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7 Rings

Definition. A ring consists of a set R on which are defined operations of addition and multiplication
satisfying the following axioms:

• x + y = y + x for all elements x and y of R (i.e., addition is commutative);

• (x + y) + z = x + (y + z) for all elements x, y and z of R (i.e., addition is associative);

• there exists an an element 0 of R (known as the zero element) with the property that x+ 0 = x
for all elements x of R;

• given any element x of R, there exists an element −x of R with the property that x+(−x) = 0;

• x(yz) = (xy)z for all elements x, y and z of R (i.e., multiplication is associative);

• x(y + z) = xy + xz and (x + y)z = xz + yz for all elements x, y and z of R (the Distributive
Law).

The first four of these axioms (the axioms that involve only the operation of addition) can be sum-
marized in the statement that a ring is an Abelian group (i.e., a commutative group) with respect to
the operation of addition.

Example. The set Z of integers is a ring with the usual operations of addition and multiplication.

Example. The set Q of rational numbers is a ring with the usual operations of addition and multi-
plication.

Example. The set R of real numbers is a ring with the usual operations of addition and multiplication.

Example. The set C of complex numbers is a ring with the usual operations of addition and multi-
plication.

Example. The set Z[x] of all polynomials with integer coefficients is a ring with the usual operations
of addition and multiplication of polynomials.

Example. The set Q[x] of all polynomials with rational coefficients is a ring with the usual operations
of addition and multiplication of polynomials.
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Example. The set R[x] of all polynomials with real coefficients is a ring with the usual operations
of addition and multiplication of polynomials.

Example. The set C[x] of all polynomials with complex coefficients is a ring with the usual operations
of addition and multiplication of polynomials.

Example. Given a positive integer n, the set of all n×n matrices with real coefficients is a ring with
operations of matrix addition and matrix multiplication.

Example. Given a positive integer n, the set of all n×n matrices with complex coefficients is a ring
with operations of matrix addition and matrix multiplication.

Example. Let n be a positive integer. We construct the ring Zn of congruence classes of integers
modulo n. Two integers x and y are said to be congruent modulo n if and only if x − y is divisible
by n. The notation ‘x ≡ y mod n’ is used to denote the congruence of integers x and y modulo n.
One can readily verify that congruence modulo the given integer n is an equivalence relation on the
set Z of all integers: x ≡ x mod n for all integers x (the relation is reflexive); if x ≡ y mod n then
y ≡ x mod n (the relation is symmetric); if x ≡ y mod n and y ≡ z mod n then x ≡ z mod n (the
relation is transitive). The equivalence classes of integers with respect to congruence modulo n are
referred to as congruence classes modulo n: two integers x and y belong to the same congruence class
modulo n if and only if x− y is divisible by n. The set of congruence classes of integers modulo n is
denoted by Zn; this set has n elements which are the congruence classes of the integers 0, 1, . . . , n− 1.

Let x, y, u and v be integers, where x ≡ u mod n and y ≡ v mod n. Then x − u and y − v
are divisible by n. It follows directly from this that (x + y) − (u + v) is divisible by n and thus
x+y ≡ u+v mod n. Also xy−uv = (x−u)y+u(y−v), from which it follows that xy−uv is divisible
by n and thus xy ≡ uv mod n. We conclude that there are well-defined operations of addition and
multiplication on the set Zn of congruence classes of integers modulo n: the sum of the congruence
classes of integers x and y is the congruence class of x+y, and the product of these congruence classes
is the congruence class of xy. These operations of addition and multiplication on congruence classes
do not depend on the choice of representatives of those congruence classes: if x and u belong to the
same congruence class and if y and v belong to the same congruence class, then we have shown that
x+y and u+v belong to the same congruence class; we have also shown that xy and uv belong to the
same congruence class. It is now a straightforward exercise to verify that the ring axioms are satisfied
by addition and multiplication on Zn. Thus the set Zn of congruence classes of integers modulo n is
a ring with respect to the operations of addition and multiplication of congruence classes.

Example. A quaternion is an expression of the form a + xi + yj + zk, where a, x, y and z are real
numbers. Addition and multiplication of quaternions are defined by the following formulae:

(a + xi + yj + zk) + (b + ui + vj + wk) = (a + b) + (x + u)i + (y + v)j + (z + w)k
(a + xi + yj + zk)(b + ui + vj + wk) = (ab− xu− yv − zw) + (au + xb + yw − zv)i

+(av + yb + zu− xw)j + (aw + zb + xv − yu)k

Straightforward calculations establish that the set of quaternions is a ring with respect to these
operations of addition and multiplication. This ring is non-commutative (i.e., the commutative law
is not satisfied in general when quaternions are multiplied together.) One can readily verify that

i2 = j2 = k2 = ijk = −1.
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This formula was discovered by Hamilton on the 16th of October, 1843, and carved by him on a stone
of Broome Bridge, Cabra. One can also verify that

ij = −ji = k, jk = −kj = i, ki = −ik = j.

There are close connections between quaternion algebra and the algebra of vectors in 3-dimensional
space: the components x, y and z of i, j and k respectively in the quaternion a + xi + yj + zk
can be thought of as the three components of a vector (x, y, z) in 3-dimensional space, and the
formula for quaternion multiplication can be expressed using the scalar product and vector product
of 3-dimensional vector algebra. Quaternions are used today for algebraic computations involving
rotations in three-dimensional space.

Lemma 7.1. Let a and b be elements of a ring R. Then there exists a unique element x of R satisfying
x + b = a.

Proof. The ring axioms ensure the existence of an element−b of R with the property that b+(−b) = 0,
where 0 is the zero element of R. The identity x + b = a is satisfied when x = a + (−b), since

(a + (−b)) + b = a + ((−b) + b) = a + (b + (−b)) = a + 0 = a.

(Here we have used the fact that addition is required to be both commutative and associative.) If
now x is any element of R satisfying x + b = a then

x = x + 0 = x + (b + (−b)) = (x + b) + (−b) = a + (−b).

This proves that there is exactly one element x of R satisfying x+b = a, and it is given by the formula
x = a + (−b).

Let a and b be elements of a ring R. We denote by a − b the unique element x of R with the
property satisfying x + b = a. Note that a− b = a + (−b) for all elements a and b of R. This defines
the operation of subtraction on any ring.

If x is an element of a ring R and if there exists at least one element b for which b + x = b then
Lemma 7.1 ensures that x = 0. It follows immediately from this that the zero element of a ring is
uniquely determined.

Lemma 7.1 also ensures that, given any element b of a ring R there exists exactly one element −b
of R with the property that b + (−b) = 0.

Lemma 7.2. Let R be a ring. Then x0 = 0 and 0x = 0 for all elements x of R.

Proof. The zero element 0 of R satisfies 0 + 0 = 0. Therefore

x0 + x0 = x(0 + 0) = x0 and 0x + 0x = (0 + 0)x = 0x

for any element x of R. The elements x0 and 0 of R must therefore be equal to one another, since
both are equal to the unique element y of R that satisfies y + x0 = x0. Similarly the elements 0x and
0 of R must therefore be equal to one another, since both are equal to the unique element z of R that
satisfies z + 0x = 0x.

Lemma 7.3. Let R be a ring. Then (−x)y = −(xy) and x(−y) = −(xy) for all elements x and y of
R.

Proof. It follows from the Distributive Law that (−x)y = −(xy), since xy + (−x)y = (x + (−x))y =
0y = 0.

Similarly x(−y) = −(xy), since xy + x(−y) = x(y + (−y)) = x0 = 0.
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Ideals and Quotient Rings

Definition. A subset I of a ring R is said to be an ideal if the following conditions are satisfied:

0 ∈ I;

x + y ∈ I for all x ∈ I and y ∈ I;

−x ∈ I for all x ∈ I;

rx ∈ I and xr ∈ I for all x ∈ I and r ∈ R.

The zero ideal of any ring is the ideal that consists of just the zero element.
Note that any ideal of a ring is a subgroup of that ring with respect to the operation of addition.
Ideals play a role in ring theory analogous to the role of normal subgroups in group theory.

Example. Let Z be the ring of integers and, for any non-negative integer n, let nZ be the subset of
Z consisting of those integers that are multiples of n. Then nZ is an ideal of Z.

Proposition 7.4. Every ideal of the ring Z of integers is generated by some non-negative integer n.

Proof. The zero ideal is of the required form with n = 0. Let I be some non-zero ideal of Z. Then
I contains at least one strictly positive integer (since −m ∈ I for all m ∈ I). Let n be the smallest
strictly positive integer belonging to I. If j ∈ I then we can write j = kn + q for some integers k
and q with 0 ≤ q < n. Now q ∈ I, since q = j − kn, j ∈ I and kn ∈ I. But 0 ≤ q < n, and n is by
definition the smallest strictly positive integer belonging to I. We conclude therefore that q = 0, and
thus j = kn. This shows that I = nZ, as required.

Lemma 7.5. The intersection of any collection of ideals of a ring R is itself an ideal of R.

Proof. Let x and y be elements of R. Suppose that x and y belong to all the ideals in the collection.
Then the same is true of 0, x + y, −x, rx and xr for all r ∈ R.

Definition. Let X be a subset of the ring R. The ideal of R generated by X is defined to be the
intersection of all the ideals of R that contain the set X.

Note that the ideal of a ring R generated by a subset X of R is contained in every other ideal that
contains the subset X.

Let R be a ring. We denote by (f1, f2, . . . , fk) the ideal of R generated by any finite subset
{f1, f2, . . . , fk} of R.

An ideal I of the ring R is said to be finitely generated if there exists a finite subset of I which
generates the ideal I.

Let I be an ideal of a ring R. We construct a corresponding quotient ring R/I.
Two elements x and y of R belong to the same coset of I if and only if x− y ∈ I. Let ∼I be the

binary relation of R where elements x and y of R satisfy x ∼I y if and only if they belong to the same
coset of I. One can readily verify that ∼I is an equivalence relation on R: x ∼I x for all elements x
of R (the relation is reflexive); if x ∼I y then y ∼I x (the relation is symmetric); if x ∼I y and y ∼I z
then x ∼I z (the relation is transitive).

Let x, y, u and v be elements of R, where x ∼I u and y ∼I v. Then x− u ∈ I and y − v ∈ I. It
follows directly from this that (x+ y)− (u+ v) ∈ I, since (x+ y)− (u+ v) = (x−u)+ (y− v) and the
sum of two elements of an ideal I belongs to I. Thus x+y ∼I u+v. Also xy−uv = (x−u)y+u(y−v).
But (x − u)y ∈ I and u(y − v) ∈ I since a product of an element of I with an element of R (in any
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order) must belong to the ideal I. Using the fact that a sum of two elements of an ideal belongs to that
ideal, we see that xy−uv ∈ I and thus xy ∼I uv. We conclude that there are well-defined operations
of addition and multiplication on the set R/I of cosets of I: the sum of the cosets containing the
elements x and y of R is the coset containing x + y, and the product of these cosets is the coset
containing xy. These operations of addition and multiplication on cosets do not depend on the choice
of representatives of those cosets: if x and u belong to the same coset and if y and v belong to the
same coset, then we have shown that x + y and u + v belong to the same coset; we have also shown
that xy and uv belong to the same coset. It is now a straightforward exercise to verify that the ring
axioms are satisfied by addition and multiplication on R/I. Thus the set R/I of cosets of elements
of R is a ring with respect to the operations of addition and multiplication of cosets.

The coset of I in R containing an element x is denotes by I + x. The operations of addition and
multiplication of cosets satisfy

(I + x) + (I + y) = I + (x + y), (I + x)(I + y) = I + xy

for all elements x and y of R. The zero element of R/I is the ideal I itself. (Any ideal I is a coset of
itself, and I = I + 0.) Note that I + (−x) is the additive inverse of the coset I + x for any element x
of R.

Example. Let Z be the ring of integers, let n be a positive integer, and let nZ be the ideal of Z
consisting of all integers that are divisible by n. Then the quotient ring Z/nZ can be identified with
the ring Zn of congruence classes of integers modulo n: given any integer x, the coset nZ + x is the
congruence class of x modulo n.

Homomorphisms

Definition. A function θ:R → S from a ring R to a ring S is said to be a homomorphism (or ring
homomorphism) if and only if θ(x + y) = θ(x) + θ(y) and θ(xy) = θ(x)θ(y) for all x, y ∈ R.

Example. The function that sends a complex number to its complex conjugate is a homomorphism
from the ring C of complex numbers to itself.

Example. The function that sends each polynomial a0 + a1x + a2x
2 + · · · + anxn with complex

coefficients to the polynomial a0 + a1x + a2x
2 + · · · + anxn, where ai is the complex conjugate of ai

for each i, is a homomorphism from the ring C[x] of polynomials with complex coefficients to itself.

Example. Let c be an integer. The function that sends each polynomial f(x) with integer coefficients
to its value f(c) at c is a homomorphism from the ring Z[x] of polynomials with integer coefficients
to the ring Z of integers.

Example. One can verify by straightforward calculations that the function

a + xi + yj + zk 7→
(

a + iz x + iy
−x + iy a− iz

)
that sends each quaternion a+xi+ yj +xk to a corresponding 2× 2 matrix is a homomorphism from
the ring of quaternions to the ring of all 2× 2 matrices of complex numbers.

Lemma 7.6. Let θ:R → S be a homomorphism from a ring R to a ring S. Then θ(0) = 0 (where 0
denotes the zero element in the ring R and also in the ring S). Also θ(−x) = −θ(x) for all elements x
of R.
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Proof. Let z = θ(0). Then z + z = θ(0) + θ(0) = θ(0 + 0) = θ(0) = z. The result that θ(0) = 0 now
follows from the fact that an element z of S satisfies z + z = z if and only if z is the zero element of
S.

Let x be an element of R. The element θ(−x) satisfies θ(x) + θ(−x) = θ(x + (−x)) = θ(0) = 0.
The result now follows using Lemma 7.1.

Definition. Let R and S be rings, and let θ:R → S be a ring homomorphism. The kernel ker θ of
the homomorphism θ is the set {x ∈ R : θ(x) = 0} of all elements of R that are mapped by θ onto
the zero element of S.

Lemma 7.7. Let θ:R → S be a homomorphism from a ring R to a ring S. Then the kernel ker θ of
θ is an ideal of R.

Proof. Let x and y be elements of ker θ, and let r be an element of R. Then

θ(0) = 0,

θ(x + y) = θ(x) + θ(y) = 0,

θ(−x) = −θ(x) = 0,

θ(rx) = θ(r)θ(x) = θ(r)0 = 0,

θ(xr) = θ(x)θ(r) = 0θ(r) = 0.

It follows that 0, x+y, −x, rx and xr are elements of ker θ. Thus ker θ is an ideal of R, as required.

The image θ(R) of a ring homomorphism θ:R → S is a subring of S; however it is not in general
an ideal of S.

An ideal I of a ring R is the kernel of the quotient homomorphism that sends x ∈ R to the coset
I + x.

Definition. An isomorphism θ:R → S between rings R and S is a homomorphism that is also a
bijection between R and S. The inverse of an isomorphism is itself an isomorphism. Two rings are
said to be isomorphic if there is an isomorphism between them.

Example. The function that sends a complex number to its conjugate is an isomorphism from the
ring C of complex numbers to itself.

Proposition 7.8. Let R and S be rings, let θ:R → S be a homomorphism from R to S, and let I be
a ideal of R. Suppose that I ⊂ ker θ. Then the homomorphism θ:R → S induces a homomorphism
θ̂:R/I → S sending I + g ∈ R/I to θ(g). Moreover θ̂:R/I → S is injective if and only if I = ker θ.

Proof. Let x and y be elements of R. Now I + x = I + y if and only if x− y ∈ I. Also θ(x) = θ(y)
if and only if x − y ∈ ker θ. Thus if I ⊂ ker θ then θ(x) = θ(y) whenever I + x = I + y, and thus
θ:R → S induces a well-defined function θ̂:R/I → S sending I + x ∈ R/I to θ(x). This function is a
homomorphism since

θ̂((I + x) + (I + y)) = θ̂(I + (x + y)) = θ(x + y) = θ(x) + θ(y) = θ̂(I + x) + θ̂(I + y),
θ̂((I + x)(I + y)) = θ̂(I + xy) = θ(xy) = θ(x)θ(y) = θ̂(I + x)θ̂(I + y).

Suppose now that I = ker θ. Then θ(x) = θ(y) if and only if I+x = I+y. Thus the homomorphism
θ̂:R/I → S is injective. Conversely if θ̂:R/I → S is injective then I must be the kernel of θ, as
required.
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Corollary 7.9. Let θ:R → S be ring homomorphism. Then θ(R) is isomorphic to R/ ker θ.

Example. Let n be a non-negative integer. The function from the ring Z of integers to the ring Zn

of congruence classes of integers modulo n is a homomorphism whose kernel is the ideal nZ consisting
of those integers which are multiples of n. This homomophism is surjective. It follows therefore that
Z/nZ ∼= Zn.

Example. The function θ: Z4 → Z2 that sends the congruence class of each integer x modulo 4 to
the congruence class of x modulo 2 is a well-defined homomorphism. Its kernel is the ideal I of Z4

consisting of congrence classes of even integers modulo 4. This homomorphism is surjective. It follows
therefore that Z4/I ∼= Z2.

Unital Rings, Commutative Rings, and Integral Domains

A ring R is said to be commutative if xy = yx for all x, y ∈ R. Not every ring is commutative: an
example of a non-commutative ring is provided by the ring of n × n matrices with real or complex
coefficients when n > 1.

A ring R is said to be unital if it possesses a (necessarily unique) non-zero multiplicative identity
element 1 satisfying 1x = x = x1 for all x ∈ R.

Lemma 7.10. Let R be a unital commutative ring, and let X be a subset of R. Then the ideal
generated by X coincides with the set of all elements of R that can be expressed as a finite sum of the
form r1x1 + r2x2 + · · ·+ rkxk, where x1, x2, . . . , xk ∈ X and r1, r2, . . . , rk ∈ R.

Proof. Let I be the subset of R consisting of all these finite sums. If J is any ideal of R which
contains the set X then J must contain each of these finite sums, and thus I ⊂ J . Let a and b be
elements of I. It follows immediately from the definition of I that a + b ∈ I, −a ∈ I, and ra ∈ I
for all r ∈ R. Also ar = ra, since R is commutative, and thus ar ∈ I. Thus I is an ideal of R.
Moreover X ⊂ I, since the ring R is unital and x = 1x for all x ∈ X. Thus I is the smallest ideal of
R containing the set X, as required.

Definition. A unital commutative ring R is said to be an integral domain if the product of any two
non-zero elements of R is itself non-zero.

A non-zero element x of a unital commutative ring R is said to be a zero divisor if there exists
some non-zero element y for which xy = 0. An integral domain is a unital commutative ring without
zero divisors.

Example. There are no zero divisors in the ring Z3 of congruence classes of integers modulo 3. The
non-zero elements of Z3 are the congruence classes [1] and [2] of the integers 1 and 2 respectively, and
these satisfy [1][1] = [2][2] = [1] and [1][2] = [2][1] = [2]. Thus the unital commutative ring Z3 is an
integral domain.

Example. The congruence class [2] of 2 modulo 4 is a zero divisor in the ring Z4 of congruence classes
of integers modulo 4, since [2][2] = [4] = [0]. Thus Z4 is not an integral domain.

We shall show that the ring Zn of congruence classes of integers modulo some given integer n
satisfying n > 1 is an integral domain if and only if n is a prime number. We recall that an integer p
satisfying p > 1 is a prime number if and only if there do not exist integers r and s satisfying rs = p,
0 < r < p and 0 < s < p.
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Lemma 7.11. Let p be a prime number, and let r and s be integers satisfying 0 < r < p and
0 < s < p. Then rs is not divisible by p.

Proof. Let I be the set of all integers x with the property that rx is divisible by p. Then I is an
ideal of the ring Z of integers. It follows from Proposition 7.4 that there exists some non-negative
integer d such that I = dZ, where dZ is the set of all integer multiples of d. Now p ∈ I, since rp is
obviously divisible by p. It follows that d > 0 and d divides p. Also d > 1, for if it were the case
that d = 1 then r would be divisible by p, contradicting the requirement that 0 < r < p. Now, since
the divisor d of the prime number p cannot satisfy 1 < d < p, we conclude that d = p, and thus the
ideal I consists of all integer multiples of p. It follows that s cannot belong to I, since 0 < s < p, and
therefore rs is not divisible by p, as required.

Theorem 7.12. Let n be an integer satisfying n > 1. The ring Zn of congruence classes of integers
modulo n is an integral domain if and only if n is a prime number.

Proof. First we show that Zn is an integral domain only if n is a prime number. Suppose that n is
not a prime number. Then n = rs, where r and s are integers satisfying 0 < r < n and 0 < s < n.
Let [r] and [s] denote the congruence classes of r and s modulo n. Then [r] and [s] are non-zero
elements of Zn, and [r][s] = [rs] = [n] = [0]. It follows that if n is not a prime number then Zn is not
an integral domain.

We must show also that if n is a prime number then Zn is an integral domain. Let α and β be
elements of Zn. If α 6= [0] and β 6= [0] then there exist integers r and s satisfying 0 < r < n and
0 < s < n such that α = [r] and β = [s]. It follows from Lemma 7.11 that rs is not divisible by p,
and thus αβ = [r][s] = [rs] 6= [0]. We have thus shown that if n is a prime number then the product
of any two non-zero elements of Zn is non-zero. We conclude that if n is a prime number then Zn is
an integral domain, as required.

Let R be a ring, and let r ∈ R. We may define n.r for all natural numbers n by induction on |n|
so that 0.r = 0, n.r = (n− 1).r + r for all n > 0, and n.r = −((−n).r) for all n < 0. Then

(m + n).r = m.r + n.r, n.(r + s) = n.r + n.s,

(mn).r = m.(n.r), (m.r)(n.s) = (mn).(rs)

for all m,n ∈ Z and r, s ∈ R.
In particular, suppose that R is a unital ring. Then the set of all integers n satisfying n.1 = 0 is

an ideal of Z. Therefore there exists a unique non-negative integer p such that pZ = {n ∈ Z : n.1 = 0}
(see Proposition 7.4). This integer p is referred to as the characteristic of the ring R, and is denoted
by charR.

Lemma 7.13. Let R be an integral domain. Then either charR = 0 or else charR is a prime number.

Proof. Let p = charR. If p 6= 0 then p > 1, since the characteristic of a unital ring cannot be equal
to 1. Let j and k be integers satisfying 0 < j < p and 0 < k < p. Then j.1 and k.1 are are non-zero
elements of R. It follows that (j.1)(k.1) must be a non-zero element of R, since R is an integral
domain. But (j.1)(k.1) = (jk).1. It follows that jk 6∈ pZ, and thus jk is not equal to p. We conclude
that p is a prime number, as required.
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Fields

Definition. A unital commutative ring R is said to be a field if, given any non-zero element x of R,
there exists an element y of R such that xy = 1.

The following result follows immediately from the above definition.

Proposition 7.14. A ring R is a field if and only if the non-zero elements of R constitute an Abelian
group with respect to the operation of multiplication.

The rings Q, R and C of rational numbers, real numbers and complex numbers are fields.

Theorem 7.15. A unital commutative ring R is a field if and only if the only ideals of R are {0}
and R.

Proof. Suppose that R is a field. Let I be a non-zero ideal of R. Then there exists x ∈ I satisfying
x 6= 0. Moreover there exists y ∈ R satisfying xy = 1. Therefore 1 ∈ I. But then r ∈ I for all r ∈ R,
since r = r1. Thus if I is a non-zero ideal of R then I = R. This shows that of a field R are {0} and
R.

Conversely, suppose that R is a unital commutative ring with the property that the only ideals of
R are {0} and R. Let x be a non-zero element of R, and let xR denote the subset of R consisting of
all elements of R that are of the form xr for some r ∈ R. Given that the ring R is commutative, it is
easy to verify that xR is an ideal of R. Moreover xR 6= {0}, since x ∈ xR. We deduce that xR = R.
Therefore 1 ∈ xR, and hence there exists some element y of R satisfying xy = 1. This shows that R
is a field.

Every field is an integral domain. The converse is true for finite integral domains.

Theorem 7.16. Any finite integral domain is a field.

Proof. Let R be a finite integral domain, and let x be a non-zero element of R. We must show that
there exists y ∈ R satisfying xy = 1. Consider the function ϕ:R → R defined by ϕ(r) = xr. If r
and s are elements of R satisfying ϕ(r) = ϕ(s) then xr = xs, and hence x(r − s) = 0. But x 6= 0.
It follows from the definition of integral domains that r − s = 0. Thus r = s. This shows that the
function ϕ:R → R is injective. But R is finite. The function ϕ:R → R must therefore be surjective.
Thus there exists y ∈ R satisfying ϕ(y) = 1. Then xy = 1, as required.

Example. The ring Zn of congruence classes of integers modulo a given integer n greater than one
is a field if and only if n is a prime number. This result follows directly from Theorem 7.12 and
Theorem 7.16.

Polynomial Rings

Let R be a ring. A polynomial (in an indeterminate x) with coefficients in the ring R is an expression
f(x) of the form

a0 + a1x + a2x
2 + · · ·+ amxm,

where ak is an element of R for i = 0, 1, 2, . . . ,m. If ak = 0 then the term akx
k may be omitted when

writing down the expression defining the polynomial. (Thus for example the polynomial 1 + 0x + 2x2

may be written as 1 + 2x2.) The elements ak of R that determine the polynomial are referred to as
coefficients of the polynomial. If am 6= 0, and if the polynomial contains no terms of the form akx

k
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with k > m and ak 6= 0, then the non-negative integer m is referred to as the degree of the polynomial,
and the coefficient am is referred to as the leading coefficient of the polynomial.

A polynomial determines and is determined by an infinite sequence a0, a1, a2, . . . of elements of
the ring R, where ak is the coefficient of xk in the polynomial. An infinite sequence a0, a1, a2, . . . of
elements of R determines a polynomial a0 + a1x + a2x

2 + · · · if and only if the number of values of k
for which ak 6= 0 is finite. If the polynomial is non-zero then its degree is the largest value of m for
which am 6= 0.

One can add and multiply polynomials in the usual fashion. Thus if

f(x) = a0 + a1x + a2x
2 + · · ·+ amxm

and
g(x) = b0 + b1x + b2x

2 + · · ·+ bnxn

then
f(x) + g(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + · · ·+ (ap + bp)xp,

where p is the maximum of m and n, and where ai = 0 if i > m and bi = 0 if i > n. Also

f(x)g(x) = u0 + u1x + u2x
2 + · · ·+ um+nxm+n,

where, for each integer i between 0 and m + n, the coefficient ui of xi in f(x)g(x) is the sum of those
products ajbk for which 0 ≤ j ≤ m, 0 ≤ k ≤ n and j + k = i. Straightforward calculations show that
the set R[x] of polynomials with coefficients in a ring R is itself a ring with these operations of addition
and multiplication. The zero element of this ring is of course the polynomial whose coefficients are
all equal to zero.

We obtain in this way rings Z[x], Q[x], R[x] and C[x] of polynomials with coefficients in the rings
of integers, rational numbers, real numbers and complex numbers respectively.

We now consider various properties of polynomials whose coefficients belong to a field K (such as
the field of rational numbers, real numbers or complex mumbers).

Lemma 7.17. Let K be a field, and let f ∈ K[x] be a non-zero polynomial with coefficients in K.
Then, given any polynomial h ∈ K[x], there exist unique polynomials q and r in K[x] such that
h = fq + r and either r = 0 or else deg r < deg f .

Proof. If deg h < deg f then we may take q = 0 and r = h. In general we prove the existence of q and
r by induction on the degree deg h of h. Thus suppose that deg h ≥ deg f and that any polynomial of
degree less than deg h can be expressed in the required form. Now there is some element c of K for
which the polynomials h(x) and cf(x) have the same leading coefficient. Let h1(x) = h(x)− cxmf(x),
where m = deg h−deg f . Then either h1 = 0 or deg h1 < deg h. The inductive hypothesis then ensures
the existence of polynomials q1 and r such that h1 = fq1 + r and either r = 0 or else deg r < deg f .
But then h = fq + r, where q(x) = cxm + q1(x). We now verify the uniqueness of q and r. Suppose
that fq + r = fq + r, where q, r ∈ K[x] and either r = 0 or deg r < deg f . Then (q− q)f = r− r. But
deg((q− q)f) ≥ deg f whenever q 6= q, and deg(r− r) < deg f whenever r 6= r. Therefore the equality
(q − q)f = r − r cannot hold unless q = q and r = r. This proves the uniqueness of q and r.

Any polynomial f with coefficients in a field K generates an ideal (f) of the polynomial ring K[x]
consisting of all polynomials in K[x] that are divisible by f .

Lemma 7.18. Let K be a field, and let I be an ideal of the polynomial ring K[x]. Then there exists
f ∈ K[x] such that I = (f), where (f) denotes the ideal of K[x] generated by f .

10



Proof. If I = {0} then we can take f = 0. Otherwise choose f ∈ I such that f 6= 0 and the degree
of f does not exceed the degree of any non-zero polynomial in I. Then, for each h ∈ I, there exist
polynomials q and r in K[x] such that h = fq+r and either r = 0 or else deg r < deg f . (Lemma 7.17).
But r ∈ I, since r = h − fq and h and f both belong to I. The choice of f then ensures that r = 0
and h = qf . Thus I = (f).

Definition. Polynomials f1, f2, . . . , fk with coefficients in some field K. are said to be coprime if
there is no non-constant polynomial that divides all of them.

Theorem 7.19. Let f1, f2, . . . , fk be coprime polynomials with coefficients in some field K. Then
there exist polynomials g1, g2, . . . , gk with coefficients in K such that

f1(x)g1(x) + f2(x)g2(x) + · · ·+ fk(x)gk(x) = 1.

Proof. Let I be the ideal in K[x] generated by f1, f2, . . . , fk. It follows from Lemma 7.18 that the
ideal I is generated by some polynomial d. Then d divides all of f1, f2, . . . , fk and is therefore a
constant polynomial, since these polynomials are coprime. It follows that I = K[x]. The existence of
the required polynomials g1, g2, . . . , gk then follows using Lemma 7.10.

Definition. A non-constant polynomial f with coefficients in a ring K is said to be irreducible over
K if there does not exist any non-constant polynomial that divides f whose degree is less than that
of f .

Proposition 7.20. Let f , g and h be polynomials with coefficients in some field K. Suppose that f
is irreducible over K and that f divides the product gh. Then either f divides g or else f divides h.

Proof. Suppose that f does not divide g. We must show that f divides h. Now the only polynomials
that divide f are constant polynomials and multiples of f . No multiple of f divides g. Therefore the
only polynomials that divide both f and g are constant polynomials. Thus f and g are coprime. It
follows from Proposition 7.19 that there exist polynomials u and v with coefficients in K such that
1 = ug + vf . Then h = ugh + vfh. But f divides ugh + vfh, since f divides gh. It follows that f
divides h, as required.

8 Introduction to the Theory of Numbers

Greatest Common Divisors and the Euclidean Algorithm

Definition. Let x1, x2, . . . , xk be integers that are not all zero. A positive integer d is said to be the
greatest common divisor (or highest common factor) of x1, x2, . . . , xk if the following conditions are
satisfied:

• d divides each of x1, x2, . . . , xk;

• if e is any positive integer that divides each of x1, x2, . . . , xk then e divides d.

Note that a positive integer d is the greatest common divisor of integers x and y if and only if it is
the greatest common divisor of |x| and |y|. This follows from the fact that a positive integer divides
an integer x if and only if it divides |x|. If y = 0 then the greatest common divisor of x and y is
clearly |x|.
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We now describe a well-known algorithm, known as the Euclidean algorithm for computing the
highest common divisor of two positive integers. The case where the two numbers are equal is of
course trivial.

Let a0 and a1 be positive integers, where a0 > a1. We wish to compute the greatest common
divisor of a0 and a1. If a1 divides a0 then a1 is the greatest common divisor. Otherwise there exist
positive integers q1 and a2 such that 0 < a2 < a1 and a0 = q1a1 + a2. If a2 divides a1 then a2

divides both a0 and a1, and one can easily verify that a2 is the greatest common divisor of a0 and
a1. Otherwise there exist positive integers q2 and a3 such that 0 < a3 < a2 and a1 = q2a2 + a3.
Continuing in this fashion, we construct positive integers q1, q2, . . . , qn−1 and a2, a3, . . . , an such that
0 < ai < ai−1 for all i, ai−2 = qi−1ai−1 + ai whenever 2 ≤ i < n, and an−1 = qnan. Note that the
process of constructing the integers a2, a3, . . . , an must terminate after a finite number of steps, since
0 < an < an−1 < · · · < a2 < a1 < a0. Let d = an. We claim that d is the greatest common divisor of
a0 and a1.

Now d divides both an−1 and an, since an−1 = qnan for some positive integer qn. Also the identity
ai−2 = qi−1ai−1 + ai ensures that if d divides ai−1 and ai for some i then d divides ai−2. Repeated
use of this result shows that d divides ai for all i. In particular d divides a0 and a1.

Now let e be any positive integer which divides both a0 and a1. Successive applications of the
identity ai = ai−2 − qi−1ai−1 ensure that e divides a2, a3, . . . , an. In particular e must divide d. We
conclude therefore that d is the greatest common divisor of a0 and a1.

Finally we note that, for each integer i between 0 and n there exist integers ui and vi such that
ai = uia0 + via1. We take u0 = 1, v0 = 0, u1 = 0 and v1 = 1. When i > 1, ui and vi are determined
from ui−2, vi−2 and ui−1 and vi−1 by the formulae ui = uu−2 − qi−1uu−1 and vi = vu−2 − qi−1vu−1,
since ai = ai−2 − qi−1ai−1. In particular, we see that d = ua0 + va1, where u = un and v = vn. The
Euclidean algorithm thus guarantees that if d is the greatest common divisor of two integers x and y,
where x and y are not both zero, then there exist integers u and v such that d = ux + vy.

Example. We use the Euclidean algorithm to calculate the greatest common divisor of the numbers
272 and 119. Now

272 = 2× 119 + 34,

119 = 3× 34 + 17,

34 = 2× 17.

It follows that 17 is the greatest common divisor of 272 and 119. We can now find integers u and v
such that 272u + 119v = 17.

17 = 119− 3× 34
= 119− 3× (272− 2× 119)
= 7× 119− 3× 272.

Thus u = −3 and v = 7.

Proposition 8.1. Let x1, x2, . . . , xk be integers, not all zero, and let d be the greatest common divisor
of x1, x2, . . . , xk. Then there exist integers u1, u2, . . . , uk such that

d = u1x1 + u2x2 + · · ·+ ukxk.

Proof. We recall that any ideal of the ring Z of integers is of the form nZ for some non-negative
integer n, where nZ denotes the set of integer multiples of n (Proposition 7.4). Using the fact that
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an integer n divides an integer x if and only if x ∈ nZ, we see that a positive integer e divides each
of x1, x2, . . . , xk if and only if each of x1, x2, . . . , xk belongs to the ideal eZ generated by e.

Let I be the ideal of Z generated by x1, x2, . . . , xk. Then I = dZ for some positive integer d.
We claim that d is the greatest common divisor of x1, x2, . . . , xk. Now I is the set of multiples of d,
and therefore d divides each of x1, x2, . . . , xk. Suppose that e is a positive integer that divides each
of x1, x2, . . . , xk. Then each of x1, x2, . . . , xk belongs to the ideal eZ. But the ideal I generated by
x1, x2, . . . , xk is contained in every ideal of Z to which x1, x2, . . . , xk belong. Thus I ⊂ eZ. It follows
that dZ ⊂ eZ, and thus d ∈ eZ. But then e divides d. It follows from the definition of the greatest
common divisor that d is the greatest common divisor of x1, x2, . . . , xk.

It follows from Lemma 7.10 that the ideal generated by x1, x2, . . . , xk coincides with the set of all
integers that can be expressed in the form u1x1 +u2x2 + · · ·+ukxk for some integers u1, u2, . . . , uk. In
particular the greatest common divisor d of x1, x2, . . . , xk can be expressed as a sum of the required
form.

The Fundamental Theorem of Arithmetic

Proposition 8.2. Let p be a prime number, and let r and s be integers. Suppose that p divides rs.
Then either p divides r or else p divides s.

Proof. Suppose that p does not divide r. We must show that p divides s. Now the greatest common
divisor of p and r must be 1 since p is prime and p does not divide r. It follows from Proposition 8.1
that there exist integers u and v such that 1 = ur+vp. Then s = urs+vps. But urs+vps is divisible
by p, since rs is divisible by p. It follows that s is divisible by p, as required.

Corollary 8.3. Let p be a prime number, and let r1, r2, . . . , rn be integers. Suppose that p divides
the product r1r2 · · · rn. Then p divides ri for some i between 1 and n.

Proof. The result follows easily by induction on n. The result has been verified when n = 2 (Propo-
sition 8.2). Suppose that the result holds for all products of less than n integers and that the prime
number p divides r1r2 · · · rn. Then p divides arn, where a = r1r2 · · · rn−1. It follows from Proposi-
tion 8.2 that either p divides rn of else p divides a, in which case the induction hypothesis ensures
that p divides ri for some i between 1 and n− 1. The result follows.

Theorem 8.4. (The Fundamental Theorem of Arithmetic) Any integer greater than one is a prime
number or can be expressed as a product of a finite number of prime numbers. The list of prime
numbers whose product is a given integer is uniquely determined up to the order in which the factors
are listed.

Proof. Let A be the set of all integers greater than one that are not prime numbers and cannot be
expressed as products of prime numbers. We must show that A is the empty set. Suppose that A
were not empty. Then there would exist an integer n with the property that n is the smallest integer
belonging to A. Then n would not be a prime number, and thus n = rs for some positive integers
r and s satisfying 1 < r < n and 1 < s < n. Since r and s would be less than n they could not
belong to the set A and therefore r and s would either be prime numbers or could be expressed as
products of a finite number of prime numbers. It follows that n could be expressed as a product of
a finite number of prime numbers, contradicting the requirement that n be an element of A. This
contradiction shows that the set A must indeed be the empty set. Thus every integer greater than
one that is not a prime number can be factored as a product of a finite number of prime numbers.
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In order to show that, when any integer n greater than one is written as a product of primes, that
list of primes is determined up to the order in which the primes are specified, it suffices to show that,
when arranged in increasing order, the list of prime factors of n is uniquely determined. We show this
by induction on n. The result clearly holds when n = 2, and indeed when n is any prime number.

Suppose then that all positive integers greater than one but less than some integer n have the
property that, when factored as a product of prime numbers, the list of those prime numbers, when
written in ascending order, is uniquely determined. We show that if n is then factored as a product of
primes then the list of those prime numbers, when written in ascending order, is uniquely determined.
The result is trivial when n is prime. Suppose then that n is not prime and that n = p1p2, . . . , pr =
q1q2 . . . , qs, where p1, p2, . . . , pr and q1, q2, . . . , qs are prime numbers, p1 ≤ p2 ≤ · · · ≤ pr and q1 ≤
q2 ≤ · · · ≤ qs. We must show that r = s and pi = qi for i = 1, 2, . . . , r. Now if p is a prime number
which divides n then p must divide pi for some i between 1 and r (Corollary 8.3), and therefore p = pi

for some integer i between 1 and s. It follows from this that {pi : i = 1, 2, . . . , r} is the set of primes
dividing n. Similarly {qi : i = 1, 2, . . . , s} must be the set of prime numbers dividing n. It follows
from this that p1 = q1, since both p1 and q1 must be equal to the smallest prime number that divides
n. Let m = n/p1. Then m is an integer greater than one but less than n. Our assumption ensures
that, when factored as a product of prime numbers, the list of those prime numbers, when written in
ascending order, is uniquely determined. Now m = p2, . . . , pr = q2 . . . , qs. It follows that r = s and
that pi = qi for i = 2, 3, . . . , r. Thus the prime factors p1, p2, . . . , pr, when written in ascending order,
are uniquely determined.

It now follows by induction on n that, given any factorization of a number n greater than one as
a product of prime numbers, the list of those prime numbers, when specified in ascending order, is
uniquely determined, as required.

The Theorems of Fermat, Wilson and Euler

Let p be a prime number. The ring Zp of congruence classes of integers modulo p is then a field (see
Theorem 7.12 Theorem 7.16). It follows that the set Z∗p of non-zero congruence classes of integers
modulo p is a group with respect to the operation of multiplication. This result can be used to prove
a couple of theorems of number theory that are attributed to Pierre de Fermat (1601–1665) and John
Wilson (1741–1793).

Theorem 8.5. (Fermat’s Little Theorem) Let p be a prime number. Then xp ≡ x mod p for all
integers x.

Proof. For each integer x let [x] denote the congruence class of x modulo p. The group Z∗p of non-zero
congruence classes of integers modulo p is a group of order p− 1. It follows from Lagrange’s Theorem
that the order of every element of Z∗p divides p − 1, and thus [x]p−1 = [1] whenever [x] 6= [0]. But
[x]p−1 = [xp−1]. It follows that xp−1 ≡ 1 mod p for all integers x that are not divisible by p.

Let x be an integer. If x is divisible by p then so is xp, and therefore xp ≡ x mod p (since
both xp and x are congruent to zero modulo p). If x is not divisible by p then we have shown that
xp−1 ≡ 1 mod p. It follows that xp ≡ x mod p, as required.

Theorem 8.6. (Wilson) Let p be an prime number. Then (p− 1)! ≡ −1 mod p.

Proof. The result is true when p = 2. Suppose then that p is an odd prime. Let Zp be the ring
of congruence classes of integers modulo p, and let Z∗p be the group of non-zero elements of Zp with
the operation of multiplication. For each integer x let [x] denote the congruence class of x modulo p.
Suppose that α ∈ Z∗p satisfies α2 = [1]. Then (α − [1])(α + [1]) = [0]. But then either α − [1] = [0],
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in which case α = [1], or else α + [1] = [0], in which case α = −[1], since the ring Zp is an integral
domain. Now an element of Z∗p is represented by a unique integer x satisfying 1 ≤ x ≤ p− 1, and the
elements [1] and −[1] are represented by 1 and p−1 respectively. Thus if x is an integer which satisfies
1 < x < p − 1 then [x]2 6= [1] and hence there exists exactly one integer y satisfying 1 < y < p − 1
which is not equal to x and which satisfies [y] = [x]−1. Therefore the integers greater than 1 and less
than p − 1 can be listed as x1, y1, x2, y2, . . . , xm, ym, where m = 1

2(p − 3), so that [xj ]−1 = [yj ] for
j = 1, 2, . . . ,m. Then [xj ][yj ] = [1] for j = 1, 2, . . . ,m. It follows that

[(p− 1)!] = [1][2] · · · [p− 1] = [1][p− 1][x1][y1][x2][y2] · · · [xm][ym] = [1][p− 1] = [−1],

and thus (p− 1)! ≡ −1 mod p, as required.

(A proof of Wilson’s Theorem was given by Lagrange in 1773.)
Fermat’s Little Theorem was generalized by Euler (1707–1783). Two integers m and n are said

to be coprime if there is no prime number that divides both m and n. (Thus m and n are coprime if
and only if the greatest common divisor of m and n is 1.) If m and n are coprime then we say that
n is coprime to m (or that n is relatively prime to m. For each positive integer m, let ϕ(m) denote
the number of positive integers less than m that are coprime to m. If p is a prime number then all
positive integers less than p are coprime to p. It follows that ϕ(p) = p− 1 for all prime numbers p.

Theorem 8.7. (Euler) Let m be a positive integer, and let x be a positive integer that is coprime
to m. Then xϕ(m) ≡ 1 mod m, where ϕ(m) is the number of positive integers less than m that are
coprime to m.

Proof. We say that the congruence class [x] of an integer x modulo m is invertible if [x][u] = [1] for
some [u] ∈ Zm. Let us denote by G the set of all invertible elements of the ring Zm. We claim that
G is a group with respect to the operation of multiplication. Let [x] and [y] be invertible congruence
classes. Then there exist congruence classes [u] and [v] in Zm such that [x][u] = [1] and [y][v] = [1].
Then [xy][uv] = [x][y][u][v] = [x][u][y][v] = [1][1] = [1]. It follows that the product [xy] of two
invertible congruence classes [x] and [y] is invertible. Thus multiplication of invertible congruence
classes is a binary operation on G. This operation is associative, and [1] is the identity element of G.
Moreover if [x] is any congruence class of G then the inverse of [x] in G exists and is the congruence
class [u] which satisfies [x][u] = [1]. Thus G is a group with respect to multiplication of congruence
classes.

Let x be an integer. We claim that [x] ∈ G if and only if x is coprime to m. Suppose that [x] ∈ G.
Then there exists an integer u such that [x][u] = [1] in Zm. Then 1 − xu is divisible by m, and
therefore 1 = xu+mv for some integer v. It follows from this that x is coprime to m (since any prime
number dividing both x and m would also have to divide 1).

Conversely let x be some integer that is coprime to m. Then 1 is the greatest common divisor of
x and m. It follows from Proposition 8.1 that there exist integers u and v such that 1 = xu + mv.
But then [1] = [xu + mv] = [x][u] + [m][v] = [x][u], since [m] = [0]. Thus [x] is invertible.

We have shown that the group G consists of the congruence classes of those integers x that are
coprime to m. Now for each congruence class in Zm there is a unique non-negative integer less than
m that belongs to the congruence class. It follows that the order of the group G is equal to the
number ϕ(m) of positive integers less than m that are coprime to m (since each element of G is the
congruence class of exactly one such integer). It follows from Lagrange’s Theorem that [x]ϕ(m) = [1]
for each [x] ∈ G. Thus xϕ(m) ≡ 1 mod m for all integers x that are coprime to m, as required.
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Problems

1. Calculate the Cayley table for the group of non-zero elements of Z7 with respect to multiplica-
tion, and show that this group is a cyclic group.

2. What are the zero divisors in Z12?

3. An element x of a unital ring R is said to be invertible if xy = 1 = yx for some y ∈ R.

(a) Let x, y and z be elements of a unital ring R. Suppose that xy = 1 = yx and xz = 1 = zx.
Prove that y = z.

(b) Show that the set of invertible elements of a unital ring R is a group with respect to the
operation of multiplication.

(c) Let x be an element of a unital ring R. Suppose that xn = 0 for some positive integer n
(where xn is defined for all positive integers n so that x1 = x and xn = xn−1x for all n > 1).
Prove that 1− x is invertible.

4. An element x of a ring R is said to be an idempotent if x2 = x (where x2 = xx).

(a) Prove that an idempotent x satisfies xn = x for all n > 0,

(b) What are the idempotents of the ring Z6 of congruence classes of integers modulo 6?

(c) Prove that the only idempotents in an integral domain are 0 and 1.

(d) Let x be an idempotent in a unital ring. Prove that 1− x is also an idempotent.

(e) Let x and y be idempotents in a unital ring R that satisfy xy = yx. Prove that xy and
x + y − xy are also idempotents.

(f) Let f be a polynomial with coefficients in a unital commutative ring R. Prove that f(x) =
f(0)(1 − x) + f(1)x for any idempotent x of R. (Given f ∈ R[t], the value f(x) of f at x is
calculated by substituting x for the indeterminant t in the expression f(t). Thus if f(t) = 1+t+t2

then f(x) = 1 + x + x2 = 1 + x + x = 1 + 2.x for any idempotent x.)

5. Use the Euclidean algorithm to calculate the greatest common divisor d of the numbers 391 and
276, and find integers u and v satisfying 391u + 276v = d.

6. Let q be a quaternion q, given by q = a + xi + yj + xk. The conjugate q of the quaternion q is
defined by q = a− xi− yj − xk, and the norm |q| of q is defined by |q|2 = a2 + x2 + y2 + z2.

(a) Verify that qq = qq = |q|2 for all quaternions q.

(b) Show that a quaternion q satisfies q2 = −1 if and only if q = xi + yj + zk for some real
numbers x, y and z satisfying x2 + y2 + z2 = 1.

(c) Show that if a quaternion q satisfies q2 = −1 and if ϕ(s) = cos s + (sin s)q for all real
numbers s then ϕ(s + t) = ϕ(s)ϕ(t) for all real numbers s and t.
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