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3 Winding Numbers of Closed Paths in the
Complex Plane

3.1 Paths in the Complex Plane

Let D be a subset of the complex plane C. We define a path in D to be a
continuous complex-valued function v:[a,b] — D defined over some closed
interval [a,b]. We shall denote the range v([a, b]) of the function 7 defining
the path by [y]. It follows from Theorem 1.32 that [y] is a closed bounded
subset of the complex plane.

A path ~:]a,b] — C in the complex plane is said to be closed if v(a) =
v(b). (This use of the technical term closed has no relation to the notions
of open and closed sets.) Thus a closed path is a path that returns to its
starting point.

Let v: [a,b] — C be a path in the complex plane. We say that a complex
number w lies on the path v if w € [y], where [y] = v([a, b]).

Lemma 3.1 Let v:[a,b] — C be a path in the complex plane, and let w be
a complex number that does not lie on the path ~y. Then there exists some
positive real number £y such that |y(t) — w| > g9 > 0 for all t € [a,b].

Proof The closed unit interval [a,b] is a closed bounded subset of R. Tt
follows from Lemma 1.31 that there exists some positive real number M
such that |y(t) — w|™ < M for all ¢t € [a,b]. Let ¢ = M~'. Then the
positive real number gy has the required property. |

3.2 The Path Lifting Theorem

Theorem 3.2 (Path Lifting Theorem) Let v:[a,b] — C\ {0} be a path
in the set C\ {0} of non-zero complex numbers. Then there exists a path
3:la,b] — C in the complex plane which satisfies exp(§(t)) = ~(t) for all
t € la,bl.

Proof The complex number () is non-zero for all ¢ € [a, b], and therefore
there exists some positive number gy such that |y(t)| > ¢, for all t € [a, b].
(Lemma 3.1). Moreover it follows from Theorem 1.33 that the function
v: [a,b] — C\ {0} is uniformly continuous, since the domain of this function
is a closed bounded subset of R, and therefore there exists some positive
real number ¢ such that |y(t) — vy(s)| < &g for all s,t € [a,b] satistying
|t —s| < 0. Let m be a natural number satisfying m > |b — a|/J, and
let t; = a+ j(b—a)/m for j = 0,1,2,...,m. Then |t; — ;1] < ¢ for

36



J=1,2,...,m. It follows from this that |y(t) — v(t;)] < o < |y(¢;)| for
all t € [tj_1,t;], and thus y([t;_1,1;]) C Dyq,) e, for 7 =1,2,...,n, where
Dy = {2 € C: |z —w| < |w|} for all w € C. Now it follows from
Corollary 2.13 that there exist continuous functions Fj: D, ;) — C with
the property that exp(Fj(z)) = z for all 2 € D)) 1y, Let 7;(t) = Fj(v(t))
for all ¢t € [t;_1,t;]. Then, for each integer j between 1 and m, the function
it [tj—1,t;] — C is continuous, and is thus a path in the complex plane with
the property that exp(%;(t)) = v(¢) for all t € [t;_1,;].

Now exp(7;(t;)) = v(t;) = exp(¥,4+1(t;)) for each integer j between 1 and
m — 1. The periodicity properties of the exponential function (Lemma 2.11)
therefore ensure that there exist integers ki, ko, . . ., ky—1 such that 5;,4(¢;) =
3;(t;) +2mik; for j = 1,2,...,m—1. It follows from this that there is a well-
defined function 7: [a, b] — C, where ¥(t) = 31(t) whenever ¢ € [a, t;], and

500 = 3400 — 200 Sk

whenever ¢ € [t;_1,1;] for some integer j between 2 and m. This function 7 is
continuous on each interval [t;_;,t;], and is therefore continuous throughout
[a,b]. Moreover exp(7(t)) = 7(t) for all t € [a,b]. We have thus proved the
existence of a path 4 in the complex plane with the required properties. |

3.3 Winding Numbers

Let 7:[a,b] — C be a closed path in the complex plane, and let w be a
complex number that does not lie on . It follows from the Path Lifting
Theorem (Theorem 3.2) that there exists a path 7,,: [a,b] — C in the complex
plane such that exp(%,(t)) = v(t) — w for all ¢ € [a,b]. Now the definition
of closed paths ensures that v(b) = ~(a). Also two complex numbers z;
and zy satisfy expz; = exp 2y if and only if (27i) 7' (29 — 21) is an integer
(Lemma 2.11). It follows that there exists some integer n(7y,w) such that
5u(B) = Fula) + 2rin(y, w).

Now let ¢:[a,b] — C be any path with the property that exp(p(t)) =
v(t)—w for all t € [a, b]. Then the function sending t € [a, b] to (2mi) ! (p(t)—
Fw(t)) is a continuous integer-valued function on the interval [a,b], and is
therefore constant on this interval (Proposition 1.17). It follows that

p(0) = p(a) = Fu(b) = Yw(a) = 2min(y, w).

It follows from this that the value of the integer n(vy,w) depends only on the
choice of v and w, and is independent of the choice of path 7, satisfying
exp(Fu(t)) = y(t) — w for all t € [a, b].
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Definition Let +:[a,b] — C be a closed path in the complex plane, and let
w be a complex number that does not lie on . The winding number of ~
about w is defined to be the unique integer n(vy,w) with the property that
©(b) — p(a) = 2min(y,w) for all paths ¢:|a,b] — C in the complex plane
that satisfy exp(¢(t)) = v(t) — w for all t € [a, b].

Example Let n be an integer, and let 7,,: [0, 1] — C be the closed path in the
complex plane defined by 7, (t) = exp(2mint). Then ~,(t) = exp(p,(t)) for
allt € [0, 1] where ¢,: [0, 1] — C is the path in the complex plane defined such
that ¢, (t) = 2mrint for all t € [0, 1]. Tt follows that n(v,,0) = (27i) " (p.(1)—

en(0)) = n.
Given a closed path ~, and given a complex number w that does not lie
on v, the winding number n(y,w) measures the number of times that the

path v winds around the point w of the complex plane in the anticlockwise
direction.

Proposition 3.3 Let v;:[a,b] — C and vo: [a,b] — C be closed paths in the
complex plane, and let w be a complex number that does not lie on ;. Suppose
that |y2(t) — 7 (t)| < | (t) — w| for all t € [a,b]. Then n(vy, w) = n(yy,w).

Proof Note that the inequality satisfied by the functions 7; and 5 ensures
that w does not lie on the path v5. Let ¢1:[0,1] — C be a path in the
complex plane such that exp(¢;(t)) = 1 (t) —w for all ¢t € [a, b], and let
Y2(t) —w
n-20=x
n(t) —w

for all t € [a,b] Then |p(t) — 1] < 1 for all ¢t € [a,b], and therefore [p] does
not intersect the set {x € R: x < 0}. It follows that

log:C\ {z e R: 2z <0} — C,

the principal branch of the logarithm function, is defined and continuous
throughout [p] (see Proposition 2.12). Let ¢9:[0,1] — C be the path in the
complex plane defined such that ¢o(t) = log(p(t)) + ¢i1(t) for all ¢ € [a, b].
Then

exp(ypa(t)) = exp(log(p(t))) exp(pr(t)) = p(t) (11 (t) — w) = 72(t) — w.
Now p(b) = p(a). It follows that

2min(ye,w) = p2(b) — p2(a) = log(p(b)) + ¢1(b) — log(p(a)) — ¢1(a)
= ¢1(b) — p1(a) = 2min(y,w),

as required. |
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Corollary 3.4 Let 7:[a,b] — C be a closed path in the complex plane and
let W be the set C\ [v] of all points of the complex plane that do not lie on
the curve . Then the function that sends w € W to the winding number
n(vy,w) of v about w is a continuous function on W.

Proof Let w € W. It then follows from Lemma 3.1 that there exists some
positive real number g such that |y(t) — w| > ¢g > 0 for all ¢ € [a,b]. Let
wy be a complex number satisfying |w; — w| < €, and let 7;: [a,b] — C be
the closed path in the complex plane defined such that v (t) = () + w —w;
for all t € [a,b]. Then v(t) — w; = 1(t) — w for all t € [a,b], and therefore
n(y,wy) = n(y, w). Also |y (t) —~(t)] < |y(t)—w| for all t € [a, b]. It follows
from Proposition 3.3 that n(vy,w;) = n(y;,w) = n(y,w). This shows that
the function sending w € W to n(vy,w) is continuous on W, as required. |}

Corollary 3.5 Let v:[a,b] — C be a closed path in the complex plane, and
let R be a positive real number with the property that |v(t)| < R for all
t € [a,b]. Then n(y,w) =0 for all complex numbers w satisfying |w| > R.

Proof Let vy: [a,b] — C be the constant path defined by ~o(t) = 0 for all
[a,b]. If |lw| > R then |y(t) — v(t)| = |7(t)| < |w| = |70(t) —w|. It follows
from Proposition 3.3 that n(y,w) = n(y, w) = 0, as required. ||

Proposition 3.6 Let [a,b] and [c,d] be closed bounded intervals, and, for
each s € [c,d], let vs:[a,b] — C be a closed path in the complex plane. Let w
be a complex number that does not lie on any of the paths vs. Suppose that
the function H: [a,b] X [c,d] — C is continuous, where H(t,s) = ~s(t) for all
t € [a,b] and s € [c,d]. Then n(y., w) = n(vyg,w).

Proof The rectangle [a, b] X [¢, d] is a closed bounded subset of R?. Tt follows
from Lemma 1.31 that the continuous function on the closed rectangle [a, b] x
[c,d] that sends a point (¢, s) of the rectangle to |H (¢, s) —w|™! is a bounded
function on the square, and therefore there exists some positive number g
such that |H(t,s) —w| > gy > 0 for all t € [a,b] and s € [c,d].

Now it follows from Theorem 1.33 that the function H:[a,b] X [c,d] —
C\ {w} is uniformly continuous, since the domain of this function is a closed
bounded set in R?. Therefore there exists some positive real number & such
that |H(t,s) — H(t,u)| < go for all t € [a,b] and for all s, u € [c, d] satisfying

|s —u| < 6. Let sg,$1,...,Sn be real numbers chosen such that ¢ = sy <
§1<...<sp=dand |s; —sj_1| <dfor j=1,2,...,m. Then
7s; (8) =75, (O] = [H(E,s5) — H(t, 55-1))

< g < |H(t, Sj_l) - w‘ = |’78j71(t) - wl
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for all ¢ € [a, b], and for each integer j between 1 and m. It therefore follows
from Proposition 3.3 that n(v,,_,,w) = n(7s,, w) for each integer j between
1 and m. But then n(v., w) = n(v4, w), as required. |

Definition Let D be a subset of the complex plane, and let 7:[a,b] — D
be a closed path in D. The closed path ~ is said to be contractible in D if
and only if there exists a continuous function H: [a,b] x [0,1] — D such that
H(t,1) = ~(t) and H(t,0) = H(a,0) for all t € [a,b], and H(a,s) = H(b,s)
for all s € [0,1].

Corollary 3.7 Let D be a subset of the complex plane, and let 7: [a,b] — D
be a closed path in D. Suppose that 7y is contractible in D. Then n(y,w) =0
for allw € C\ D, where n(,w) denotes the winding number of v about w.

Proof Let H:[a,b] x[0,1] — D be a continuous function such that H(t,1) =
v(t) and H(t,0) = H(a,0) for all t € [a,b], and H(a,s) = H(b,s) for all
s € [0,1], and, for each s € [0,1] let 75: [a,b] — D be the closed path in D
defined such that v4(t) = H(t, s) for all ¢ € [a,b]. Then 7 is a constant path,
and therefore n(vyy,w) = 0 for all points w that do not lie on . Let w be an
element of w € C\ D. Then w does not lie on any of the paths ~,. It follows
from Proposition 3.6 that

n(y,w) = n(y1,w) =n(y,w) = n(y,w) =0,

as required. |}

3.4 Path-Connected and Simply-Connected Subsets of
the Complex Plane

Definition A subset D of the complex plane is said to be path-connected if,
given any elements z; and zy, there exists a path in D from z; and zs.

Definition A path-connected subset D of the complex plane is said to be
simply-connected if every closed loop in D is contractible.

Definition An subset D of the complex plane is said to be a star-shaped if
there exists some complex number zy in D with the property that

{(1—=t)zg+tz:te€[0,1]} €D

for all z € D. (Thus an open set in the complex plane is a star-shaped if and
only if the line segment joining any point of D to zy is contained in D.)
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Lemma 3.8 Star-shaped subsets of the complex plane are simply-connected.

Proof Let D be a star-shaped subset of the complex plane. Then there exists
some element zy of D such that the line segment joining zy to z is contained
in D for all z € D. The star-shaped set D is obviously path-connected. Let
v:la,b] — D be a closed path in D, and let H(t,s) = (1 — s)zo + sy(t) for
all t € [a,b] and s € [0,1]. Then H(t,s) € D for all t € [a,b] and s € [0, 1],
H(t,1) = ~(t) and H(t,0) = 2 for all ¢t € [a,b]. Also y(a) = 7(b), and
therefore H(a,s) = H(b,s) for all s € [0,1]. It follows that the closed path v
is contractible. Thus D is simply-connected. |}

The following result is an immediate consequence of Corollary 3.7

Proposition 3.9 Let D be a simply-connected subset of the complex plane,
and let v be a closed path in D. Then n(y,w) =0 for allw € C\ D.

3.5 The Fundamental Theorem of Algebra

Theorem 3.10 (The Fundamental Theorem of Algebra) Let P:C — C be
a non-constant polynomial with complex coefficients. Then there exists some
complex number zy such that P(zy) = 0.

Proof We shall prove that any polynomial that is everywhere non-zero must
be a constant polynomial.

Let P(z) = ap + a1z + -+ + a,, 2™, where ay, a9, ...,a, are complex
numbers and a,, # 0. We write P(2) = P,,(z) + Q(z), where P,,(z) = a;,2™
and Q(z) = ag+ a1z + -+ a,_12" 1. Let

ol 4 Jar] + -+ o+ Janl

R
[
If |z| > R then |z| > 1, and therefore
Q(2) 1 ao ay
Pu()| ~ amal lont T oma T T O
1 Qo ay
< o Uz ]+ o)
= Janle] Uzt F e o fama]
R
< ——(aol +lar| + -+ lam]) < = < 1.
|am| |2] E

It follows that |P(z) — P (2)| < |Pn(z)] for all complex numbers z satisfying
|z| > R.
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For each non-zero real number r, let ~,:[0,1] — C and ¢,:[0,1] — C
be the closed paths defined such that ~,.(t) = P(rexp(2mit)) and ¢,(t) =
P, (rexp(2mit)) = a,r™ exp(2mimt) for all ¢ € [0,1]. If r > R then |v,(t) —
or(t)] < |epr(t)] for all t € [0,1]. It then follows from Proposition 3.3 that
n(v,0) = n(p,,0) = m whenever r > R.

Now if the polynomial P is everywhere non-zero then it follows on apply-
ing Proposition 3.6 that the function sending each non-negative real number r
to the winding number n(~,,0) of the closed path 7, about zero is a contin-
uous function on the set of non-negative real numbers. But any continuous
integer-valued function on a closed bounded interval is necessarily constant
(Proposition 1.17). It follows that n(y.,0) = n(y0,0) for all positive real-
numbers r. But v, is the constant path defined by ~y(t) = P(0) for all
t € [0,1], and therefore n(~y,0) = 0. It follows that is the polynomial P is
everywhere non-zero then n(~,,0) = 0 for all non-negative real numbers 7.
But we have shown that n(~,,0) = m for sufficiently large values of r, where
m is the degree of the polynomial P. It follows that if the polynomial P
is everywhere non-zero, then it must be a constant polynomial. The result
follows. |}
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