## HW9: Continuous systems

If you find misprints, have any questions, find some task difficult and want a hint, contact me by email vel145@gmail.com.

Each question is worth 2 points.

Consider the system described by the Lagrangian density

$$\mathcal{L} = \frac{1}{2} \left( \left( \frac{\partial \phi}{\partial t} \right)^2 - c^2 \left( \frac{\partial \phi}{\partial x} \right)^2 \right) - V(\phi) , \qquad (1)$$

where c is some constant.  $\phi$  is a function of x and t.

- 1. Find its energy density and momentum density. Write integrals that define energy and momentum of the system.
- 2. Write down equations of motion.
- 3. Show that the system is relativistic invariant if c is interpreted as a speed of light. This means: consider a Lorentz boost transformation  $(ct') = \gamma(ct) \beta \gamma x$ ,  $x' = \gamma x \beta \gamma(ct)$  and show that a) the Lagrangian looks exactly the same in new (primed) coordinates as in the original coordinates and b) equations of motion look exactly the same.
- 4. For  $V = \frac{c^2}{2} \frac{1}{(1+\phi^2)^2}$ , find a solution of equations of motion if it is known that this solution does not depend on time and it has the following boundary condition:  $\phi = \pm \infty$  and  $\frac{\partial \phi}{\partial x} = 0$  at  $x = \pm \infty$ .

Your final answer should be that this solution satisfies  $\phi + \frac{1}{3}\phi^3 = x - x_0$ . Do not solve this cubic equation explicitly (possible, but useless for our goals).

Hint: when solution does not depend on time, it satisfies an ordinary 2nd order differential equation. This equation looks very similar to the one of Lagrangian mechanics for a system with one degree of freedom. Use your experience from the MA2341 then.

5. For the solution from the previous exercise, depict qualitatively the energy density as a function of x. Precise how energy density behaves near  $x = x_0$  and  $x = \pm \infty$  (i.e. provide the Taylor expansion of the energy density as a function of x at these points, up to the first order that depends on x.)