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7 Introduction to Functional Analysis

7.1 Spaces of Bounded Continuous Functions

Let X be a topological space. We say that a function f: X — R” from X
to R™ is bounded if there exists some non-negative constant K such that
|f(z)] < K for all z € X. If f and g are bounded continuous functions
from X to R", then so is f + g. Also Af is bounded and continuous for
any real number \. It follows from this that the space C'(X,R™) of bounded
continuous functions from X to R™ is a vector space over R. Given f &
C(X,R"), we define the supremum norm || f|| of f by the formula

/|l = sup | f(z)].
zeX

One can readily verify that ||.|| is a norm on the vector space C'(X,R"). We
shall show that C'(X,R"), with the supremum norm, is a Banach space (i.e.,
the supremum norm on C'(X,R") is complete). The proof of this result will
make use of the following characterization of continuity for functions whose
range is R"™.

Lemma 7.1 A function f: X — R"™ mapping a topological space X into R"
is continuous if and only if it satisfies the following criterion: given any point
x of X and given any € > 0, there exists some open set U, in x such that

z €U, and |f(u) — f(x)] <& for allu € U,.

Proof Suppose that f: X — R”" is continuous. Let x € X and € > 0 be
given. Let
Up ={ue X :|f(u) - flz)] <e}.

Then U, is open in X, since it is the preimage under f of the open ball of
radius € about f(z) in R™. Thus U, is the required open set.

Conversely suppose that f: X — R"™ is a function satisfying the given
criterion. We must show that f is continuous. Let V' be an open set in R",
and let z € f~1(V). Then there exists some £ > 0 with the property that

{yeR":ly-fl@)<ejcV.

Now the criterion satisfied by f ensures the existence of some open set U,
in X such that x € U, and |f(u) — f(x)| < ¢ for all u € U,, and moreover
the choice of & ensures that U, C f~'(V). Therefore the preimage f~'(V) of
the open set V' is the union of the open sets U, as x ranges over all points
of f~1(V), and is thus itself an open set. Thus f: X — R" is continuous, as
required. |
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Theorem 7.2 The normed vector space C(X,R™) of all bounded continuous
functions from some topological space X to R™, with the supremum norm, is
a Banach space.

Proof Let fi, fa, f3,... be a Cauchy sequence in C'(X,R™). Then, for each
x € X, the sequence fi(z), fa(x), f3(x), ... is a Cauchy sequence in R™ (since
\fi(x) — fu(x)| < ||f; — full for all natural numbers j and k), and R" is a
complete metric space (Theorem 5.2). Thus, for each z € X, the sequence
fi(z), fa(x), f3(x), ... converges to some point f(z) of R". We must show
that the limit function f defined in this way is bounded and continuous.

Using this inequality, one can easily deduce that fi(x), fa(x), f3(z),... is
a Cauchy sequence in R". But every Cauchy sequence in R" is convergent,
since R™ is complete. Thus there exists some point f(x) of R™ such that
fi(x) = f(z) as j — 4o0. In this way we obtain a function f: X — R" from
X to R™. We must show that f is both bounded and continuous.

Let £ > 0 be given. Then there exists some natural number N with the
property that ||f; — fi| < i€ for all j > N and k > N, since f1, fo, f3, .-
is a Cauchy sequence in C'(X,R"™). But then, on taking the limit of the left
hand side of the inequality |f;(z) — fe(z)| < 3¢ as k — +o00, we deduce that
|fi(x) = f(z)|| < e forallz € X and j > N. In particular | fy(z) — f(z)| <
s¢ for all z € X. It follows that |f(z)] < || fn|| + 3¢ for all 2 € X, showing
that the limit function f is bounded.

Next we show that the limit function f is continuous. Let z € X ande > 0
be given. Let N be chosen large enough to ensure that | fy(u)— f(u)| < 3¢ for
allu € X. Now fy is continuous. It follows from Lemma reffunanal-?7C2 that
there exists some open set U, in X such that « € U, and | fx(u)— fn(2)] < 3¢
for all uw € U,. Thus if u € U, then

[f(w) = f(@)] < [f(w) = In()] + [ fn(w) = fn ()] + | fv(z) = f(z)]

1 1 1.
< §5+§5+§5—5.

It follows from Lemma 7.1 that the limit function f is continuous. Thus
feC(X,R").

Finally we observe that f; — f in C'(X,R" as j — +o0. Indeed we have
already seen that, given £ > 0 there exists some natural number N such that
|fi(@) — f(x)| < e forall z € X and for all j > N. Thus ||f; — f|| < e <e
for all j > N, showing that f; — f in C(X,R") as j — +oo. This shows
that C'(X,R") is a complete metric space, as required. [

Corollary 7.3 Let X be a metric space and let F' be a closed subset of R™.
Then the space C(X, F) of bounded continuous functions from X to F is a
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complete metric space with respect to the distance function p, where
plfr9) = IIf = gll = sup [f(z) — g(x)]
Te

forall f,g € C(X,F).

Proof Let fi, fs, f3, ... be a Cauchy sequence in C'(X, F'). Then fi, fo, f3,. ..
is a Cauchy sequence in C'(X,R") and therefore converges in C(X,R") to
some function f: X — R™. Let x be some point of X. Then f;(z) — f(z) as
Jj — 4o0. But f;(z) € F for all j, and F is closed in R". Therefore f(x) € F,
by Lemma 2.7. This shows that f € C(X, F), and thus the Cauchy sequence
f1, f2, f3, ... converges in C'(X, F'). We conclude that C'(X, F') is a complete
metric space, as required. |

7.2 The Contraction Mapping Theorem and Picard’s
Theorem

Let X be a metric space with distance function d. A function 7T: X — X
mapping X to itself is said to be a contraction mapping if there exists some
constant A satisfying 0 < A < 1 with the property that d(T'(x),T(2")) <
Md(z,2') for all z, 2’ € X.

One can readily check that any contraction map 7: X — X on a metric
space (X, d) is continuous. Indeed let = be a point of X, and let € > 0 be
given. Then d(T'(x),T(z’)) < e for all points 2’ of X satisfying d(z, ") < e.

Theorem 7.4 (Contraction Mapping Theorem) Let X be a complete metric
space, and let T: X — X be a contraction mapping defined on X. Then T
has a unique fized point in X (i.e., there exists a unique point x of X for
which T(x) = x).

Proof Let A be chosen such that 0 < A < 1 and d(T'(u),T(v')) < Ad(u,u’)
for all u,u’ € X, where d is the distance function on X. First we show the
existence of the fixed point z. Let xy be any point of X, and define a sequence
X, T1, T2, Ty, T, ... of points of X by the condition that =, = T'(x,_1) for
all natural numbers n. It follows by induction on n that d(x,i1,x,) <
A"d(z1,x9). Using the Triangle Inequality, we deduce that if j and k are
natural numbers satisfying & > j then

M — \F M\
d('rkwrj) < Zd(anrl,I‘n) < 1— )\ d($1,.§lf0) < 1— )\

d(x1,xo).
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(Here we have used the identity

N — Ak

J Jj+1 k-1 _
N+ N+ +A T

)

Using the fact that 0 < A < 1, we deduce that the sequence (z,) is a Cauchy
sequence in X. This Cauchy sequence must converge to some point x of X,
since X is complete. But then, using Lemma 1.3, we see that

n—-+o0o n—-+o0o

T(x)=T (n1—1>1-11-1c>o x”) = lim T(x,) = lim z,4, =z,

so that z is a fixed point of T
If 2’ were another fixed point of T then we would have

d(2',x) = d(T(2"), T(x)) < (2, x).

But this is impossible unless 2’ = x, since A < 1. Thus the fixed point = of
the contraction map 7' is unique. |

We use the Contraction Mapping Theorem in order to prove the following
existence theorem for solutions of ordinary differential equations.

Theorem 7.5 (Picard’s Theorem) Let F:U — R be a continuous function
defined over some open set U in the plane R?, and let (xg,to) be an element
of U. Suppose that there exists some non-negative constant M such that

|F(u,t) — F(v,t)] < M|u —v| for all (u,t) € U and (v,t) € U.

Then there exists a continuous function ¢: [to — 0,1y + d] — R defined on the
interval [ty — 9, to + 0] for some § > 0 such that x = p(t) is a solution to the
differential equation
dx(t)
dt
with initial condition x(tg) = x.

= F(z(t),1)

Proof Solving the differential equation with the initial condition x(tg) = xg
is equivalent to finding a continuous function ¢: I — R satisfying the integral
equation
¢
o) =z0+ [ Flol).s)ds.
to
where I denotes the closed interval [ty — 0, ¢+ 6]. (Note that any continuous
function ¢ satisfying this integral equation is automatically differentiable,
since the indefinite integral of a continuous function is always differentiable.)
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Let K = |F(xo,t0)| + 1. Using the continuity of the function F, together
with the fact that U is open in R?, one can find some §; > 0 such that the
open disk of radius &y about (zo,%s) is contained in U and |F(z,t)| < K for
all points (x,t) in this open disk. Now choose > 0 such that

0V1+ K2 < g and M < 1.

Note that if |t — to] < § and |x — 29| < K0 then (z,t) belongs to the open
disk of radius dg about (zg, %), and hence (x,t) € U and |F(z,t)| < K.

Let J denote the closed interval [xg — K, x¢ + K§]. The space C(I,J)
of continuous functions from the interval I to the interval J is a complete
metric space, by Corollary 7.3. Define T:C(I,J) — C(I,J) by

T()(t) = 20 + / Flo(s), s) ds.

to
We claim that 7" does indeed map C(I,J) into itself and is a contraction
mapping.
Let ¢: I — J be an element of C(I,J). Note that if [t — to| < ¢ then
[(p(t),8) = (20, t0)|” = (p(t) = 20)” + (t — t0)* < 6 + K*6% < &,
hence |F(p(t),t)] < K. It follows from this that
T(p)(t) — x| < Ko

for all ¢ satisfying |t — to| < . The function T'(¢) is continuous, and is
therefore a well-defined element of C'(I, J) for all ¢ € C(I, J).

We now show that 7" is a contraction mapping on C(I,J). Let ¢ and 9
be elements of C'(1,J). The hypotheses of the theorem ensure that

[F(p(t),t) = F((t), 1) < Mlp(t) — ()| < Mp(p, )
for all ¢ € I, where p(p,v) = sup,¢; |¢(t) — ¥ (t)|. Therefore

T()(t) — TW)(1)| = / (F(p(s).8) — F(i(s),5)) ds

< Mt —to|p(ep, ¥)

for all t satisfying |t — to| < 0. Therefore p(T'(¢), T (¢)) < Mép(p, 1)) for all
¢, € C(1,J). But § has been chosen such that Mé < 1. This shows that
T:C(1,J) — C(I,J) is a contraction mapping on C(I,J). It follows from
the Contraction Mapping Theorem (Theorem 7.4) that there exists a unique
element ¢ of C(I,J) satistying T'(¢) = ¢ This function ¢ is the required
solution to the differential equation. |}
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A straightforward but somewhat technical least upper bound argument
can be used to show that if z = ¢ (t) is any other continuous solution to the
differential equation

dx
— =F t
dt (x7 )

on the interval [ty — J, to + J] satisfying the initial condition ¥ (t) = xo, then
[ (t) — x| < K06 for all ¢ satistying |t — to| < §. Thus such a solution to the
differential equation must belong to the space C(I, J) defined in the proof of
Theorem 7.5. The uniqueness of the fixed point of the contraction mapping
T:C(I,J) — C(I,J) then shows that ¢ = ¢, where ¢: [ty — d,tg + ] = R
is the solution to the differential equation whose existence was proved in
Theorem 7.5. This shows that the solution to the differential equation is in
fact unique on the interval [ty — d,to + ).
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