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7 Introduction to Functional Analysis

7.1 Spaces of Bounded Continuous Functions

Let X be a topological space. We say that a function f :X → Rn from X
to Rn is bounded if there exists some non-negative constant K such that
|f(x)| ≤ K for all x ∈ X. If f and g are bounded continuous functions
from X to Rn, then so is f + g. Also λf is bounded and continuous for
any real number λ. It follows from this that the space C(X,Rn) of bounded
continuous functions from X to Rn is a vector space over R. Given f ∈
C(X,Rn), we define the supremum norm ‖f‖ of f by the formula

‖f‖ = sup
x∈X
|f(x)|.

One can readily verify that ‖.‖ is a norm on the vector space C(X,Rn). We
shall show that C(X,Rn), with the supremum norm, is a Banach space (i.e.,
the supremum norm on C(X,Rn) is complete). The proof of this result will
make use of the following characterization of continuity for functions whose
range is Rn.

Lemma 7.1 A function f :X → Rn mapping a topological space X into Rn

is continuous if and only if it satisfies the following criterion: given any point
x of X and given any ε > 0, there exists some open set Ux in x such that
x ∈ Ux and |f(u)− f(x)| < ε for all u ∈ Ux.

Proof Suppose that f :X → Rn is continuous. Let x ∈ X and ε > 0 be
given. Let

Ux = {u ∈ X : |f(u)− f(x)| < ε}.
Then Ux is open in X, since it is the preimage under f of the open ball of
radius ε about f(x) in Rn. Thus Ux is the required open set.

Conversely suppose that f :X → Rn is a function satisfying the given
criterion. We must show that f is continuous. Let V be an open set in Rn,
and let x ∈ f−1(V ). Then there exists some ε > 0 with the property that

{y ∈ Rn : |y − f(x)| < ε} ⊂ V.

Now the criterion satisfied by f ensures the existence of some open set Ux

in X such that x ∈ Ux and |f(u) − f(x)| < ε for all u ∈ Ux, and moreover
the choice of ε ensures that Ux ⊂ f−1(V ). Therefore the preimage f−1(V ) of
the open set V is the union of the open sets Ux as x ranges over all points
of f−1(V ), and is thus itself an open set. Thus f :X → Rn is continuous, as
required.

56



Theorem 7.2 The normed vector space C(X,Rn) of all bounded continuous
functions from some topological space X to Rn, with the supremum norm, is
a Banach space.

Proof Let f1, f2, f3, . . . be a Cauchy sequence in C(X,Rn). Then, for each
x ∈ X, the sequence f1(x), f2(x), f3(x), . . . is a Cauchy sequence in Rn (since
|fj(x) − fk(x)| ≤ ‖fj − fk‖ for all natural numbers j and k), and Rn is a
complete metric space (Theorem 5.2). Thus, for each x ∈ X, the sequence
f1(x), f2(x), f3(x), . . . converges to some point f(x) of Rn. We must show
that the limit function f defined in this way is bounded and continuous.

Using this inequality, one can easily deduce that f1(x), f2(x), f3(x), . . . is
a Cauchy sequence in Rn. But every Cauchy sequence in Rn is convergent,
since Rn is complete. Thus there exists some point f(x) of Rn such that
fj(x)→ f(x) as j → +∞. In this way we obtain a function f :X → Rn from
X to Rn. We must show that f is both bounded and continuous.

Let ε > 0 be given. Then there exists some natural number N with the
property that ‖fj − fk‖ < 1

3
ε for all j ≥ N and k ≥ N , since f1, f2, f3, . . .

is a Cauchy sequence in C(X,Rn). But then, on taking the limit of the left
hand side of the inequality |fj(x)− fk(x)| < 1

3
ε as k → +∞, we deduce that

‖fj(x)− f(x)‖ ≤ 1
3
ε for all x ∈ X and j ≥ N . In particular |fN(x)− f(x)| <

1
3
ε for all x ∈ X. It follows that |f(x)| ≤ ‖fN‖ + 1

3
ε for all x ∈ X, showing

that the limit function f is bounded.
Next we show that the limit function f is continuous. Let x ∈ X and ε > 0

be given. Let N be chosen large enough to ensure that |fN(u)−f(u)| ≤ 1
3
ε for

all u ∈ X. Now fN is continuous. It follows from Lemma reffunanal-?C2 that
there exists some open set Ux in X such that x ∈ Ux and |fN(u)−fN(x)| < 1

3
ε

for all u ∈ Ux. Thus if u ∈ Ux then

|f(u)− f(x)| ≤ |f(u)− fN(u)|+ |fN(u)− fN(x)|+ |fN(x)− f(x)|
< 1

3
ε+ 1

3
ε+ 1

3
ε = ε.

It follows from Lemma 7.1 that the limit function f is continuous. Thus
f ∈ C(X,Rn).

Finally we observe that fj → f in C(X,Rn as j → +∞. Indeed we have
already seen that, given ε > 0 there exists some natural number N such that
|fj(x)− f(x)| ≤ 1

3
ε for all x ∈ X and for all j ≥ N . Thus ‖fj − f‖ ≤ 1

3
ε < ε

for all j ≥ N , showing that fj → f in C(X,Rn) as j → +∞. This shows
that C(X,Rn) is a complete metric space, as required.

Corollary 7.3 Let X be a metric space and let F be a closed subset of Rn.
Then the space C(X,F ) of bounded continuous functions from X to F is a
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complete metric space with respect to the distance function ρ, where

ρ(f, g) = ‖f − g‖ = sup
x∈X
|f(x)− g(x)|

for all f, g ∈ C(X,F ).

Proof Let f1, f2, f3, . . . be a Cauchy sequence in C(X,F ). Then f1, f2, f3, . . .
is a Cauchy sequence in C(X,Rn) and therefore converges in C(X,Rn) to
some function f :X → Rn. Let x be some point of X. Then fj(x)→ f(x) as
j → +∞. But fj(x) ∈ F for all j, and F is closed in Rn. Therefore f(x) ∈ F ,
by Lemma 2.7. This shows that f ∈ C(X,F ), and thus the Cauchy sequence
f1, f2, f3, . . . converges in C(X,F ). We conclude that C(X,F ) is a complete
metric space, as required.

7.2 The Contraction Mapping Theorem and Picard’s
Theorem

Let X be a metric space with distance function d. A function T :X → X
mapping X to itself is said to be a contraction mapping if there exists some
constant λ satisfying 0 ≤ λ < 1 with the property that d(T (x), T (x′)) ≤
λd(x, x′) for all x, x′ ∈ X.

One can readily check that any contraction map T :X → X on a metric
space (X, d) is continuous. Indeed let x be a point of X, and let ε > 0 be
given. Then d(T (x), T (x′)) < ε for all points x′ of X satisfying d(x, x′) < ε.

Theorem 7.4 (Contraction Mapping Theorem) Let X be a complete metric
space, and let T :X → X be a contraction mapping defined on X. Then T
has a unique fixed point in X (i.e., there exists a unique point x of X for
which T (x) = x).

Proof Let λ be chosen such that 0 ≤ λ < 1 and d(T (u), T (u′)) ≤ λd(u, u′)
for all u, u′ ∈ X, where d is the distance function on X. First we show the
existence of the fixed point x. Let x0 be any point of X, and define a sequence
x0, x1, x2, x3, x4, . . . of points of X by the condition that xn = T (xn−1) for
all natural numbers n. It follows by induction on n that d(xn+1, xn) ≤
λnd(x1, x0). Using the Triangle Inequality, we deduce that if j and k are
natural numbers satisfying k > j then

d(xk, xj) ≤
k−1∑
n=j

d(xn+1, xn) ≤ λj − λk

1− λ
d(x1, x0) ≤

λj

1− λ
d(x1, x0).
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(Here we have used the identity

λj + λj+1 + · · ·+ λk−1 =
λj − λk

1− λ
.)

Using the fact that 0 ≤ λ < 1, we deduce that the sequence (xn) is a Cauchy
sequence in X. This Cauchy sequence must converge to some point x of X,
since X is complete. But then, using Lemma 1.3, we see that

T (x) = T

(
lim

n→+∞
xn

)
= lim

n→+∞
T (xn) = lim

n→+∞
xn+1 = x,

so that x is a fixed point of T .
If x′ were another fixed point of T then we would have

d(x′, x) = d(T (x′), T (x)) ≤ λd(x′, x).

But this is impossible unless x′ = x, since λ < 1. Thus the fixed point x of
the contraction map T is unique.

We use the Contraction Mapping Theorem in order to prove the following
existence theorem for solutions of ordinary differential equations.

Theorem 7.5 (Picard’s Theorem) Let F :U → R be a continuous function
defined over some open set U in the plane R2, and let (x0, t0) be an element
of U . Suppose that there exists some non-negative constant M such that

|F (u, t)− F (v, t)| ≤M |u− v| for all (u, t) ∈ U and (v, t) ∈ U .

Then there exists a continuous function ϕ: [t0− δ, t0 + δ]→ R defined on the
interval [t0 − δ, t0 + δ] for some δ > 0 such that x = ϕ(t) is a solution to the
differential equation

dx(t)

dt
= F (x(t), t)

with initial condition x(t0) = x0.

Proof Solving the differential equation with the initial condition x(t0) = x0
is equivalent to finding a continuous function ϕ: I → R satisfying the integral
equation

ϕ(t) = x0 +

∫ t

t0

F (ϕ(s), s) ds.

where I denotes the closed interval [t0− δ, t0 + δ]. (Note that any continuous
function ϕ satisfying this integral equation is automatically differentiable,
since the indefinite integral of a continuous function is always differentiable.)
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Let K = |F (x0, t0)|+ 1. Using the continuity of the function F , together
with the fact that U is open in R2, one can find some δ0 > 0 such that the
open disk of radius δ0 about (x0, t0) is contained in U and |F (x, t)| ≤ K for
all points (x, t) in this open disk. Now choose δ > 0 such that

δ
√

1 +K2 < δ0 and Mδ < 1.

Note that if |t − t0| ≤ δ and |x − x0| ≤ Kδ then (x, t) belongs to the open
disk of radius δ0 about (x0, t0), and hence (x, t) ∈ U and |F (x, t)| ≤ K.

Let J denote the closed interval [x0 − Kδ, x0 + Kδ]. The space C(I, J)
of continuous functions from the interval I to the interval J is a complete
metric space, by Corollary 7.3. Define T :C(I, J)→ C(I, J) by

T (ϕ)(t) = x0 +

∫ t

t0

F (ϕ(s), s) ds.

We claim that T does indeed map C(I, J) into itself and is a contraction
mapping.

Let ϕ: I → J be an element of C(I, J). Note that if |t− t0| ≤ δ then

|(ϕ(t), t)− (x0, t0)|2 = (ϕ(t)− x0)2 + (t− t0)2 ≤ δ2 +K2δ2 < δ20,

hence |F (ϕ(t), t)| ≤ K. It follows from this that

|T (ϕ)(t)− x0| ≤ Kδ

for all t satisfying |t − t0| < δ. The function T (ϕ) is continuous, and is
therefore a well-defined element of C(I, J) for all ϕ ∈ C(I, J).

We now show that T is a contraction mapping on C(I, J). Let ϕ and ψ
be elements of C(I, J). The hypotheses of the theorem ensure that

|F (ϕ(t), t)− F (ψ(t), t)| ≤M |ϕ(t)− ψ(t)| ≤Mρ(ϕ, ψ)

for all t ∈ I, where ρ(ϕ, ψ) = supt∈I |ϕ(t)− ψ(t)|. Therefore

|T (ϕ)(t)− T (ψ)(t)| =

∣∣∣∣∫ t

t0

(F (ϕ(s), s)− F (ψ(s), s)) ds

∣∣∣∣
≤ M |t− t0|ρ(ϕ, ψ)

for all t satisfying |t− t0| ≤ δ. Therefore ρ(T (ϕ), T (ψ)) ≤ Mδρ(ϕ, ψ) for all
ϕ, ψ ∈ C(I, J). But δ has been chosen such that Mδ < 1. This shows that
T :C(I, J) → C(I, J) is a contraction mapping on C(I, J). It follows from
the Contraction Mapping Theorem (Theorem 7.4) that there exists a unique
element ϕ of C(I, J) satisfying T (ϕ) = ϕ This function ϕ is the required
solution to the differential equation.
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A straightforward but somewhat technical least upper bound argument
can be used to show that if x = ψ(t) is any other continuous solution to the
differential equation

dx

dt
= F (x, t)

on the interval [t0− δ, t0 + δ] satisfying the initial condition ψ(t0) = x0, then
|ψ(t)− x0| ≤ Kδ for all t satisfying |t− t0| ≤ δ. Thus such a solution to the
differential equation must belong to the space C(I, J) defined in the proof of
Theorem 7.5. The uniqueness of the fixed point of the contraction mapping
T :C(I, J) → C(I, J) then shows that ψ = ϕ, where ϕ: [t0 − δ, t0 + δ] → R
is the solution to the differential equation whose existence was proved in
Theorem 7.5. This shows that the solution to the differential equation is in
fact unique on the interval [t0 − δ, t0 + δ].
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