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6 Groups

A binary operation ∗ on a set G associates to elements x and y of G a third element x ∗ y of G. For
example, addition and multiplication are binary operations of the set of all integers.

Definition. A group G consists of a set G together with a binary operation ∗ for which the following
properties are satisfied:

• (x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements x, y, and z of G (the Associative Law);

• there exists an element e of G (known as the identity element of G) such that e ∗ x = x = x ∗ e,
for all elements x of G;

• for each element x of G there exists an element x′ of G (known as the inverse of x) such that
x ∗ x′ = e = x′ ∗ x (where e is the identity element of G).

The order |G| of a finite group G is the number of elements of G.
A group G is Abelian (or commutative) if x ∗ y = y ∗ x for all elements x and y of G.

One usually adopts multiplicative notation for groups, where the product x ∗ y of two elements x
and y of a group G is denoted by xy. The inverse of an element x of G is then denoted by x−1. The
identity element is usually denoted by e (or by eG when it is necessary to specify explicitly the group
to which it belongs). Sometimes the identity element is denoted by 1. Thus, when multiplicative
notation is adopted, the group axioms are written as follows:-

• (xy)z = x(yz) for all elements x, y, and z of G (the Associative Law);

• there exists an element e of G (known as the identity element of G) such that ex = x = xe, for
all elements x of G;

• for each element x of G there exists an element x−1 of G (known as the inverse of x) such that
xx−1 = e = x−1x (where e is the identity element of G).

The group G is said to be Abelian (or commutative) if xy = yx for all elements x and y of G.
It is sometimes convenient or customary to use additive notation for certain groups. Here the

group operation is denoted by +, the identity element of the group is denoted by 0, the inverse of an
element x of the group is denoted by −x. By convention, additive notation is only used for Abelian
groups. When expressed in additive notation the axioms for a Abelian group are as follows:

• x+ y = y + x for all elements x and y of G (the Commutative Law);
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• (x+ y) + z = x+ (y + z) for all elements x, y, and z of G (the Associative Law);

• there exists an element 0 of G (known as the identity element or zero element of G) such that
0 + x = x = x+ 0, for all elements x of G;

• for each element x of G there exists an element −x of G (known as the inverse of x) such that
x+ (−x) = 0 = (−x) + x (where 0 is the identity element of G).

We shall usually employ multiplicative notation when discussing general properties of groups.
Additive notation will be employed for certain groups (such as the set of integers with the operation
of addition) where this notation is the natural one to use.

Examples of groups

Example. The set of all integers is an Abelian (or commutative) group under the operation of
addition. (Additive notation is of course normally employed for this group.)

Example. The set of all rational numbers is an Abelian group under the operation of addition.
(Additive notation is of course normally employed for this group.)

Example. The set of all real numbers is an Abelian group under the operation of addition. (Additive
notation is of course normally employed for this group.)

Example. The set of all complex numbers is an Abelian group under the operation of addition.
(Additive notation is of course normally employed for this group.)

Example. The set of all 2×2 matrices is an Abelian group under the operation of addition. (Additive
notation is of course normally employed for this group.)

Example. The set of all (2-dimensional) vectors is an Abelian group under the operation of addi-
tion. (Addition of vectors is defined through the ‘Parallelogram Law’. Additive notation is of course
normally employed for this group.)

Example. The set of all non-zero rational numbers is an Abelian group under the operation of
multiplication.

Example. The set of all non-zero real numbers is an Abelian group under the operation of multipli-
cation.

Example. The set of all non-zero complex numbers is an Abelian group under the operation of
multiplication.

Example. The set of all non-zero complex numbers is an Abelian group under the operation of
multiplication.

Example. Let n be a positive integer. The set Zn of congruence classes of integers modulo n is a
group with respect to the operation of addition. (Additive notation is of course normally employed
for this group.)

Example. It can be shown that the set Z∗n of non-zero congruence classes modulo n is a group with
respect to the operation of multiplication if and only if n is a prime number.
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Example. The set of all 2×2 matrices
(
a b
c d

)
with real (or complex) entries satisfying ad− bc 6= 0

is a group under the operation of matrix multiplication. This group is not Abelian.

Example. The set of all 2×2 matrices
(
a b
c d

)
with real (or complex) entries satisfying ad− bc = 1

is a group under the operation of matrix multiplication. This group is not Abelian.

Example. The set of all transformations of the plane that are of the form

(x, y) 7→ (ax+ by, cx+ dy)

with ad − bc 6= 0 is a group with respect to the operation of composition of transformations. This
group includes all rotations about the origin, and all reflections in lines passing through the origin. It
is not Abelian.

Example. Consider a regular n-sided polygon centered at the origin. The symmetries of this polygon
(i.e., length- and angle-preserving transformations of the plane that map this polygon onto itself) are
rotations about the origin through an integer multiple of 2π/n radians, and reflections in the n axes
of symmetry of the polygon. The symmetries of the polygon constitute a group of order 2n. This
group is referred to as the dihedral group of order 2n.

Example. The symmetries of a rectangle that is not a square constitute a group of order 4. This
group consists of the identity transformation, reflection in the axis of symmetry joining the midpoints
of the two shorter sides, reflection in the axis of symmetry joining the two longer sides, and rotation
though an angle of π radians (180◦). If I denotes the identity transformation, A and B denote
the reflections in the two axes of symmetry, and C denotes the rotation through π radians then
A2 = B2 = C2 = I, AB = BA = C, AC = CA = B and BC = CB = A. This group is Abelian: it is
often referred to as the Klein 4-group (or, in German, Kleinsche Viergruppe).

Example. The group of symmetries of a regular tetrahedron in 3-dimensional space constitute a
group. Any permutation of the vertices of the tetrahedron can be effected by an appropriate symmetry
of the tetrahedron. Moreover each symmetry is completely determined by the permutation of the
vertices which it induces. Therefore the group of symmetries of a regular tetrahedron is of order 24,
since there are 24 permutations of a set with four elements. It turns out that this group is non-Abelian.

Example. The set of all permutations of a set is a group with respect to the operation of composition.
For each positive integer n the group of all permutations of the set {1, 2, . . . , n} is a group of order n!,
referred to as the symmetric group on n letters, and is usually denoted by Sn (or by Σn).

Example. The set of all even permutations of a finite set is a group with respect to the operation
of composition. For each integer n greater than one, the group of all even permutations of the set
{1, 2, . . . , n} is a group of order n!/2, referred to as the alternating group on n letters, and is usually
denoted by An.

Cayley Tables

The algebraic structure of a finite group can be exhibited using a Cayley table, provided that the
number of elements in the group is sufficiently small. The rows and columns of the Cayley table are
labelled by the elements of the group, and each entry in the table is the product xy of the element x
labelling its row with the element y labelling its column.
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Example. Let D6 be the group of symmetries of an equilateral triangle with vertices labelled A,
B and C in anticlockwise order. The elements of D6 consist of the identity transformation I, an
anticlockwise rotation R about the centre through an angle of 2π/3 radians (i.e., 120◦), a clockwise
rotation S about the centre through an angle of 2π/3 radians, and reflections U, V and W in the
lines joining the vertices A, B and C respectively to the midpoints of the opposite edges. Calculating
the compositions of these rotations, we obtain the following Cayley table:

I R S U V W

I I R S U V W
R R S I W U V
S S I R V W U
U U V W I R S
V V W U S I R
W W U V R S I .

Thus, for example, VU = S (i.e., the reflection U followed by the reflection V is the rotation S), and
UV = R.

Note that each element of the group occurs exactly once in each row and in each column in the
main body of the table (excluding the labels at the left of each row and at the head of each column),
This is a general property of Cayley tables of groups which can be proved easily from the group
axioms.

Elementary Properties of Groups

In what follows, we describe basic properties of a group G, using multiplicative notation and denoting
the identity element of the group by the letter e.

Lemma 6.1. A group G has exactly one identity element e satisfying ex = x = xe for all x ∈ G.

Proof. Suppose that f is an element of G with the property that fx = x for all elements x of G.
Then in particular f = fe = e. Similarly one can show that e is the only element of G satisfying
xe = x for all elements x of G.

Lemma 6.2. An element x of a group G has exactly one inverse x−1.

Proof. We know from the axioms that the group G contains at least one element x−1 which satisfies
xx−1 = e and x−1x = e. If z is any element of G which satisfies xz = e then z = ez = (x−1x)z =
x−1(xz) = x−1e = x−1. Similarly if w is any element of G which satisfies wx = e then w = x−1. In
particular we conclude that the inverse x−1 of x is uniquely determined, as required.

Lemma 6.3. Let x and y be elements of a group G. Then (xy)−1 = y−1x−1.

Proof. It follows from the group axioms that

(xy)(y−1x−1) = x(y(y−1x−1)) = x((yy−1)x−1) = x(ex−1) = xx−1 = e.

Similarly (y−1x−1)(xy) = e, and thus y−1x−1 is the inverse of xy, as required.
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Note in particular that (x−1)−1 = x for all elements x of a group G, since x has the properties
that characterize the inverse of the inverse x−1 of x.

Given an element x of a group G, we define xn for each positive integer n by the requirement
that x1 = x and xn = xn−1x for all n > 1. (This is an example of a so-called inductive definition,
where some quantity u(n) is defined for all positive integers n by specifying u(1) and also the rule
that determines u(n) in terms of u(n − 1) for each n > 1.) We also define x0 = e, where e is the
identity element of the group, and we define x−n to be the inverse of xn for all positive integers n.

Theorem 6.4. Let x be an element of a group G. Then xm+n = xmxn and xmn = (xm)n for all
integers m and n.

Proof. The relevant definitions ensure that xm+n = xmxn whenever m ≥ 0 and n = 0 or 1. Suppose
that xm+k = xmxk for some positive integer k. Then

xm+k+1 = xm+kx = (xmxk)x = xm(xkx) = xmxk+1.

It therefore follows by induction on n that xm+n = xmxn for non-negative integers m and n.
Let p and q be non-negative integers. Then

x−p−q = (xp+q)−1 = (xqxp)−1 = (xp)−1(xq)−1 = x−px−q

We deduce from this that xm+n = xmxn when m and n are both negative.
Now let p and q be non-negative integers with p ≤ q. Then xq = xpxq−p and xq = xq−pxp. On

multiplying these identities by x−p on the left and right respectively, we deduce that xq−p = xqx−p

and xq−p = x−pxq. On taking inverses, we see also that xp−q = xpx−q and xp−q = x−qxp. We can
apply these formulae either with p = |m| and q = |n| (in the case when |m| ≤ |n|), or with p = |n| and
q = |m| (in the case when |m| ≥ |n|), to deduce that xm+n = xmxn whenever m and n have opposite
signs. Combining this result with the corresponding results when m and n have the same sign, we
deduce that xm+n = xmxn for all integers m and n.

The identity xmn = (xm)n follows immediately from the definitions when n = 0, 1 or −1. If
xmk = (xm)k for some integer k then xm(k+1) = xmk+m = xmkxm = (xm)kxm = (xm)k+1. It follows
by induction on n that xmn = (xm)n for all positive integers n. The result when n is a negative integer
then follows on taking inverses. Thus xmn = (xm)n for all integers m and n, as required.

If additive notation is employed for an Abelian group then the notation ‘xn’ is replaced by ‘nx’ for
all integers n and elements x of the group. The analogue of Theorem 6.4 then states that (m+n)x =
mx+ nx and (mn)x = m(n(x)) for all integers m and n.

The General Associative Law

Let x1, x2, . . . , xn be elements of a group G. We define the product x1x2 · · ·xn as follows:-

x1x2x3 = (x1x2)x3

x1x2x3x4 = (x1x2x3)x4 = ((x1x2)x3)x4

x1x2x3x4x5 = (x1x2x3x4)x5 = (((x1x2)x3)x4)x5

...
x1x2x3 · · ·xn = (x1x2 · · ·xn−1)xn = (· · · ((x1x2)x3) · · ·xn−1)xn.
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(Thus if pj = x1, x2, . . . , xj for j = 1, 2, . . . , n then pj = pj−1xj for each j > 1.)
Now an arbitrary product of n elements of G is determined by an expression involving n elements

of G together with equal numbers of left and right parentheses that determine the order in which
the product is evaluated. The General Associative Law ensures that the value of such a product is
determined only by the order in which the elements of the group occur within that product. Thus
a product of n elements of G has the value x1x2 · · ·xn, where x1, x2, . . . , xn are the elements to be
multiplied, listed in the order in which they occur in the expression defining the product.

Example. Given four elements x1, x2, x3 and x4 of a group, the products

((x1x2)x3)x4, (x1x2)(x3x4), (x1(x2x3))x4, x1((x2x3)x4), x1(x2(x3x4))

all have the same value. (Note that x1x2x3x4 is by definition the value of the first of these expressions.)

The General Associative Law for products of four or more elements of a group can be verified by
induction on the number on the number of elements involved.

Consider a product of n elements of the group G, where n > 3. Let these elements be x1, x2, . . . , xn

when listed in the order in which they occur in the expression for the product. Suppose also that it is
known that the General Associative Law holds for all products involving fewer than n elements (i.e.,
any two products with fewer than n elements have the same value whenever the same elements of G
occur in both products in the same order). We must show that the value of the product is x1x2 · · ·xn,
where

x1x2 · · ·xn = (. . . (((x1x2)x3)x4) · · ·)xn

Now the first step in evaluating the product will involve multiplying some element xr with the suc-
ceeding element xr+1. The subsequent steps will then evaluate a product of n − 1 elements, namely
the elements xi for 1 ≤ i < r, the element xrxr+1, and the elements xi for r+ 1 < i ≤ n. The validity
of the General Associative Law for products of fewer than n elements then ensures that the value p
of the product is given by

p =


(x1x2)x3 · · ·xn if r = 1;
x1(x2x3)x4 · · ·xn if r = 2;
x1x2(x3x4)x5 · · ·xn if r = 3 (and n > 4);
...
x1x2 · · ·xn−2(xn−1xn) if r = n− 1.

Also the General Associativity Law for products of fewer than n elements ensures that if r < n − 1
then

x1x2 · · ·xr−1(xrxr+1) = x1x2 · · ·xr+1

and thus p = x1x2 · · ·xn. Thus in order to verify the General Associative Law for products of n
elements it only remains to verify that

x1x2 · · ·xn−2(xn−1xn) = x1x2 · · ·xn.

The case when n = 3 is the Associative Law for products of three elements. For n > 3 let y be the
product x1x2, · · ·xn−2 of the elements x1, x2, . . . , xn−2 (with y = x1x2 in the case when n = 4). Then

x1x2 · · ·xn−2(xn−1xn) = y(xn−1xn) = (yxn−1)xn = (x1x2 · · ·xn−1)xn

= x1x2 · · ·xn.
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We have thus shown that if the General Associative Law holds for all products involving fewer than
n elements of the group G, then it holds for all products involving n elements of G. The validity of
the General Associative Law therefore follows by induction on the number of elements occurring in
the product in question.

Note that the only group axiom used in verifying the General Associative Law is the Associative
Law for products of three elements. It follows from this that the General Associative Law holds for
any binary operation on a set that satisfies the Associative Law for products of three elements. (A
set with a binary operation satisfying the Associative Law is referred to as a semigroup—the General
Associative Law holds in all semigroups.)

Subgroups

Definition. Let G be a group, and let H be a subset of G. We say that H is a subgroup of G if the
following conditions are satisfied:

• the identity element of G is an element of H;

• the product of any two elements of H is itself an element of H;

• the inverse of any element of H is itself an element of H.

Example. The group of integers is a subgroup of the groups of rational numbers, real numbers and
complex numbers under addition.

Example. The group of non-zero rational numbers is a subgroup of the groups of non-zero real
numbers and non-zero complex numbers under multiplication.

Example. The group of all 2×2 matrices of real numbers with determinant equal to 1 is a subgroup
of the group of all 2× 2 matrices of real numbers with non-zero determinant under the operation of
matrix multiplication.

Example. Consider the collection of all 2 × 2 matrices that are of the form
(

cosα − sinα
sinα cosα

)
for

some real number α. This is a subgroup of the group of all 2× 2 matrices with non-zero determinant
under matrix multiplication. Indeed the above matrix is the identity matrix when α = 0. Also(

cosα − sinα
sinα cosα

)(
cosβ − sinβ
sinβ cosβ

)
=
(

cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)
(as can be seen from the well-known formulae giving sin(α+ β) and cos(α+ β) in terms of α and β),
and (

cosα − sinα
sinα cosα

)−1

=
(

cos(−α) − sin(−α)
sin(−α) cos(−α)

)
for all real numbers α and β. Thus the definition of a subgroup is satisfied.

The corresponding geometrical result states that the set of all rotations of the plane about the
origin is a subgroup of the group of all linear transformations of the plane that send a point (x, y) to
(ax+ by, cx+ dy) for some real numbers a, b, c and d satisfying ad− bc 6= 0.

Example. The group consisting of the identity permutation and the 3-cycles (a b c) and (a c b) is a
subgroup of the group of all permutations of a set {a, b, c} with three elements.
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Example. The group consisting of the identity permutation and the permutations (a b)◦ (c d), (a c)◦
(b d) and (a d) ◦ (b c) is a subgroup of the group of all permutations of a set {a, b, c, d} with four
elements.

Example. The group of all rotations about the origin through some integer multiple of 2π/n radians
is a subgroup of the dihedral group consisting of all symmetries of a regular n-sided polygon centred
at the origin.

Example. Let g be an element of a group G, and let C(g) = {x ∈ G : xg = gx}. The identity
element e of G belongs to C(g), since the group axioms ensure that eg = g = ge. If x and y are
elements of C(g) then

(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy)

and therefore xy is an element of C(g). Also x−1 is an element of C(g) for all elements x of C(g), since
x−1g = x−1(gx)x−1 = x−1(xg)x−1 = gx−1. We conclude that C(g) is a subgroup of the group G.
The subgroup C(g) is referred to as the centralizer of g.

Example. Let G be a group, and let Z(G) = {x ∈ G : xg = gx for all g ∈ G}. Note that an
element x of G belongs to Z(G) if and only if it belongs to the centralizer C(g) of each element g of
G. It follows easily from this that Z(G) is a subgroup of G. This subgroup is referred to as the centre
of the group G.

Lemma 6.5. Let g be an element of a group G. Then the set of all elements of G that are of the
form gn for some integer n is a subgroup of G.

Proof. Let H = {gn : n ∈ Z}. Then the identity element belongs to H, since it is equal to g0. The
product of two elements of H is itself an element of H, since gmgn = gm+n for all integers m and n
(see Theorem 6.4). Also the inverse of an element of H is itself an element of H since (gn)−1 = g−n

for all integers n. Thus H is a subgroup of G, as required.

Definition. Let g be an element of a group G. The order of g is the smallest positive integer n for
which gn = e. The subgroup generated by g is the subgroup consisting of all elements of G that are
of the form gn for some integer n.

Lemma 6.6. Let H and K be subgroups of a group G. Then H ∩K is also a subgroup of G.

Proof. The identity element of G belongs to H ∩K since it belongs to the subgroups H and K. If
x and y are elements of H ∩K then xy is an element of H (since x and y are elements of H), and xy
is an element of K, and therefore xy is an element of H ∩K. Also the inverse x−1 of an element x of
H ∩K belongs to H and to K and thus belongs to H ∩K, as required.

More generally, the intersection of any collection of subgroups of a given group is itself a subgroup
of that group.

Cyclic Groups

Definition. A group G is said to be cyclic, with generator g, if every element of G is of the form gn

for some integer n.

8



Example. The group Z of integers under addition is a cyclic group, generated by 1.

Example. Let n be a positive integer. The set Zn of congruence classes of integers modulo n is a
cyclic group of order n with respect to the operation of addition.

Example. The group of all rotations of the plane about the origin through an integer multiple of
2π/n radians is a cyclic group of order n for all integers n. This group is generated by an anticlockwise
rotation through an angle of 2π/n radians.

Lemma 6.7. Let G be a finite cyclic group with generator g, and let j and k be integers. Then
gj = gk if and only if j − k is divisible by the order of the group.

Proof. First we show that gm = e for some strictly positive integer m, where e is the identity element
of G. Now gj = gk for some integers j and k with j < k, since G is finite. Let m = k − j. Then
m > 0 and gm = gk(gj)−1 = e.

Let n be the smallest strictly positive integer for which gn = e. Now any integer i can be expressed
in the form i = qn+ r, where q and r are integers and 0 ≤ r < n. (Thus q is the greatest integer for
which qn ≤ i.) Then gi = (gn)qgr = gr (since gn = e). Now the choice of n ensures that gr 6= e if
0 < r < n. It follows that an integer i satisfies gi = e if and only if n divides i.

Let j and k be integers. Now gj = gk if and only if gj−k = e, since gj−k = gj(gk)−1. It follows
that gj = gk if and only if j − k is divisible by n. Moreover n is the order of the group G, since each
element of G is equal to one of the elements gi with 0 ≤ i < n and these elements are distinct.

We now classify all subgroups of a cyclic group G. Let g be a generator of G. Given a subgroup H
of G with more than one element, let m be the smallest strictly positive integer for which gm ∈ H.
Suppose that gi ∈ H for some integer i. Now i can be expressed in the form i = qm + r, where q
and r are integers and 0 ≤ r < m. (Thus q is the greatest integer for which qm ≤ i.) But then
gr = gi−qm = gi(gm)−q, where gi ∈ H and gm ∈ H, and therefore gr ∈ H. The choice of m now
ensures that r = 0, and hence i = qm. Thus gi ∈ H if and only if i is some integer multiple of m. This
shows that H is the cyclic group generated by gm, where m is the smallest strictly positive integer
for which gm ∈ H.

Let us consider the case when the cyclic group G is finite. Let s be the order of G. Then gs = e,
and hence gs belongs to the subgroup H. It follows that s must be some integer multiple of m, where
m is the smallest strictly positive integer for which gm ∈ H. Thus the subgroups of a finite cyclic
group G with generator g are the trivial subgroup {e} and the cyclic subgroups generated by gm for
each divisor m of the order of G.

Consider now the case when the cyclic group G is infinite. For each positive integer m, the element
gm generates a subgroup of G, and moreover m is the smallest strictly positive integer for which gm

belongs to that subgroup. Thus if G is an infinite cyclic group with generator g then the subgroups of
G are the trivial subgroup {e} and the cyclic subgroups generated by gm for each positive integer m.

We have thus classified all subgroups of a cyclic group. In particular we see that any subgroup of
a cyclic group is itself a cyclic group.

Cosets and Lagrange’s Theorem

Definition. Let H be a subgroup of a group G. A left coset of H in G is a subset of G that is of the
form xH, where x ∈ G and

xH = {y ∈ G : y = xh for some h ∈ H}.
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Similarly a right coset of H in G is a subset of G that is of the form Hx, where x ∈ G and

Hx = {y ∈ G : y = hx for some h ∈ H}.

Note that a subgroup H of a group G is itself a left coset of H in G.

Lemma 6.8. Let H be a subgroup of a group G. Then the left cosets of H in G have the following
properties:—

(i) x ∈ xH for all x ∈ G;

(ii) if x and y are elements of G, and if y = xa for some a ∈ H, then xH = yH;

(iii) if x and y are elements of G, and if xH ∩ yH is non-empty then xH = yH.

Proof. Let x ∈ G. Then x = xe, where e is the identity element of G. But e ∈ H. It follows that
x ∈ xH. This proves (i).

Let x and y be elements of G, where y = xa for some a ∈ H. Then yh = x(ah) and xh = y(a−1h)
for all h ∈ H. Moreover ah ∈ H and a−1h ∈ H for all h ∈ H, since H is a subgroup of G. It follows
that yH ⊂ xH and xH ⊂ yH, and hence xH = yH. This proves (ii).

Finally suppose that xH ∩ yH is non-empty for some elements x and y of G. Let z be an element
of xH ∩ yH. Then z = xa for some a ∈ H, and z = yb for some b ∈ H. It follows from (ii) that
zH = xH and zH = yH. Therefore xH = yH. This proves (iii).

Lemma 6.9. Let H be a finite subgroup of a group G. Then each left coset of H in G has the same
number of elements as H.

Proof. Let H = {h1, h2, . . . , hm}, where h1, h2, . . . , hm are distinct, and let x be an element of G.
Then the left coset xH consists of the elements xhj for j = 1, 2, . . . ,m. Suppose that j and k are
integers between 1 and m for which xhj = xhk. Then hj = x−1(xhj) = x−1(xhk) = hk, and thus
j = k, since h1, h2, . . . , hm are distinct. It follows that the elements xh1, xh2, . . . , xhm are distinct.
We conclude that the subgroup H and the left coset xH both have m elements, as required.

Theorem 6.10. (Lagrange’s Theorem) Let G be a finite group, and let H be a subgroup of G. Then
the order of H divides the order of G.

Proof. Each element of G belongs to at least one left coset of H in G, and no element can belong to
two distinct left cosets of H in G (see Lemma 6.8). Therefore every element of G belongs to exactly
one left coset of H. Moreover each left coset of H contains |H| elements (Lemma 6.9). Therefore
|G| = n|H|, where n is the number of left cosets of H in G. The result follows.

Definition. Let H be a subgroup of a group G. If the number of left cosets of H in G is finite then
the number of such cosets is referred to as the index of H in G, denoted by [G:H].

The proof of Lagrange’s Theorem shows that the index [G:H] of a subgroup H of a finite group G
is given by [G:H] = |G|/|H|.

Corollary 6.11. Let x be an element of a finite group G. Then the order of x divides the order of
G.
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Proof. Let H be the set of all elements of G that are of the form xn for some integer n. Then H is
a subgroup of G (see Lemma 6.5), and the order of H is the order of x. But the order of H divides
G by Lagrange’s Theorem (Theorem 6.10). The result follows.

Corollary 6.12. Any finite group of prime order is cyclic.

Proof. Let G be a group of prime order, and let x be some element of G that is not the identity
element. Then the order of x is greater than one and divides the order of G. But then the order
of x must be equal to the order of G, since the latter is a prime number. Thus G is a cyclic group
generated by x, as required.

Isomorphism

Two groups are said to be isomorphic if the underlying algebraic structure of the two groups is the
same. (We shall give a formal definition of isomorphism below.)

Example. Let C be the set consisting of the three matrices M0, M1 and M2, where

M0 =
(

1 0
0 1

)
, M1 =

(
−1

2 −
√

3
2√

3
2 −1

2

)
, M2 =

(
−1

2

√
3

2

−
√

3
2 −1

2

)
.

Straightforward calculations show that C is a matrix group with Cayley table

M0 M1 M2

M0 M0 M1 M2

M1 M1 M2 M0

M2 M2 M0 M1 .

Now the group Z3 consisting of the congruence classes [0]3, [1]3 and [2]3 of the integers 0, 1 and 2
modulo 3, with the operation of addition of congruence classes, has the Cayley table.

+ [0]3 [1]3 [2]3
[0]3 [0]3 [1]3 [2]3
[1]3 [1]3 [2]3 [0]3
[2]3 [2]3 [0]3 [1]3 .

Examination of these two Cayley tables shows that the groups C and Z3 have the same algebraic
structure: the element Mj of C corresponds to the element [j]3 of Z3 for j = 0, 1, 2. Note that,
with respect to this correspondence, the operation of matrix multiplication in C corresponds to the
operation of addition in Z3: matrices Mi, Mj and Mk in C satisfy MiMj = Mk if and only if
[i]3 + [j]3 = [k]3 in Z3. We can therefore say that the groups C and Z3 are isomorphic.

Example. The group D6 of symmetries of an equilateral triangle is isomorphic to the group S3 of
permutations of a set consisting of 3 objects. This is a consequence of the fact that every permutation
of the three vertices of the triangle uniquely determines a corresponding symmetry of the triangle.

An isomorphism from a group G to a group H is a function ϕ:G → H which assigns to each
element x of G an element ϕ(x) of H and which has the following two properties:-

• the function ϕ:G→ H is a bijection;
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• ϕ(xy) = ϕ(x)ϕ(y) for all elements x and y of G.

Two groups are said to be isomorphic if there is an isomorphism between them. The notation
‘G ∼= H’ is used to denote the fact that that two groups G and H are isomorphic.

Example. Let C be the group consisting of the three matrices M0, M1 and M2, where

M0 =
(

1 0
0 1

)
, M1 =

(
−1

2 −
√

3
2√

3
2 −1

2

)
, M2 =

(
−1

2

√
3

2

−
√

3
2 −1

2

)
.

The function sending j to Mj for j = 0, 1, 2 is an isomorphism from the group Z3 to the group C.

Example. The function which sends each permutation of the three vertices of an equilateral triangle
to the corresponding symmetry of the triangle gives us an isomorphism from the group S3 of permu-
tations of three letters to the group D6 of symmetries of the triangle. If the letters A, B and C label
the vertices of the triangle in anticlockwise order, then the isomorphism maps the cycles (ABC) and
(AC B) to anticlockwise rotations of the triangle through angles of 2π/3 radians and 4π/3 radians
respectively. The isomorphism sends each transposition of {A,B,C} to the corresponding reflection
of the triangle through one of its axes of symmetry.

Example. Let Cn be a cyclic group of order n, generated by some element x. Then the function
which sends xk to e2πik/n for each integer k is well-defined and is an isomorphism from the group C
to the group of complex nth roots of unity.

Example. Let C∞ be an infinite cyclic group generated by some element x. Each element of C∞ is
uniquely expressible in the form xk for some integer k. (Indeed if there did exist distinct integers j
and k for which xj = xk then, for each positive integer m we would have xm = xr, where r is the
remainder on dividing m by |j− k|, and therefore the group would be finite.) We can therefore define
a function from the group C∞ to the group Z of integers under addition which sends each element
xk of the group C∞ to the integer k. It follows directly from Lemma 6.4 that this function is an
isomorphism. Thus any infinite cyclic group is isomorphic to the group of integers under addition.

Normal Subgroups and Quotient Groups

Let A and B be subsets of a group G. The product AB of the sets A and B is defined by

AB = {xy : x ∈ A and y ∈ B}.

We denote {x}A and A{x} by xA and Ax, for all elements x of G and subsets A of G. The Associative
Law for multiplication of elements of G ensures that (AB)C = A(BC) for all subsets A, B and C of
G. We can therefore use the notation ABC to denote the products (AB)C and A(BC); and we can
use analogous notation to denote the product of four or more subsets of G.

If A, B and C are subsets of a group G, and if A ⊂ B then clearly AC ⊂ BC and CA ⊂ CB.
Note that if H is a subgroup of the group G and if x is an element of G then xH is the left coset

of H in G that contains the element x. Similarly Hx is the right coset of H in G that contains the
element x.

If H is a subgroup of G then HH = H. Indeed HH ⊂ H, since the product of two elements of a
subgroup H is itself an element of H. Also H ⊂ HH since h = eh for any element h of H, where e,
the identity element of G, belongs to H.
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Definition. A subgroup N of a group G is said to be a normal subgroup of G if xnx−1 ∈ N for all
n ∈ N and x ∈ G.

The notation ‘N / G’ signifies ‘N is a normal subgroup of G’.

Lemma 6.13. Every subgroup of an Abelian group is a normal subgroup.

Proof. Let N be a subgroup of an Abelian group G. Then

xnx−1 = (xn)x−1 = (nx)x−1 = n(xx−1) = ne = n

for all n ∈ N and x ∈ G, where e is the identity element of G. The result follows.

Example. Let S3 be the group of permutations of the set {1, 2, 3}, and let H be the subgroup of S3

consisting of the identity permutation and the transposition (1 2). Then H is not normal in G, since
(2 3)−1(1 2)(2 3) = (2 3)(1 2)(2 3) = (1 3) and (1 3) does not belong to the subgroup H.

Proposition 6.14. A subgroup N of a group G is a normal subgroup of G if and only if xNx−1 = N
for all elements x of G.

Proof. Suppose that N is a normal subgroup of G. Let x be an element of G. Then xNx−1 ⊂ N .
(This follows directly from the definition of a normal subgroup.) On replacing x by x−1 we see also
that x−1Nx ⊂ N , and thus N = x(x−1Nx)x−1 ⊂ xNx−1. Thus each of the sets N and xNx−1 is
contained in the other, and therefore xNx−1 = N .

Conversely if N is a subgroup of G with the property that xNx−1 = N for all x ∈ G, then it
follows immediately from the definition of a normal subgroup that N is a normal subgroup of G.

Corollary 6.15. A subgroup N of a group G is a normal subgroup of G if and only if xN = Nx for
all elements x of G.

Proof. Let N be a subgroup of G, and let x be an element of G. If xNx−1 = N then xN =
(xNx−1)x = Nx. Conversely if xN = Nx then xNx−1 = Nxx−1 = Ne = N , where e is the identity
element of G. Thus xN = Nx if and only if xNx−1 = N . It follows from Proposition 6.14 that a
subgroup N of G is normal if and only if xN = Nx for all elements x of G, as required.

Let N be a normal subgroup of G. Corollary 6.15 shows that a subset of G is a left coset of N in
G if and only if it is a right coset of N in G. We may therefore refer to the left and right cosets of a
normal subgroup N as cosets of N in G (since it is not in this case necessary to distinguish between
left and right cosets).

Lemma 6.16. Let N be a normal subgroup of a group G and let x and y be elements of G. Then
(xN)(yN) = (xy)N .

Proof. If N is a normal subgroup of G then Ny = yN , and therefore (xN)(yN) = x(Ny)N =
x(yN)N = (xy)(NN). But NN = N , since N is a subgroup of G. Therefore (xN)(yN) = (xy)N , as
required.

Proposition 6.17. Let G be a group, and let N be a normal subgroup of G. Then the set of all cosets
of N in G is a group under the operation of multiplication. The identity element of this group is N
itself, and the inverse of a coset xN is the coset x−1N for any element x of G.
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Proof. Let x, y and z be any elements of G. Then the product of the cosets xN and yN is the
coset (xy)N . The subgroup N is itself a coset of N in G, since N = eN . Moreover

(xN)N = (xN)(eN) = (xe)N = xN,

N(xN) = (eN)(xN) = (ex)N = xN,

(xN)(x−1N) = (xx−1)N = N,

(x−1N)(xN) = (x−1x)N = N.

for all elements x of G. Thus the group axioms are satisfied.

Definition. Let N be a normal subgroup of a group G. The quotient group G/N is defined to be the
group of cosets of N in G under the operation of multiplication.

Example. Consider the dihedral group D8 of order 8, which we represent as the group of symmetries
of a square in the plane with corners at the points whose Cartesian co-ordinates are (1, 1), (−1, 1),
(−1,−1) and (1,−1). Then

D8 = {I,R,R2,R3,T1,T2,T3,T4},

where I denotes the identity transformation, R denotes an anticlockwise rotation about the origin
through a right angle, and T1, T2, T3 and T4 denote the reflections in the lines y = 0, x = y, x = 0
and x = −y respectively. Let N = {I,R2}. Then N is a subgroup of D8. The left cosets of N in D8

are N , A, B and C, where

A = {R,R3}, B = {T1,T3}, C = {T2,T4}.

Moreover N , A, B and C are also the right cosets of N in D8, and thus N is a normal subgroup of D8.
On multiplying the cosets A, B and C with one another we find that AB = BA = C, AC = CA = B
and BC = CB = A. Therefore the quotient group D8/N is a group of order 4 with Cayley table

N A B C

N N A B C
A A N C B
B B C N A
C C B A N .

This is the Cayley table of the Klein 4-group V4.

There is an alternative approach to the construction of quotient groups which utilises the basic
properties of equivalence relations. Let G be a group, and let H be a subgroup of G. Define a relation
∼H on G, where elements x and y of G satisfy x ∼H y if and only if there exists some element h of H
satisfying x = yh. Now x = xe, where e, the identity element of G, is an element of H. It follows that
x ∼H x for all elements x of G. Thus the relation ∼H is reflexive. If elements x and y of G satisfy
x ∼H y then they also satisfy y ∼H x, for if x = yh, where h is an element of H, then y = xh−1.
Thus the relation ∼H is symmetric. If x, y and z are elements of G satisfying x ∼H y and y ∼H z
then x ∼H z, for if x = yh and y = zk, where h and k belong to H, then x = zkh, and kh belongs to
H. Thus the relation ∼H is transitive. We conclude that the relation ∼H is an equivalence relation.
One can readily verify that its equivalence classes are the left cosets of H in G.

Now suppose that the subgroup H is normal in G. Let x, y, u and v be elements of G, where
x ∼H u and y ∼H v. Then there exist elements h and k of H such that x = uh and y = vk. Then
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xy = uhvk = uv(v−1hvk). Now v−1hv ∈ H since h ∈ H and H is normal in G. It follows that
v−1hvk ∈ H, since the product of any two elements of a subgroup belongs to that subgroup. We
deduce that if x ∼H u and y ∼H v then xy ∼H uv. Also x−1 = (uh)−1 = h−1u−1 = u−1(uh−1u−1,
where uh−1u−1 ∈ H. It follows that if x ∼H u then x−1 ∼H u−1.

Now, for any x ∈ G, let Cx denote the coset of H to which the element x belongs. Now Cx is the
equivalence class of x with respect to the equivalence relation ∼H . It follows from this that elements
x and u satisfy Cx = Cu if and only if x ∼H u. We conclude that if H is normal in G, and if Cx = Cu

and Cy = Cv then Cxy = Cuv and Cx−1 = Cu−1 . One can deduce from this that there is a well-defined
group multiplication operation on cosets of H in G, where CxCy is defined to be Cxy. The results
just prove show that this definition of CxCy does not depend on the choice of x and y representing
their respective cosets. The identity element is the subgroup H itself, which can be viewed as the
coset containing the identity element, and the inverse of the coset Cx is the coset Cx−1 . One can
readily verify that all the group axioms are satisfied and thus the set of cosets of H in G does indeed
constitute a group, the quotient group G/H.

Homomorphisms

Definition. A homomorphism θ:G→ K from a group G to a group K is a function with the property
that θ(g1 ∗ g2) = θ(g1) ∗ θ(g2) for all g1, g2 ∈ G, where ∗ denotes the group operation on G and on K.

Example. Let Z be the group of integers (with the operation of addition). The function θ: Z → Z
that sends each integer n to 2n is a homomorphism. This follows from the fact that 2(m+n) = 2m+2n
for all integers m and n. More generally, given any integer q, the function that sends each integer n
to qn is a homomorphism.

Example. There is an obvious homomorphism from the group of integers to the group of real numbers
(where the group operation for both groups is addition). This is the homomorphism that sends each
integer to itself.

Example. Let a be a positive real number. The function that sends each integer n to the real
number an is a homomorphism from the group of integers (with the operation of addition) to the
group of non-zero real numbers (with the operation of multiplication). This follows from the fact that
am+n = aman for all integers m and n.

Example. Let g be an element of a group G, and let ϕ: Z → G be defined by ϕ(n) = gn for all
integers n. The fact that gm+n = gmgn for all integers m and n ensures that the function ϕ: Z → G
is a homomorphism from the group of integers (with the operation of addition) to the given group G.

Example. Let U be the group of complex numbers z satisfying |z| = 1 (with the operation of
multiplication). There is a homomorphism ψ: R → U defined by ψ(x) = exp(2πix) for all real
numbers x (where R is the group of real numbers with the operation of addition). Indeed

ψ(x+ y) = exp(2πi(x+ y)) = exp(2πix) exp(2πiy) = ψ(x)ψ(y)

for all real numbers x and y.

Example. Let Sn be the group of all permutations of a set of n objects, Then there is a homo-
morphism ε:Sn → {+1,−1}, where the group operation on the set {+1,−1} is multiplication. This
homomorphism is defined by the requirement that ε(σ) = +1 when the permutation σ is even, and
ε(σ) = −1 when the permutation σ is odd. The fact that ε:Sn → {+1,−1} is a homomorphism
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follows from the following results: the composition of two even permutations is even; the composition
of two odd permutations is even; the composition of an even permutation and an odd permutation
(in any order) is odd.

Lemma 6.18. Let θ:G → K be a homomorphism. Then θ(eG) = eK , where eG and eK denote the
identity elements of the groups G and K. Also θ(x−1) = θ(x)−1 for all elements x of G.

Proof. Let z = θ(eG). Then z2 = θ(eG)θ(eG) = θ(eGeG) = θ(eG) = z. The result that θ(eG) = eK
now follows from the fact that an element z of K satisfies z2 = z if and only if z is the identity element
of K.

Let x be an element of G. The element θ(x−1) satisfies θ(x)θ(x−1) = θ(xx−1) = θ(eG) = eK ,
and similarly θ(x−1)θ(x) = eK . The uniqueness of the inverse of θ(x) now ensures that θ(x−1) =
θ(x)−1.

An isomorphism θ:G → K between groups G and K is a homomorphism that is also a bijection
mapping G onto K. Two groups G and K are isomorphic if there exists an isomorphism mapping G
onto K.

Example. Let D6 be the group of symmetries of an equilateral triangle in the plane with vertices A,
B and C, and let S3 be the group of permutations of the set {A,B,C}. The function which sends a
symmetry of the triangle to the corresponding permutation of its vertices is an isomorphism between
the dihedral group D6 of order 6 and the symmetric group S3.

Example. Let R be the group of real numbers with the operation of addition, and let R+ be the group
of strictly positive real numbers with the operation of multiplication. The function exp: R → R+ that
sends each real number x to the positive real number ex is an isomorphism: it is both a homomorphism
of groups and a bijection. The inverse of this isomorphism is the function log: R+ → R that sends
each strictly positive real number to its natural logarithm.

Here is some further terminology regarding homomorphisms:

• A monomorphism is an injective homomorphism.

• An epimorphism is a surjective homomorphism.

• An endomorphism is a homomorphism mapping a group into itself.

• An automorphism is an isomorphism mapping a group onto itself.

Definition. The kernel ker θ of the homomorphism θ:G→ K is the set of all elements of G that are
mapped by θ onto the identity element of K.

Example. Let the group operation on the set {+1,−1} be multiplication, and let θ: Z → {+1,−1}
be the homomorphism that sends each integer n to (−1)n. Then the kernel of the homomorphism θ
is the subgroup of Z consisting of all even numbers.

Example. Let Sn be the group of all permutations of a set of n objects, let the group operation on
the set {+1,−1} be multiplication, and let ε:Sn → {+1,−1} be the homomorphism that sends each
permutation σ in Sn to ε(σ), where ε(σ) = +1 if the permutation σ is even and ε(σ) = −1 if the
permutation σ is odd. Then the kernel of the homomorphism ε:Sn → {+1,−1} is the group of all
even permutations of the set of n objects.
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Lemma 6.19. Let G and K be groups, and let θ:G → K be a homomorphism from G to K. Then
the kernel ker θ of θ is a normal subgroup of G.

Proof. Let x and y be elements of ker θ. Then θ(x) = eK and θ(y) = eK , where eK denotes the
identity element of K. But then θ(xy) = θ(x)θ(y) = eKeK = eK , and thus xy belongs to ker θ. Also
θ(x−1) = θ(x)−1 = e−1

K = eK , and thus x−1 belongs to ker θ. We conclude that ker θ is a subgroup of
K. Moreover ker θ is a normal subgroup of G, for if g ∈ G and x ∈ ker θ then

θ(gxg−1) = θ(g)θ(x)θ(g)−1 = θ(g)θ(g−1) = eK .

If N is a normal subgroup of some group G then N is the kernel of the quotient homomorphism
θ:G → G/N that sends g ∈ G to the coset gN . It follows therefore that a subset of a group G is a
normal subgroup of G if and only if it is the kernel of some homomorphism.

Proposition 6.20. Let G and K be groups, let θ:G→ K be a homomorphism from G to K, and let
N be a normal subgroup of G. Suppose that N ⊂ ker θ. Then the homomorphism θ:G → K induces
a homomorphism θ̂:G/N → K sending gN ∈ G/N to θ(g). Moreover θ̂:G/N → K is injective if and
only if N = ker θ.

Proof. Let x and y be elements of G. Now xN = yN if and only if x−1y ∈ N . Also θ(x) = θ(y)
if and only if x−1y ∈ ker θ. Thus if N ⊂ ker θ then θ(x) = θ(y) whenever xN = yN , and thus
θ:G → K induces a well-defined function θ̂:G/N → K sending xN ∈ G/N to θ(x). This function is
a homomorphism, since θ̂((xN)(yN)) = θ̂(xyN) = θ(xy) = θ(x)θ(y) = θ̂(xN)θ̂(yN).

Suppose now that N = ker θ. Then θ(x) = θ(y) if and only if xN = yN . Thus the homomorphism
θ̂:G/N → K is injective. Conversely if θ̂:G/N → K is injective then N must be the kernel of θ, as
required.

Corollary 6.21. Let G and K be groups, and let θ:G → K be a homomorphism. Then θ(G) ∼=
G/ ker θ.

Example. Let Sn be the group of all permutations of a set of n objects, let An be the subgroup of Sn

consisting of all even permutations of those objects, and let the group operation on the set {+1,−1}
be multiplication. Then Sn/An

∼= {+1,−1}. This follows from the fact that An is the kernel of the
homomorphism ε:Sn → {+1,−1} that sends each permutation σ in Sn to ε(σ), where ε(σ) = +1 if
the permutation σ is even and ε(σ) = −1 if the permutation σ is odd.

The Isomorphism Theorems

Lemma 6.22. Let G be a group, let H be a subgroup of G, and let N be a normal subgroup of G.
Then the set HN is a subgroup of G, where HN = {hn : h ∈ H and n ∈ N}.

Proof. The set HN clearly contains the identity element of G. Let x and y be elements of HN . We
must show that xy and x−1 belong to HN . Now x = hu and y = kv for some elements h and k of H
and for some elements u and v of N . Then xy = (hk)(k−1ukv). But k−1uk ∈ N , since N is normal.
It follows that k−1ukv ∈ N , since N is a subgroup and k−1ukv is the product of the elements k−1uk
and v of N . Also hk ∈ H. It follows that xy ∈ HN .

We must also show that x−1 ∈ HN . Now x−1 = u−1h−1 = h−1(hu−1h−1). Also h−1 ∈ H, since H
is a subgroup of G, and hu−1h−1 ∈ N , since N is a normal subgroup of G. It follows that x−1 ∈ HN ,
and thus HN is a subgroup of G, as required.
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Theorem 6.23. (First Isomorphism Theorem) Let G be a group, let H be a subgroup of G, and let
N be a normal subgroup of G. Then

HN

N
∼=

H

N ∩H
.

Proof. Every element of HN/N is a coset of N that is of the form hN for some h ∈ H. Thus if
ϕ(h) = hN for all h ∈ H then ϕ:H → HN/N is a surjective homomorphism, and kerϕ = N ∩ H.
But ϕ(H) ∼= H/ kerϕ (Corollary 6.21). Therefore HN/N ∼= H/(N ∩H) as required.

Theorem 6.24. (Second Isomorphism Theorem) Let M and N be normal subgroups of a group G,
where M ⊂ N . Then

G

N
∼=
G/M

N/M
.

Proof. There is a well-defined homomorphism θ:G/M → G/N that sends gM to gN for all g ∈
G. Moreover the homomorphism θ is surjective, and ker θ = N/M . But θ(G/M) ∼= (G/M)/ ker θ
(Corollary 6.21). Therefore G/N is isomorphic to (G/M) / (N/M), as required.

Direct products of groups

Let G1, G2, . . . , Gn be groups, and let G be the Cartesian product G1×G2×· · ·×Gn of G1, G2, . . . , Gn

(when the latter are regarded as sets). Then the elements of G are n-tuples (x1, x2, . . . , xn) where
xi ∈ Gi for i = 1, 2, . . . , n. We can multiply two elements of G as follows:

(x1, x2, . . . , xn)(y1, y2, . . . , yn) = (x1y1, x2y2, . . . , xnyn).

One can readily verify that G is a group with respect to this binary operation: multiplication is
associative; the identity element of the group is (e1, e2, . . . , en), where ei is the identity element of Gi

for each i; and the inverse of an element (x1, x2, . . . , xn) of G is (x−1
1 , x−1

2 , . . . , x−1
n ). We say that the

group G is the direct product of the groups G1, G2, . . . , Gn: this direct product is (not surprisingly)
denoted by G1 ×G2 × · · · ×Gn.

Example. Let C2 and C3 be cyclic groups of orders 2 and 3 respectively. Then C2 × C3 is a cyclic
group of order 6, and C2 × C2 is isomorphic to the Klein 4-group whose Cayley table is

I A B C

I I A B C
A A I C B
B B C I A
C C B A I .

Let us first consider C2 × C3. Let x and y be generators of C2 and C3 respectively, and let e and
e′ denote the identity elements of C2 and C3. Thus C2 = {e, x} and C3 = {e′, y, y2}, where x2 = e
and y3 = e′. The elements of C2 × C3 are

(e, e′), (e, y), (e, y2), (x, e′), (x, y), (x, y2).

Let z = (x, y). On computing the powers of z we find that

z2 = (e, y2), z3 = (x, e′), z4 = (e, y), z5 = (x, y2), z6 = (e, e′).

18



Thus 6 is the smallest positive integer n for which zn is equal to the identity element (e, e′) of the
group. We deduce that the group C2 × C3 (which is a group of order 6) must be a cyclic group
generated by the element z.

Next consider C2 × C2. This has four elements I, A, B and C, where I = (e, e), A = (e, x),
B = (x, e) and C = (x, x). If we calculate the Cayley table for the group, we discover that it is that
of the Klein 4-group.

Cayley’s Theorem

Theorem 6.25. (Cayley’s Theorem) Let G be a group of order n. Then G is isomorphic to a subgroup
of the group Sn of permutations of a set of n elements.

Proof. For each element x of G, let σx:G→ G be the function defined such that σx(g) = xg for all
g ∈ G. Now

σx−1(σx(g)) = x−1(xg) = (x−1x)g = g

and
σx(σx−1(g)) = x(x−1g) = (x(x−1)g = g

for all g ∈ G. It follows that, for any x ∈ G, the function σx:G → G is a bijection whose inverse
is σx−1 It follows that σx is a permutation of G for all x ∈ G, and thus the function sending an
element x of G to the permutation σx is a function from G to the group of permutations of G. This
function is a homomorphism. Indeed σxy = σx ◦ σy since σxy(g) = (xy)g = x(yg) = σx(σy(g)) for all
g ∈ G. The homomorphism sending x ∈ G to σx is be injective, for if σx is the identity permutation
then xg = g for all g ∈ G, and hence x is the identity element of G. It follows that G is isomorphic to
the image of the homomorphism. This image is a subgroup {σx : x ∈ G} of the group of permutations
of G. The result follows.

Problems

1. Calculate the Cayley table for the dihedral group D8 of order 8 (i.e., the symmetry group of a
square).

2. Find all subgroups of the dihedral group of order 8, and calculate also all left and right cosets
of those subgroups. Which subgroups are normal subgroups?

3. Let G be a set with a binary operation ∗, associating to each pair of elements x and y of G a
third element x ∗ y of G. Suppose that the following properties are satisfied:

• (x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements x, y, and z of G (the Associative Law);

• there exists an element e of G such that e ∗ x = x for all elements x of G;

• for each element x of G there exists an element x′ of G satisfying x′ ∗ x = e.

Prove that G is a group with respect to this binary operation. [Thus you must show that
x ∗ e = x and x ∗ x′ = e for all x ∈ G.]

4. Prove that a non-empty subset H of a group G is a subgroup of G if and only if xy−1 ∈ H for
all x ∈ H and y ∈ H.

5. Let G be a group. Prove that any subgroup N of index 2 in G is a normal subgroup of G.
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6. Let G be a group and let H be a subgroup of G. Show that the function mapping G onto itself
that sends g ∈ G to g−1 induces a bijection from the set of left cosets of H in G to the set of
right cosets of H in G. Hence show that the number of left cosets of H is equal to number of
right cosets of H, if either of these numbers is finite.

7. Let G be a group. The centre Z(G) of G is defined by

Z(G) = {z ∈ G : gz = zg for all g ∈ G}.

Prove that the centre Z(G) of a group G is a normal subgroup of G. [In particular, you should
show that Z(G) is a subgroup of G.]
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