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9 Winding Numbers

9.1 Winding Numbers of Closed Curves in the Plane

Let γ: [0, 1]→ C be a continuous closed curve in the complex plane which is
defined on some closed interval [0, 1] (so that γ(0) = γ(1)), and let w be a
complex number which does not belong to the image of the closed curve γ.
It then follows from the Path Lifting Theorem (Theorem 8.10) that there
exists a continuous path γ̃: [0, 1] → C in C such that γ(t) − w = exp(γ̃(t))
for all t ∈ [0, 1]. Let us define

n(γ, w) =
γ̃(1)− γ̃(0)

2πi
.

Now exp(γ̃(1)) = γ(1) = γ(0) = exp(γ̃(0)) (since γ is a closed curve). It
follows from this that n(γ, w) is an integer. This integer is known as the
winding number of the closed curve γ about w.

Lemma 9.1 The value of the winding number n(γ, w) does not depend on
the choice of the lift γ̃ of the curve γ.

Proof Let σ: [0, 1] → C be a continuous curve in C with the property that
exp(σ(t)) = γ(t)− w = exp(γ̃(t)) for all t ∈ [0, 1]. Then

σ(t)− γ̃(t)

2πi

is an integer for all t ∈ [0, 1]. But the map sending t ∈ [0, 1] to σ(t) − γ̃(t)
is continuous on [0, 1]. This map must therefore be a constant map, since
the interval [0, 1] is connected. Thus there exists some integer m with the
property that σ(t) = γ̃(t) + 2πim for all t ∈ [0, 1]. But then

σ(1)− σ(0) = γ̃(1)− γ̃(0).

This proves that the value of the winding number n(γ, w) of the closed curve
γ about w is indeed independent of the choice of the lift γ̃ of γ.

9.2 Winding Numbers and Contour Integrals

A continuous curve is said to be piecewise C1 if it is made up of a finite num-
ber of continuously differentiable segments. We now show how the winding
number of a piecewise C1 closed curve in the complex plane can be expressed
as a contour integral.

71



Proposition 9.2 Let γ: [0, 1] → C be a piecewise C1 closed curve in the
complex plane, and let w be a point of C that does not lie on the curve γ.
Then the winding number n(γ, w) of γ about w is given by

n(γ, w) =
1

2πi

∫
γ

dz

z − w
.

Proof By definition

n(γ, w) =
σ(1)− σ(0)

2πi
,

where σ: [0, 1] → C is a path in C such that γ(t) − w = exp(σ(t)) for all
t ∈ [0, 1]. Taking derivatives, we see that

γ′(t) = exp(σ(t))σ′(t) = (γ(t)− w)σ′(t).

Thus

n(γ, w) =
σ(1)− σ(0)

2πi
=

1

2πi

∫ 1

0

σ′(t) dt =
1

2πi

∫ 1

0

γ′(t) dt

γ(t)− w

=
1

2πi

∫
γ

dz

z − w
.

One of the most important properties of winding numbers of closed curves
in the complex plane is their invariance under continuous deformations of the
closed curve.

Proposition 9.3 Let w be a complex number and, for each τ ∈ [0, 1], let
γτ : [0, 1]→ C be a closed curve in C which does not pass through w. Suppose
that the map sending (t, τ) ∈ [0, 1]× [0, 1] to γτ (t) is a continuous map from
[0, 1]× [0, 1] to C. Then n(γτ , w) = n(γ0, w) for all τ ∈ [0, 1]. In particular,
n(γ1, w) = n(γ0, w).

Proof Let H: [0, 1] × [0, 1] → C \ {0} be defined by H(t, τ) = γτ (t) − w.
It follows from the Monodromy Theorem (Theorem 8.11) that there exists a
continuous map H̃: [0, 1]× [0, 1]→ C such that H = exp ◦H̃. But then

H̃(1, τ)− H̃(0, τ) = 2πin(γτ , w)

for all τ ∈ [0, 1], and therefore the function τ 7→ n(γτ , w) is a continuous
function on the interval [0, 1] taking values in the set Z of integers. But such
a function must be constant on [0, 1], since the interval [0, 1] is connected.
Thus n(γ0, w) = n(γ1, w), as required.
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Corollary 9.4 (Dog-Walking Principle) Let γ0: [0, 1]→ C and γ1: [0, 1]→ C
be continuous closed curves in C, and let w be a complex number which
does not lie on the images of the closed curves γ0 and γ1. Suppose that
|γ1(t)− γ0(t)| < |w − γ0(t)| for all t ∈ [0, 1]. Then n(γ0, w) = n(γ1, w).

Proof Let γτ (t) = (1− τ)γ0(t) + τγ1(t) for all t ∈ [0, 1] and τ ∈ [0, 1]. Then

|γτ (t)− γ0(t)| = τ |γ1(t)− γ0(t)| < |w − γ0(t)|,

for all t ∈ [0, 1] and τ ∈ [0, 1], and thus the closed curve γτ does not pass
through w. The result therefore follows from Proposition 9.3.

Corollary 9.5 Let γ: [0, 1] → C be a continuous closed curve in C, and let
σ: [0, 1] → C be a continuous path in C whose image does not intersect the
image of γ. Then n(γ, σ(0)) = n(γ, σ(1)). Thus the function w 7→ n(γ, w) is
constant over each path-component of the set C \ γ([0, 1]).

Proof For each τ ∈ [0, 1], let γτ : [0, 1]→ C be the closed curve given by

γτ (t) = γ(t)− σ(τ).

Then the closed curves γτ do not pass through 0 (since the curves γ and σ
do not intersect), and the map from [0, 1]× [0, 1] to C sending (t, τ) to γτ (t)
is continuous. It follows from Proposition 9.3 that

n(γ, σ(0)) = n(γ0, 0) = n(γ1, 0) = n(γ, σ(1)),

as required.

9.3 The Fundamental Theorem of Algebra

Theorem 9.6 (The Fundamental Theorem of Algebra) Let P :C → C be a
non-constant polynomial with complex coefficients. Then there exists some
complex number z0 such that P (z0) = 0.

Proof The result is trivial if P (0) = 0. Thus it suffices to prove the result
when P (0) 6= 0.

For any r > 0, let the closed curve σr denote the circle about zero of
radius r, traversed once in the anticlockwise direction, given by σr(t) =
r exp(2πit) for all t ∈ [0, 1]. Consider the winding number n(P ◦ σr, 0) of
P ◦σr about zero. We claim that this winding number is equal to m for large
values of r, where m is the degree of the polynomial P .
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Let P (z) = a0 + a1z + · · · + amz
m, where a1, a2, . . . , an are complex

numbers, and where am 6= 0. We write P (z) = Pm(z) + Q(z), where
Pm(z) = amz

m and

Q(z) = a0 + a1z + · · ·+ am−1z
m−1.

Let

R =
|a0|+ |a1|+ · · ·+ |am|

|am|
.

If |z| > R then∣∣∣∣ Q(z)

Pm(z)

∣∣∣∣ =
1

|amz|

∣∣∣ a0
zm−1

+
a1
zm−2

+ · · ·+ am−1

∣∣∣ < 1,

since R ≥ 1, and thus |P (z) − Pm(z)| < |Pm(z)|. It follows from the Dog-
Walking Principle (Corollary 9.4) that n(P ◦ σr, 0) = n(Pm ◦ σr, 0) = m for
all r > R.

Given r > 0, let γτ = P ◦ στr for all τ ∈ [0, 1]. Then n(γ0, 0) = 0,
since γ0 is a constant curve with value P (0). Thus if the polynomial P
were everywhere non-zero, then it would follow from Proposition 9.3 that
n(γ1, 0) = n(γ0, 0) = 0. But n(γ1, 0) = n(P ◦ σr, 0) = m for all r > R,
and m > 0. Therefore the polynomial P must have at least one zero in the
complex plane.

9.4 The Kronecker Principle

The proof of the Fundamental Theorem of Algebra given above depends
on continuity of the polynomial P , together with the fact that the winding
number n(P ◦ σr, 0) is non-zero for sufficiently large r, where σr denotes the
circle of radius r about zero, described once in the anticlockwise direction. We
can therefore generalize the proof of the Fundamental Theorem of Algebra in
order to obtain the following result (sometimes referred to as the Kronecker
Principle).

Proposition 9.7 Let f :D → C be a continuous map defined on the closed
unit disk D in C, and let w ∈ C\f(D). Then n(f◦σ,w) = 0, where σ: [0, 1]→
C is the parameterization of unit circle defined by σ(t) = exp(2πit), and
n(f ◦ σ,w) is the winding number of f ◦ σ about w.

Proof Define γτ (t) = f(τ exp(2πit)) for all t ∈ [0, 1] and τ ∈ [0, 1]. Then
none of the closed curves γτ passes through w, and γ0 is the constant curve
with value f(0). It follows from Proposition 9.3 that

n(f ◦ σ,w) = n(γ1, w) = n(γ0, w) = 0,

as required.
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9.5 The Brouwer Fixed Point Theorem in Two Dimen-
sions

We now use Proposition 9.7 to show that there is no continuous ‘retraction’
mapping the closed unit disk onto its boundary circle.

Corollary 9.8 There does not exist a continuous map r:D → ∂D with the
property that r(z) = z for all z ∈ ∂D, where ∂D denotes the boundary circle
of the closed unit disk D.

Proof Let σ: [0, 1] → C be defined by σ(t) = exp(2πit). If a continuous
map r:D → ∂D with the required property were to exist, then r(z) 6= 0 for
all z ∈ D (since r(D) ⊂ ∂D), and therefore n(σ, 0) = n(r ◦ σ, 0) = 0, by
Proposition 9.7. But σ = exp ◦σ̃, where σ̃(t) = 2πit for all t ∈ [0, 1], and
thus

n(σ, 0) =
σ̃(1)− σ̃(0)

2πi
= 1.

This shows that there cannot exist any continuous map r with the required
property.

Theorem 9.9 (The Brouwer Fixed Point Theorem) Let f :D → D be
a continuous map which maps the closed unit disk D into itself. Then there
exists some z0 ∈ D such that f(z0) = z0.

Proof Suppose that there did not exist any fixed point z0 of f :D → D. Then
one could define a continuous map r:D → ∂D as follows: for each z ∈ D, let
r(z) be the point on the boundary ∂D of D obtained by continuing the line
segment joining f(z) to z beyond z until it intersects ∂D at the point r(z).
Then r:D → ∂D would be a continuous map, and moreover r(z) = z for all
z ∈ ∂D. But Corollary 9.8 shows that there does not exist any continuous
map r:D → ∂D with this property. We conclude that f :D → D must have
at least one fixed point.

Remark The Brouwer Fixed Point Theorem is also valid in higher dimen-
sions. This theorem states that any continuous map from the closed n-
dimensional ball into itself must have at least one fixed point. The proof of
the theorem for n > 2 is analogous to the proof for n = 2, once one has
shown that there is no continuous map from the closed n-dimensional ball
to its boundary which is the identity map on the boundary. However wind-
ing numbers cannot be used to prove this result, and thus more powerful
topological techniques need to be employed.
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9.6 The Borsuk-Ulam Theorem

Lemma 9.10 Let f :S1 → C be a continuous function defined on S1, where
S1 = {z ∈ C : |z| = 1}. Suppose that f(−z) = −f(z) for all z ∈ C. Then
the winding number n(f ◦ σ, 0) of f ◦ σ about 0 is odd, where σ: [0, 1] → S1

is given by σ(t) = exp(2πit).

Proof It follows from the Path Lifting Theorem (Theorem 8.10) that there
exists a continuous path γ̃: [0, 1]→ C in C such that exp(γ̃(t)) = f(σ(t)) for
all t ∈ [0, 1]. Now f(σ(t + 1

2
)) = −f(σ(t)) for all t ∈ [0, 1

2
], since σ(t + 1

2
) =

−σ(t) and f(−z) = −f(z) for all z ∈ C. Thus exp(γ̃(t+ 1
2
)) = exp(γ̃(t)+πi)

for all t ∈ [0, 1
2
]. It follows that γ̃(t + 1

2
) = γ̃(t) + (2m + 1)πi for some

integer m. (The value of m for which this identity is valid does not depend
on t, since every continuous function from [0, 1

2
] to the set of integers is

necessarily constant.) Hence

n(f ◦ σ, 0) =
γ̃(1)− γ̃(0)

2πi
=
γ̃(1)− γ̃(1

2
)

2πi
−
γ̃(1

2
)− γ̃(0)

2πi
= 2m+ 1.

Thus n(f ◦ σ, 0) is an odd integer, as required.

We shall identify the space R2 with C, identifying (x, y) ∈ R2 with the
complex number x + iy ∈ C for all x, y ∈ R. This is permissible, since we
are interested in purely topological results concerning continuous functions
defined on appropriate subsets of these spaces. Under this identification the
closed unit disk D is given by

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

As usual, we define

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

Lemma 9.11 Let f :S2 → R2 be a continuous map with the property that
f(−n) = −f(n) for all n ∈ S2. Then there exists some point n0 of S2 with
the property that f(n0) = 0.

Proof Let ϕ:D → S2 be the map defined by

ϕ(x, y) = (x, y,+
√

1− x2 − y2).

(Thus the map ϕ maps the closed disk D homeomorphically onto the upper
hemisphere in R3.) Let σ: [0, 1]→ S2 be the parameterization of the equator
in S2 defined by

σ(t) = (cos 2πt, sin 2πt, 0)
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for all t ∈ [0, 1]. Let f :S2 → R2 be a continuous map with the property that
f(−n) = −f(n) for all n ∈ S2. The winding number n(f ◦ σ, 0) is an odd
integer, by Lemma 9.10, and is thus non-zero. It follows from Proposition 9.7,
applied to f ◦ ϕ:D → R2, that 0 ∈ f(ϕ(D)), (since otherwise the winding
number n(f ◦ σ, 0) would be zero). Thus f(n0) = 0 for some n0 = σ(D), as
required.

Theorem 9.12 (Borsuk-Ulam) Let f :S2 → R2 be a continuous map. Then
there exists some point n of S2 with the property that f(−n) = f(n).

Proof This result follows immediately on applying Lemma 9.11 to the con-
tinuous function g:S2 → R2 defined by g(n) = f(n)− f(−n).

Remark It is possible to generalize the Borsuk-Ulam Theorem to n dimen-
sions. Let Sn be the unit n-sphere centered on the origin in Rn. The Borsuk-
Ulam Theorem in n-dimensions states that if f :Sn → Rn is a continuous map
then there exists some point x of Sn with the property that f(x) = f(−x).

9.7 The Hairy Dog Theorem

We shall use winding number techniques to prove a theorem, the Hairy Dog
Theorem, which states that any continuous vector field on a 2-dimensional
sphere that is everywhere tangent to the sphere must be zero at some point
of the sphere. This result is also known as the Hairy Ball Theorem or, in
German, the Igelsatz (‘hedgehog theorem’). The result can be generalized
to higher dimensions: any continuous vector field on an even-dimensional
sphere that is everywhere tangent to the sphere must be zero at some point
of the sphere.

Let s denote the ‘south pole’ of the 2-dimensional sphere S2, defined by
s = (0, 0,−1). Given any point x of S2\{s}, we define ϕ(x) = (y1, y2), where
(y1, y2, 0) is the point at which the line passing through the points s and x
intersects the plane

{(t1, t2, t3) ∈ R3 : t3 = 0}.
Then ϕ:S2 \ {s} → R2 is a homeomorphism. It follows directly from the
definition of ϕ that if x = (x1, x2, x3) and ϕ(x) = (y1, y2), then

y1 = ϕ1(x) =
x1

1 + x3
, y2 = ϕ2(x) =

x2
1 + x3

.

The homeomorphism ϕ represents stereographic projection from the south
pole s of the sphere S2. We now calculate the inverse of the homeomor-
phism ϕ by solving for x1, x2 and x3 in terms of y1 and y2. Now

|y|2 = y21 + y22 =
x21 + x22

(1 + x3)2
=

1− x23
(1 + x3)2

=
1− x3
1 + x3
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(since x21 + x22 + x23 = 1), and thus

1 + |y|2 =
(1 + x3) + (1− x3)

1 + x3
=

2

1 + x3
.

Therefore

1 + x3 =
2

1 + |y|2
.

Thus ϕ−1(y1, y2) = (x1, x2, x3), where

x1 =
2y1

1 + |y|2
, x2 =

2y2
1 + |y|2

, x3 =
1− |y|2

1 + |y|2
.

Now let u be a vector in R3 which is tangent to the sphere S2 at some
point x, where x 6= s. Let us write x = (x1, x2, x3) and u = (u1, u2, u3).
Then x1u1 + x2u2 + x3u3 = 0. Let y = ϕ(x). We say that a vector v in R2

based at y is the push-forward of the vector u under stereographic projection
from (0, 0,−1) if (ϕ ◦ γ)′(0) = v for any differentiable curve γ: (−ε, ε)→ S2

satisfying γ(0) = x and γ′(0) = u.

Lemma 9.13 Let u be a vector tangent to the sphere S2 at some point x ∈
S2, where x 6= (0, 0,−1), and let v be the vector in R2 that is the push-forward
of u under stereographic projection from (0, 0,−1). Then

v =
1

1 + x3

(
u1 −

x1
1 + x3

u3, u2 −
x2

1 + x3
u3

)
= 1

2
(1 + |y|2)(u1 − y1u3, u2 − y2u3).

where y is the point of R2 corresponding to x under stereographic projection
from (0, 0,−1), given by

y =

(
x1

1 + x3
,

x2
1 + x3

)
.

Moreover
|v|2 = 1

4
(1 + |y|2)2|u|2,

and thus v = 0 if and only if u = 0.

Proof Let γ: (−ε, ε)→ S2 be a differentiable curve on S2 satisfying γ(0) = x
and γ′(0) = u, and let y = ϕ(x). Then the push-forward v of u under
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stereographic projection from the south pole (0, 0,−1) is given by

v = (ϕ ◦ γ)′(0) =
d

dt

(
γ1(t)

1 + γ3(t)
,

γ2(t)

1 + γ3(t)

)∣∣∣∣
t=0

=

(
γ′1(0)

1 + γ3(0)
− γ1(0)γ′3(0)

(1 + γ3(0))2
,

γ′2(0)

1 + γ3(0)
− γ2(0)γ′3(0)

(1 + γ3(0))2

)
=

1

1 + x3

(
u1 −

x1
1 + x3

u3, u2 −
x2

1 + x3
u3

)
= 1

2
(1 + |y|2)(u1 − y1u3, u2 − y2u3),

Now

2(y1u1 + y2u2) + (1− |y|2)u3 = (1 + |y|2)(x1u1 + x2u2 + x3u3) = 0,

since the vector u is tangent to S2 at x, and thus x1u1 + x2u2 + x3u3 = 0.
Therefore

|v|2 = 1
4
(1 + |y|2)2((u1 − y1u3)2 + (u2 − y1u3)2)

= 1
4
(1 + |y|2)2(u21 + u22 + |y|2u23 − 2(y1u1 + y2u2)u3)

= 1
4
(1 + |y|2)2|u|2.

Thus v = 0 if and only if u = 0, as required.

Let U be a continuous vector field on the 2-sphere S2 that is everywhere
tangent to S2, and let V be a vector field on the plane R2. We say that the
vector fields U and V are related under stereographic projection from the
south pole (0, 0,−1) if, given any point x of S2\{(0, 0,−1)}, the value V(ϕ(x)
of V at ϕ(x) is the push-forward of the value U(x) of U at the point x, where
ϕ denotes the stereographic projection map). Every continuous tangential
vector field U on S2 is related under stereographic projection from (0, 0,−1)
to a unique continuous vector field V on R2: indeed it follows immediately
from Lemma 9.13 that V(y) is the vector

1
2
(1 + |y|2)(U1(ϕ

−1(y))− y1U3(ϕ
−1(y)), U2(ϕ

−1(y))− y2U3(ϕ
−1(y)))

for all y ∈ R2, where U1, U2 and U3 are the Cartesian components of U.

Theorem 9.14 (Hairy Dog Theorem) Any continuous vector field on the 2-
dimensional sphere S2 that is everywhere tangent to S2 must be zero at some
point of S2.
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Proof Let U:S2 → R3 be a continuous vector field on S2 that is everywhere
tangent to S2. We may assume that U is non-zero on the equator

{(x1, x2, x3) ∈ S2 : x3 = 0}.

Let V be the unique vector field on R2 that is related to U under stereo-
graphic projection from (0, 0,−1). It follows from Lemma 9.13 that, if the
vector field U has no zeros in the northern hemisphere

{(x1, x2, x3) ∈ S2 : x3 ≥ 0}

then the vector field V has no zeros in the closed unit disk. Thus if α: [0, 1]→
C is the closed curve defined by the formula

α(t) = V1(cos 2πt, sin 2πt) = iV2(cos 2πt, sin 2πt),

then n(α, 0) = 0, where n(α, 0) denotes the winding number of the closed
curve α about 0 (Proposition 9.7). Now a point (y1, y2) on the unit circle
y21 +y22 = 1 is the image of the point (y1, y2, 0) under stereographic projection
from (0, 0,−1). It follows from Lemma 9.13 that V(y1, y2) is the vector

1
2
(1 + |y|2)(U1(y1, y2, 0)− y1U3(y1, y2, 0), U2(y1, y2, 0)− y2U3(y1, y2, 0))

for all points (y1, y2) on the unit circle y21 + y22 = 1. Therefore

α(t) = σ(t)− exp(2πit)λ(t)

for all t ∈ [0, 1], where

σ(t) = U1(cos 2πt, sin 2πt, 0) + iU2(cos 2πt, sin 2πt, 0),

λ(t) = U3(cos 2πt, sin 2πt, 0).

Consider now the continuous vector field W on S2 given by

W(x1, x2, x3) = (U1(x1, x2,−x3), U2(x1, x2,−x3),−U3(x1, x2,−x3))

for all (x, y, z) ∈ S2. Then W is everywhere tangent to S2, and the vector
fields U and W correspond under reflection in the equatorial plane x3 = 0.
Thus the vector field U has no zeros in the southern hemisphere

{(x1, x2, x3) ∈ S2 : x3 ≤ 0}

if and only if the vector field W has no zeros in the northern hemisphere.
Thus if the vector field U has no zeros in the southern hemisphere then
n(β, 0) = 0, where β: [0, 1]→ C is the closed curve defined by

β(t) = σ(t) + exp(2πit)λ(t)
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for all t ∈ [0, 1]. (This follows directly on replacing U3 by−U3 in the definition
of the closed curve α.) We conclude therefore that if the continuous vector
field U were to have no zeros on S2, then n(α, 0) = n(β, 0) = 0.

We claim however that n(α, 0)+n(β, 0) = 2. The orthogonality condition

x1U1(x1, x2, 0) + x2u2(x1, x2, 0)

at points (x1, x2, 0) on the equator of the sphere S2 implies that

cos 2πtReσ(t) + sin 2πt Imσ(t) = 0

for all t ∈ [0, 1]. We can therefore write σ(t) in the form

σ(z) = i exp(2πit)µ(t),

where µ: [0, 1]→ R is a real-valued function on [0, 1]. It follows that

α(t)β(t) = (σ(t)− exp(2πit)λ(t))(σ(t) + exp(2πit)λ(t))

= σ(t)2 − exp(4πit)λ(t)2

= − exp(4πit)(µ(t)2 + λ(t)2).

Moreover µ(t)2 + λ(t)2 > 0 for all t ∈ [0, 1]. Indeed

µ(t)2 + λ(t)2 = |U(cos 2πit, sin 2πt, 0)|2

for all t ∈ [0, 1], and the vector field U has no zeros on the equator of S2.
Let

γτ (t) = − exp(4πit)(1− τ + τ(µ(t)2 + λ(t)2))

for all τ ∈ [0, 1] and t ∈ [0, 1]. Then γ1(t) = α(t)β(t), and

γ(0)(t) = − exp(4πit) = exp(γ̃(t))

for all t ∈ [0, 1], where γ̃ = 4πit + iπ
2

, and no curve γτ passes through 0. It
follows from Proposition 9.3 that

n(γ1, 0) = n(γ0, 0) =
γ̃(1)− γ̃(0)

2πi
= 2.

But also
γ1(t) = exp(α̃(t) + β̃(t)),

where α̃: [0, 1] → C and β̃: [0, 1] → C are continuous curves which satisfy
exp(α̃(t)) = α(t) and exp(β̃(t)) = β(t), and therefore

n(γ1, 0) =
α̃(1) + β̃(1)− α̃(0)− β̃(0)

2πi
= n(α, 0) + n(β, 0).

It follows n(α, 0)+n(β, 0) = 2, and therefore n(α, 0) and n(β, 0) cannot both
be zero. We deduce that the continuous vector field U cannot be non-zero
everywhere on S2, and must therefore have a zero at some point of S2, as
required.
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