2, w) = ϕ2(b)− ϕ2(a) = log(ρ(b)) + ϕ1(b)− log(ρ(a))− ϕ1(a)

= ϕ1(b)− ϕ1(a) = 2πin(γ1, w),

as required.
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Corollary 3.4 Let γ: [a, b] → C be a closed path in the complex plane and
let W be the set C \ [γ] of all points of the complex plane that do not lie on
the curve γ. Then the function that sends w ∈ W to the winding number
n(γ, w) of γ about w is a continuous function on W .

Proof Let w ∈ W . It then follows from Lemma 3.1 that there exists some
positive real number ε0 such that |γ(t) − w| ≥ ε0 > 0 for all t ∈ [a, b]. Let
w1 be a complex number satisfying |w1 − w| < ε0, and let γ1: [a, b] → C be
the closed path in the complex plane defined such that γ1(t) = γ(t)+w−w1

for all t ∈ [a, b]. Then γ(t) − w1 = γ1(t) − w for all t ∈ [a, b], and therefore
n(γ, w1) = n(γ1, w). Also |γ1(t)−γ(t)| < |γ(t)−w| for all t ∈ [a, b]. It follows
from Proposition 3.3 that n(γ, w1) = n(γ1, w) = n(γ, w). This shows that
the function sending w ∈ W to n(γ, w) is continuous on W , as required.

Corollary 3.5 Let γ: [a, b] → C be a closed path in the complex plane, and
let R be a positive real number with the property that |γ(t)| < R for all
t ∈ [a, b]. Then n(γ, w) = 0 for all complex numbers w satisfying |w| ≥ R.

Proof Let γ0: [a, b] → C be the constant path defined by γ0(t) = 0 for all
[a, b]. If |w| > R then |γ(t) − γ0(t)| = |γ(t)| < |w| = |γ0(t) − w|. It follows
from Proposition 3.3 that n(γ, w) = n(γ0, w) = 0, as required.

Proposition 3.6 Let [a, b] and [c, d] be closed bounded intervals, and, for
each s ∈ [c, d], let γs: [a, b] → C be a closed path in the complex plane. Let w
be a complex number that does not lie on any of the paths γs. Suppose that
the function H: [a, b]× [c, d] → C is continuous, where H(t, s) = γs(t) for all
t ∈ [a, b] and s ∈ [c, d]. Then n(γc, w) = n(γd, w).

Proof The rectangle [a, b]× [c, d] is a closed bounded subset of R2. It follows
from Lemma 1.31 that the continuous function on the closed rectangle [a, b]×
[c, d] that sends a point (t, s) of the rectangle to |H(t, s)−w|−1 is a bounded
function on the square, and therefore there exists some positive number ε0

such that |H(t, s)− w| ≥ ε0 > 0 for all t ∈ [a, b] and s ∈ [c, d].
Now it follows from Theorem 1.33 that the function H: [a, b] × [c, d] →

C\{w} is uniformly continuous, since the domain of this function is a closed
bounded set in R2. Therefore there exists some positive real number δ such
that |H(t, s)−H(t, u)| < ε0 for all t ∈ [a, b] and for all s, u ∈ [c, d] satisfying
|s − u| < δ. Let s0, s1, . . . , sm be real numbers chosen such that c = s0 <
s1 < . . . < sm = d and |sj − sj−1| < δ for j = 1, 2, . . . ,m. Then

|γsj
(t)− γsj−1

(t)| = |H(t, sj)−H(t, sj−1)|
< ε0 ≤ |H(t, sj−1)− w| = |γsj−1

(t)− w|
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for all t ∈ [a, b], and for each integer j between 1 and m. It therefore follows
from Proposition 3.3 that n(γsj−1

, w) = n(γsj
, w) for each integer j between

1 and m. But then n(γc, w) = n(γd, w), as required.

Definition Let D be a subset of the complex plane, and let γ: [a, b] → D
be a closed path in D. The closed path γ is said to be contractible in D if
and only if there exists a continuous function H: [a, b]× [0, 1] → D such that
H(t, 1) = γ(t) and H(t, 0) = H(a, 0) for all t ∈ [a, b], and H(a, s) = H(b, s)
for all s ∈ [0, 1].

Corollary 3.7 Let D be a subset of the complex plane, and let γ: [a, b] → D
be a closed path in D. Suppose that γ is contractible in D. Then n(γ, w) = 0
for all w ∈ C \D, where n(γ, w) denotes the winding number of γ about w.

Proof Let H: [a, b]× [0, 1] → D be a continuous function such that H(t, 1) =
γ(t) and H(t, 0) = H(a, 0) for all t ∈ [a, b], and H(a, s) = H(b, s) for all
s ∈ [0, 1], and, for each s ∈ [0, 1] let γs: [a, b] → D be the closed path in D
defined such that γs(t) = H(t, s) for all t ∈ [a, b]. Then γ0 is a constant path,
and therefore n(γ0, w) = 0 for all points w that do not lie on γ0. Let w be an
element of w ∈ C \D. Then w does not lie on any of the paths γs. It follows
from Proposition 3.6 that

n(γ, w) = n(γ1, w) = n(γ1, w) = n(γ0, w) = 0,

as required.

3.4 Path-Connected and Simply-Connected Subsets of
the Complex Plane

Definition A subset D of the complex plane is said to be path-connected if,
given any elements z1 and z2, there exists a path in D from z1 and z2.

Definition A path-connected subset D of the complex plane is said to be
simply-connected if every closed loop in D is contractible.

Definition An subset D of the complex plane is said to be a star-shaped if
there exists some complex number z0 in D with the property that

{(1− t)z0 + tz : t ∈ [0, 1]} ⊂ D

for all z ∈ D. (Thus an open set in the complex plane is a star-shaped if and
only if the line segment joining any point of D to z0 is contained in D.)
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Lemma 3.8 Star-shaped subsets of the complex plane are simply-connected.

Proof Let D be a star-shaped subset of the complex plane. Then there exists
some element z0 of D such that the line segment joining z0 to z is contained
in D for all z ∈ D. The star-shaped set D is obviously path-connected. Let
γ: [a, b] → D be a closed path in D, and let H(t, s) = (1 − s)z0 + sγ(t) for
all t ∈ [a, b] and s ∈ [0, 1]. Then H(t, s) ∈ D for all t ∈ [a, b] and s ∈ [0, 1],
H(t, 1) = γ(t) and H(t, 0) = z0 for all t ∈ [a, b]. Also γ(a) = γ(b), and
therefore H(a, s) = H(b, s) for all s ∈ [0, 1]. It follows that the closed path γ
is contractible. Thus D is simply-connected.

The following result is an immediate consequence of Corollary 3.7

Proposition 3.9 Let D be a simply-connected subset of the complex plane,
and let γ be a closed path in D. Then n(γ, w) = 0 for all w ∈ C \D.

3.5 The Fundamental Theorem of Algebra

Theorem 3.10 (The Fundamental Theorem of Algebra) Let P : C → C be
a non-constant polynomial with complex coefficients. Then there exists some
complex number z0 such that P (z0) = 0.

Proof We shall prove that any polynomial that is everywhere non-zero must
be a constant polynomial.

Let P (z) = a0 + a1z + · · · + amzm, where a1, a2, . . . , am are complex
numbers and am 6= 0. We write P (z) = Pm(z) + Q(z), where Pm(z) = amzm

and Q(z) = a0 + a1z + · · ·+ am−1z
m−1. Let

R =
|a0|+ |a1|+ · · ·+ |am|

|am|
.

If |z| > R then |z| ≥ 1, and therefore∣∣∣∣ Q(z)

Pm(z)

∣∣∣∣ =
1

|amz|

∣∣∣ a0

zm−1
+

a1

zm−2
+ · · ·+ am−1

∣∣∣
≤ 1

|am| |z|

(∣∣∣ a0

zm−1

∣∣∣ +
∣∣∣ a1

zm−2

∣∣∣ + · · ·+ |am−1|
)

≤ 1

|am| |z|
(|a0|+ |a1|+ · · ·+ |am−1|) ≤

R

|z|
< 1.

It follows that |P (z)−Pm(z)| < |Pm(z)| for all complex numbers z satisfying
|z| > R.
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For each non-zero real number r, let γr: [0, 1] → C and ϕr: [0, 1] → C
be the closed paths defined such that γr(t) = P (r exp(2πit)) and ϕr(t) =
Pm(r exp(2πit)) = amrm exp(2πimt) for all t ∈ [0, 1]. If r > R then |γr(t)−
ϕr(t)| < |ϕr(t)| for all t ∈ [0, 1]. It then follows from Proposition 3.3 that
n(γr, 0) = n(ϕr, 0) = m whenever r > R.

Now if the polynomial P is everywhere non-zero then it follows on apply-
ing Proposition 3.6 that the function sending each non-negative real number r
to the winding number n(γr, 0) of the closed path γr about zero is a contin-
uous function on the set of non-negative real numbers. But any continuous
integer-valued function on a closed bounded interval is necessarily constant
(Proposition 1.17). It follows that n(γr, 0) = n(γ0, 0) for all positive real-
numbers r. But γ0 is the constant path defined by γ0(t) = P (0) for all
t ∈ [0, 1], and therefore n(γ0, 0) = 0. It follows that is the polynomial P is
everywhere non-zero then n(γr, 0) = 0 for all non-negative real numbers r.
But we have shown that n(γr, 0) = m for sufficiently large values of r, where
m is the degree of the polynomial P . It follows that if the polynomial P
is everywhere non-zero, then it must be a constant polynomial. The result
follows.
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