
MA2342 - Homewrk 1 - Solutions and comments

The Answer/Solution parts of this text are essentially based on the solution submitted
in TeX by Jean Lagacé. I would like to give special thanks to him for providing his
homework in the LaTeX format.

1 Differential forms

Problem 1

QUESTION: Integrate α = (x3 − 2x2y + xy2 − 2y3) dx− 2x dy over the unit circle, in a
counterclockwise direction. Explain the obtained result.

ANSWER : ∮
S1
(x3 − 2x2y + xy2 − 2y3) dx− 2x dy = 0

SOLUTION:
Let us use the following parametrisation for the circle for t ∈ [−π, π]:

x = cos t, y = sin t;

dx = − sin t dt, dy = cos t dt;

which yields the following integral:∫ π

−π
− cos3 t sin t+ 2 cos2 t sin2 t− cos t sin3 t+ 2 sin4 t− 2 cos2 tdt. (1.1)

The first and the third term integrate to 0 since they are odd functions. Using the
identities sin2 t+ cos2 t = 1 and using the fact that the integral of sin2 t− cos2 t over the
whole period is 0, by symmetry, we get that this integrates to 0.

DISCUSSION:

• You can use NIntegrate command in Mathematica to numerically compute (1.1)
and to check your answer in this way. This example is very simple of course and
computer can do it analytically as well, but you will face more challenging cases in
your research. You should acquire a habit of checking your results, in particular
numerically.

• One could think that
∮
α = 0 implies that α is an exact differential. However, we

cannot make any statement on the exactness of α based on this computation, it
simply means that integrating on this specific curve is 0. Sparing the computation,
if we had integrated the same differential on the square ∂[0, 1]2, the result would
have been −1/6. It is also easy to see, from the usual criterion on the exactness of
differentials, ∂αx∂y =

∂αy
∂x , that it cannot be equal to df for some f , and is therefore

not exact.

1



• However, on the contour of integration condition x2 + y2 = 1 holds. It allows us
to simplify the integrand to (2x − 2y) dx − 2x dy. The latter one is exact and
non-singular inside the contour of integration. Hence the integral should be zero.

Problem 2

QUESTION: If you have a force F acting on a particle, you can define the differential
form Fidx

i (summation over i is assumed). Then the work over a path γ is given by∫
γ Fidx

i. Translate the notion of "conservative" and "non-conservative" force to the
language of differential forms.

ANSWER: Conservative force is by definition a force whose work does not depend on
a path but only on the starting and ending points. This is one of the necessary and
sufficient conditions for a differential to be exact. So a conservative force is an exact
differential, while a non-conservative force is a non-exact differential.

DISCUSSION: Another name for conservative force is potential force: F = −dV , where
V is potential (minus sign is convention). Note that usually we consider F as a vector,
not as a differential form. In this case we take a gradient, F = −∇V or explicitly
F i = −gij ∂V

∂xj
, as discussed on the lecture. So the third name for the same thing is

gradient force.

2 Hamiltonians

Let us first state the equation for the Hamiltonian and the Hamiltonian equations of
motion. The Hamiltonian is the Legendre transform of the Lagrangian with respect to
the q̇ variables, that is it is given by

H = q̇ipi − L ,

where pi are the generalised momenta given by

pi =
∂L
∂q̇i

.

From there, we can get the Hamiltonian equations of motion, a set of 2n first order
differential equations, where n is the number of degrees of freedom, as

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

.

Problem 3

QUESTION: Find the Hamiltonian and Hamilton’s equations of motion for a system
with the following Lagrangian

L =
m

2
(ẋ21 + ẋ22) +B(x1ẋ2 − x2ẋ1)− U(x1, x2) . (2.1)
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Note: In the original task the potential was written with the opposite sign. It is ok if you
did your computations coherently, all up to the end with the opposite sign.

ANSWER: The Hamiltonian is

H =
1

m

[
1

2

(
p21 + p22

)
−B (x1p2 − x2p1) +

B2

2

(
x21 + x22

)]
+ U(x1, x2).

The equations of motion are

ṗ1 =
B p2 −B2 x1

m
− ∂U

∂x1
; ṗ2 =

−B p1 −B2 x2
m

− ∂U

∂x2
;

ẋ1 =
1

m
(p1 +Bx2) ; ẋ2 =

1

m
(p2 −Bx1) .

SOLUTION: First, let us compute the momenta,

p1 =
∂L
∂ẋ1

= mẋ1 −Bx2;

p2 =
∂L
∂ẋ2

= mẋ2 +Bx1;

then we can get an expression for both ẋ1 and ẋ2,

ẋ1 =
1

m
(p1 +Bx2) ;

ẋ2 =
1

m
(p2 −Bx1) .

All is left to do is to write the Hamiltonian, following the equation at the beginning of
the section:

H =
1

m

[
p21 +Bp1x2 + p22 −Bp2x1 −

1

2

(
p21 + 2Bp1x2 +B2x22 + p22 − 2Bp2x1 +B2x21

)
−Bx1p2 +B2x21 +Bx2p1 +B2x22

]
+ U(x1, x2).

Simplifying this mess, we get

H =
1

m

[
1

2

(
p21 + p22

)
−B (x1p2 − x2p1) +

B2

2

(
x21 + x22

)]
+ U(x1, x2).

Finally, we get the equations of motion, including those for ẋ we already computed,

ṗ1 = −
∂H
∂x1

=
Bp2 −B2x1

m
− ∂U

∂x1
; ṗ2 = −

∂H
∂x2
− Bp1 +B2x2

m
− ∂U

∂x2
;

ẋ1 =
∂H
∂p1

=
1

m
(p1 +Bx2) ; ẋ2 =

∂H
∂p2

=
1

m
(p2 −Bx1) .
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Problem 4

QUESTION: Rewrite the Lagrangian from the previous exercise in polar coordinates
and find the Hamiltonian and Hamilton’s equations of motion in terms of generalised
coordinates and momenta: {r, φ, pr, pφ}.

ANSWER : The Lagrangian is

L =
m

2

(
ṙ2 + r2θ̇2

)
+Br2θ̇ − U(r, θ).

The Hamiltonian is
H =

1

2m

[
p2r +

1

r2
(pθ −B r2)2

]
+ U.

The equations of motion are

ṗr =
1

m

(
p2θ
r3
− r B2

)
− ∂U

∂r
; ṗ2 = −

∂U

∂θ
;

ṙ =
pr
m

; θ̇ =
pθ −Br2

mr2
.

SOLUTION: To change into polar coordinates, we use the following change of variables :

x1 = r cos θ, x2 = r sin θ;

ẋ1 = ṙ cos θ − θ̇r sin θ, ẋ2 = ṙ sin θ + θ̇r cos θ;

which transforms the Lagrangian into

L =
m

2

(
ṙ2 cos2 θ − 2ṙθ̇ cos θ sin θ + θ̇2r2 sin2 θ + ṙ2 sin2 θ + 2ṙθ̇ cos θ sin θ + θ̇2r2 cos2 θ

)
+B

(
ṙr sin θ cos θ + θ̇r2 cos2 θ − ṙr sin θ cos θ + θ̇r2 sin2 θ

)
+ U(r, θ);

and becomes, after simplification

L =
m

2

(
ṙ2 + r2θ̇2

)
+Br2θ̇ − U(r, θ).

We can now compute the Hamiltonian. To do so, we must first compute the momenta,
yielding

pr =
∂L
∂ṙ

= mṙ;

pθ =
∂L
∂θ̇

= mr2θ̇ +Br2.
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From this, we can get expressions for ṙ and θ̇ as

ṙ =
pr
m

;

θ̇ =
1

mr2
(
pθ −Br2

)
;

and we write the Hamiltonian

H = prṙ + pθθ̇ − L = pr
pr
m

+ pθ
1

mr2
(
pθ −Br2

)
− m

2

(
p2r
m2

+
1

m2r2
(
pθ −Br2

)2)
−Br2 1

mr2
(
pθ −Br2

)
+ U

which gets simplified to

H =
1

2m

[
p2r +

1

r2
(pθ −B r2)2

]
+ U.

We finally get the equations of motion as follow, using what we already computed for ṙ
and θ̇

ṗr =
1

m

(
p2θ
r3
− r B2

)
− ∂U

∂r
; ṗ2 = −

∂U

∂θ
;

ṙ =
pr
m

; θ̇ =
pθ −Br2

mr2
.

One can observe from these equations of motion that if the potential is radial, it means
that pθ is a conserved quantity for a system with this Hamiltonian.

DISCUSSION: It is good and important that you do an explicit computation similar to
above. At the same time, learn to observe several generic patterns. There were several
of them during this computation:

• It is quite often that kinetic term is quadratic in velocities: 1
2gij q̇

iq̇j . The matrix
g should be sought as a metric. Passing from one coordinate frame (original {x, y}
coordinates) to another (polar coordinates) means changing metric. If you start
from a quadratic quantity like 1

2gij q̇
iq̇j , you will end up with a quadratic quantity

1
2 g̃ij

˙̃qi ˙̃qj , where by q̃ and g̃ we denoted the corresponding objects in the new coor-
dinate frame. In this particular case we can find g̃ (almost) without computation.
First, we note that polar coordinates is an orthogonal frame hence g should be diag-
onal (think about this! can you explain these statements?). Hence the kinetic term
can be at most of the form 1

2

(
A(r, φ)ṙ2 +B(r, φ)φ̇2

)
. Due to rotational symmetry

of the problem, A and B should be independent from φ. Purely by dimensional
analysis, A = const, B = r2const. It remains to fix two numerical constants. Find
by yourself two arguments that demonstrate that these constants are both equal
to 1 (consider velocity vectors in some special directions when the answer is under
very good control).
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• If you make Legendre transform of a quadratic form, you end up with a quadratic
form defined by an inverse matrix:

1

2
gij q̇

i q̇j → (Legendre transform)→ 1

2
(g−1)ijpi pj . (2.2)

Note that it is completely for g depend on co-ordinates. It should not depend
however on the velocities (i.e. objects which are subject to the Legendre transform).

• If your Lagrangian has a term linear in velocities:

L = F (q)q̇ + L′ (2.3)

Then you can do the following: 1) Find the Hamiltonian for L′ 2) Replace in this
Hamiltonian p → p − F (q), and you will get the right answer (Prove this fact!
Or understand the mechanism behind on the example of Problem 4). Note: this
technique is used in the next problem.

I must say I don’t encourage you to use these properties as the ONLY mean for deriving
your answer. Formulated in generic fashion, they might render your computation too
formalised so you would not have a grip on it. The best is to do the computation
partially boldly, and then to check whether your answer can be obtained from the above-
mentioned generic observations as well. Then you have two independent ways to obtain
the result and you get a firm confidence of its correctness if both ways give the same
answer.

Problem 5

QUESTION: Find the Hamiltonian and Hamilton’s equations of motion for a relativistic
particle of charge e which is moving in the constant magnetic field B. The lagrangian is
given by:

L = −mc2
√
1− v2

c2
+

e

2c
εαβγBαxβvγ , (2.4)

where vα = ẋα is the velocity vector and v is its absolute value. εαβγ is the fully
antisymmetric tensor with ε123 = 1.

ANSWER: The Hamiltonian is

H = mc2
√
1 +

P 2

m2c2
,

where Pα = pα − e
2cεαβγBβxγ .

The equations of motion are

ẋα =
1√

1 + P 2

m2c2

Pα
m

,

ṗα = − 1√
1 + P 2

m2c2

εαβγBβPγ
m

.
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SOLUTION: We get pα by differentiating with respect to vi, that is

pα =
∂L
∂vα

=
mvα√
1− v2

c2

+
e

2c
εαβγBβxγ .

We used the property εαβγ = εγαβ . Note also that Aα = εαβγBβCγ means in the vector
notation A = B×C (check this!). So actually we can write in the index free form:

p =
mv√
1− v2

c2

+
e

2c
B× r (2.5)

In what follows we introduce notation P ≡ p− e
2cB× r. One should keep in mind that

P depends on r. But for the sake of Legendre transform this is the only quantity that
matters.
Solving for v one has

v =
P

m

√
1− v2

c2
.

We can find v2 from computing the norm of the last expression (v2 ≡ v·v and P 2 ≡ P·P):

v2 =
P 2

m2

(
1− v2

c2

)
,

which after some algebra gives us

v2 =
1

1 + P 2

m2c2

P 2

m2
, 1− v2

c2
=

1

1 + P 2

m2c2

.

From there, we can get v and the Lagrangian as

v =
P

m

1√
1 + P 2

m2c2

,

L =
−mc2√
1 + P 2

m2c2

+
e

2c
v · (B× r) ,

and we can get the Hamiltonian as

H = p · v − L = (P+
e

2c
B× r) · v − L = P · v +

mc2√
1 + P 2

m2c2

=
1√

1 + P 2

m2c2

(
P 2

m
+mc2

)
= mc2

√
1 +

P 2

m2c2
. (2.6)
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To get the equations of motion, let us first compute the derivative of P 2 with respect to
xα.

∂P 2

∂xα
= −2Pγ

( e
2c
εγβαBβ

)
= 2

e

2c
εαβγBβPγ ,

where we used εαβγ = −εγβα. In index-free notation the last expression reads:

∇P 2 = 2
e

2c
B×P . (2.7)

From this, we recover the ẋi that we already computed as

ẋα =
∂H
∂pα

=
Pα
m

1√
1 + P 2

m2c2

,

and we compute ṗ as

ṗ = −∇H = − e

2mc

1√
1 + P 2

m2c2

B×P .

DISCUSSION: If you are not familiar enough with Levi-Civita symbol, you might find
it useful to work in vector index-free notations. Another option is to choose explicitly B
along z-direction and write down all the formulae explicitly.

There are two important checks to do about your result. First, when B = 0, one has
P = p and the Hamiltonian becomes the standard relativistic expression for the energy
of moving particle, equations of motion are also in place. Second, consider c → ∞ and
put Bx = By = 0. Then we find ourselves essentially in the set up of problem 3 with
e
2cBz = B. For the latter we know explicitly equations of motion, so we can check our
findings in problem 51.

3 Poisson Brackets

We define the Poisson bracket, using Einstein summation convention, as

{f, g} = ∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

where p and q are Darboux coordinates.

Problem 6

QUESTION: Prove that {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

1When preparing this solution, I did this limit to check myself and found a mistake in my text! Do this
limit as well, it is always worth to do such checks on your computation
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SOLUTION #1: Applying the definition of the Poisson bracket, we get that

{f, {g, h}} = ∂f

∂qj

[
∂2g

∂qi∂pj

∂h

∂pi
+
∂g

∂qi

∂2h

∂pi∂pj
− ∂2g

∂pi∂pj

∂h

∂qi
− ∂g

∂pi

∂2h

∂qi∂pj

]
− ∂f

∂pj

[
∂2g

∂qi∂qj

∂h

∂pi
+
∂g

∂qi

∂2h

∂pi∂qj
− ∂2g

∂pi∂qj

∂h

∂qi
− ∂g

∂pi

∂2h

∂qi∂qj

]
;

where we assumed that f, g, h are differentiable enough that the second derivative com-
mutes. We can then write

{f, {g, h}} = ∂f

∂qj

∂2g

∂qi∂pj

∂h

∂pi
+
∂f

∂qj

∂g

∂qi

∂2h

∂pi∂pj
+
∂f

∂pj

∂2g

∂qj∂pi

∂h

∂qi
+
∂f

∂pj

∂g

∂pi

∂2h

∂qi∂qj

− ∂f

∂qj

∂2g

∂pi∂pj

∂h

∂qi
− ∂f

∂qj

∂g

∂pi

∂2h

∂qi∂pj
− ∂f

∂pj

∂2g

∂qj∂qi

∂h

∂pi
− ∂f

∂pj

∂g

∂qi

∂2h

∂pi∂qj
.

Similarly, we can compute the two other ones as

{g, {h, f}} = ∂g

∂qj

∂2h

∂qi∂pj

∂f

∂pi
+
∂g

∂qj

∂h

∂qi

∂2f

∂pi∂pj
+

∂g

∂pj

∂2h

∂qj∂pi

∂f

∂qi
+

∂g

∂pj

∂h

∂pi

∂2f

∂qi∂qj

− ∂g

∂qj

∂2h

∂pi∂pj

∂f

∂qi
− ∂g

∂qj

∂h

∂pi

∂2f

∂qi∂pj
− ∂g

∂pj

∂2h

∂qj∂qi

∂f

∂pi
− ∂g

∂pj

∂h

∂qi

∂2f

∂pi∂qj
;

and

{h, {f, g}} = ∂h

∂qj

∂2f

∂qi∂pj

∂g

∂pi
+
∂h

∂qj

∂f

∂qi

∂2g

∂pi∂pj
+
∂h

∂pj

∂2f

∂qj∂pi

∂g

∂qi
+
∂h

∂pj

∂f

∂pi

∂2g

∂qi∂qj

− ∂h

∂qj

∂2f

∂pi∂pj

∂g

∂qi
− ∂h

∂qj

∂f

∂pi

∂2g

∂qi∂pj
− ∂h

∂pj

∂2f

∂qj∂qi

∂g

∂pi
− ∂h

∂pj

∂f

∂qi

∂2g

∂pi∂qj
.

It then becomes a simple matter of summing those three expressions, and seeing that
every term appears summed once and subtracted once. The fact that we could switch
the derivatives at will using Fubini’s theorem had to be use, the identity is not true
otherwise.

SOLUTION #2: As you can see above, each of the explicitly written terms has one
factor which is a second derivative. Landau-Lifshitz book has a simple argument why all
second derivatives should cancel out. Since there are no terms free of them, the whole
expression should be zero.

SOLUTION #3: Define the differential operator Df ≡ ∂f
∂q

∂
∂p −

∂f
∂p

∂
∂q . First, we need to

convince ourself that {f, g} = [Df ,Dg]·1, where [A,B] ≡ AB−BA is what is standardly
known as commutator and ·1 means that one acts on the identity function. The next
step would be rather straightforward:

{f, {g, h}} = [Df , [Dg,Dh]] · 1 . (3.1)
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Then the Jacobi identity follows from the well-known Jacobi identity for commutators:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 , (3.2)

the latter is straightforwardly check by expanding commutators using their definition
[A,B] ≡ AB −BA.

Problem 7

QUESTION: The Hamiltonian of a free particle in D dimensions is given by H =∑D
i=1

p2i
2m . Consider the quantity Jij = pixj − pjxi. Compute the following poisson

brackets:

{Jij , pk} , {Jij , xk} , {Jij , Jkl} , (3.3)

in the case of {Jij , Jkl}, express the answer as a linear combination of J ’s only.
What is the value of {J14, J13}?
Prove that Jij is the conserved quantity by computing {Jij ,H}.

{Jij , pk}

ANSWER:

{Jij , pk} = δjkpi − δikpj .

First write out the expression as

{Jij , pk} =
∂Jij
∂xα

∂pk
∂pα
− ∂Jij
∂pα

∂pk
∂xα

and note that any pk is independant of all qα and of pα if α 6= k. Therefore,

∂pk
∂xα

= 0∀α, ∂pk
∂pα

= δkα;

where δij is the Kronecker delta. Therefore, we can rewrite our first equation as

{Jij , pk} = δkα
∂Jij
∂xα

,

=
∂Jij
∂xk

.

From the expression for Jij , we finally get that

{Jij , pk} = δjkpi − δikpj .
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{Jij , xk}

ANSWER:
{Jij , xk} = δjkxi − δikxj

Similarly for this one, we have that

∂xk
∂pα

= 0∀α, ∂xk
∂xα

= δkα; .

This yields that

{Jij , xk} =
∂Jij
∂xα

∂xk
∂pα
− ∂Jij
∂pα

∂xk
∂xα

= −δkα
∂Jij
∂pα

= δjkxi − δikxj

{Jij , Jkl}

ANSWER:

{Jij , Jkl} = δjkJil + δilJjk − δjlJik − δikJjl.

{J13, J14} = −J34
Let us first expand the expression for Jij and Jkl in the Poisson bracket as

{Jij , Jkl} =
∂(pixj − pjxi)

∂xα

∂(pkxl − plxk)
∂pα

− ∂(pixj − pjxi)
∂pα

∂(pkxl − plxk)
∂xα

Using once again the respective independance of the xas and of the pas, we gets

{Jij , Jkl} = (δjαpi − δiαpj)(δkαxl − δlαxk)− (δjαxi − δiαxj)(δkαpl − δlαpk)
= δjkpixl − δjlpixk − δikpjxl + δilpjxk − δjkplxi + δjlpkxi + δikplxi − δilpkxi,

where we used the fact that δijδik = δjk. Rearranging terms, this leaves us with

{Jij , Jkl} = δjkJil + δilJjk − δjlJik − δikJjl.

This, in turn allows us to easily compute {J13, J14} as

{J13, J14} = −J34
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{Jij ,H}

ANSWER :
{Jij ,H} = 0

and therefore it is a conserved quantity.
We know that a quantity is conserved in the Hamiltonian equations of motion when the
Poisson bracket of that quantity with the Hamiltonian is equal to 0. Let us compute the
Poisson bracket of Jij with the Hamiltonian in the case of the free particle.

{Jij ,H} =
∂(pixj − pjxi)

∂xα

∂H
∂pα
− ∂(pixj − pjxi)

∂pα

∂H
∂xα

.

Using the fact that the free particle Hamiltonian is independant of x, we further get

{Jij ,H} = (δjαpi − δiαpj)
∂H
∂pα

;

=
pipj
m
− pjpi

m
;

= 0;

which ends up proving that Jij is a conserved quantity in the free particle problem.

Problem 8

QUESTION: For the case of free particle in D=3, express angular momenta Mi in terms
of Jjk using εijk. And vice versa, express J ’s in terms of M ’s. Find the Poisson brackets

{Mi, pk} , {Mi, xk} , {Mi,Mk} . (3.4)

If possible, express the answer in terms of M again.
ANSWERS:
Mi in terms of Jjk and vice versa are given by

Mi = −
1

2
εijkJjk

Jjk = −εjkiMi = εkjiMi

The various Poisson brackets we had to compute were

{Mi, xj} = εijkxk

{Mi, pj} = εijkpk

{Mi,Mj} = εijkMk.

Angular momentum is given by

M = x× p;

Mi = εilmxlpm.
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We can also write, for Jjk

Jjk = pjxk − pkxj ;
= (δjlδkm − δjmδkl)plxm;
= εijkεilmplxm.

From the last equality, it is directly written that

Jjk = −εijkMi = εkjiMi.

Conversely, one can see that

εijkJkj = εijk(pkxj − xkpj);
= εijkxjpk + εikjxkpj ;

= 2Mi.

or, equivalently,

Mi =
1

2
εkjiJjk.

Using results in problem 7 and the fact that the Poisson bracket is obviously bilinear,
this yields

{Mi, xk} =
1

2
εlji {Jjl, xk} ;

=
1

2
εlji(δlkxj − δjkxl);

=
1

2
(εkjixj − εlkixl);

= −1

2
(εijkxj + εijkxj);

= εjikxj ;

where we have renamed mute variable as we saw fit. Similarly, we get

{Mi, pk} =
1

2
εlji {Jjl, pk} ;

=
1

2
εlji(δlkpj − δjkpl);

=
1

2
(εkjipj − εlkipl);

= −1

2
(εijkpj + εijkpj);

= εjikpj .
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And finally, we can compute

{Mi,Mk} =
1

4
εljiεmnk {Jjl, Jnm} ;

=
1

4
εljiεmnk(δlnJjm + δjmJln − δlmJjn − δjnJlm);

=
1

4
(εljiεlkmJjm + εjilεjnkJln − εljiεlnkJjn − εjilεjkmJlm) .

We can then rename all the mute variables (i.e. everything that is not i or k), in a way
that would make us able to sum over J, and rearranging the variables in the Levi-Civita
symbol, to get

{Mi,Mk} =
1

4
(εljiεlkmJjm + εljiεlkmJjm + εljiεlkmJjm + εljiεlkmJjm) ;

= εljiεlkmJjm;

= (δjkδim − δjmδik)Jjm;
= Jki.

We used in the last computation the fact that δjmJjm = 0 since Jαα = 0∀α

Problem 9

QUESTION: Find the time derivative Ṁz for the system in exercise Problem 3, by
computing {Mz,H}.

ANSWER : The time derivative of the angular momenta is

dMz

dt
= {Mz,H} = x2

∂U

∂x1
− x1

∂U

∂x2
.

SOLUTION: First we note that for arbitrary function f(p, q, t) one has

df

dt
=
∂f

∂t
+
∂f

∂q
q̇ +

∂f

∂p
ṗ =

∂f

∂t
+
∂f

∂q

∂H
∂p
− ∂f

∂p

∂H
∂q

=
∂f

∂t
+ {f,H} . (3.5)

If f does not depend explicitly on time, only on p and q (and only through them on
time), which is the case for Mi, one has

df

dt
= {f,H} . (3.6)

That is why by computing {f,H} we compute the time derivative ḟ .
Since there is no explicit time dependance in the angular momenta, their time derivative
is given by

Ṁi = {Mi,H} .
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The Hamiltonian in problem 3 was

H =
1

m

[
1

2

(
p21 + p22

)
−B (x1p2 − x2p1) +

1

2
B2
(
x21 + x22

)
)

]
+ U(x1, x2)

=
1

2m

[
(p1 +Bx2)

2 + (p2 −Bx1)2
]
+ U . (3.7)

Note that the system is two dimensional, hence there is a sense to consider only

Mz = x py − y px

{Mz,H} = py
∂H
∂px
− px

∂H
∂py
− x∂H

∂y
+ y

∂H
∂x

= y
∂U

∂x
− x∂U

∂y

+
1

m
[py(px +B y)− px(py −B x)−B x(px +By)−B y(py −B x)]

= y
∂U

∂x
− x∂U

∂y
. (3.8)

Problem 10

QUESTION: Find the time derivatives Ṁx, Ṁy, Ṁz for the system in Problem 5, by
computing {Mi,H}.

ANSWER:
dM

dt
= {M,H} = − e

2c

1

m
√
1 + P 2

m2c2

B× (r×P) .

SOLUTION: Solution of this problem depends a lot on how well you think through your
computational strategy. Bruteforce approach is likely to generate too big expressions
which would be hard to handle.
The first logical step would be to notice that

{H,M} = 2
∂H
∂P 2
{1
2
P 2,M} = 1

m
√
1 + P 2

m2c2

{1
2
P 2,M}. (3.9)

Hence relativistic nature of the Hamiltonian is not that crucial, it produces only the
common prefactor 1

m
√

1+ P2

m2c2

, while the non-trivial part of the computation is to find

{12P
2,M}.

Our preparatory work would be to recall several Poisson brackets which were computed
in the previous problems or follow from them:

{xi,Mj} = εijkxk , {pi,Mj} = εijkpk , (3.10)
{Mi,Mj} = εijkMk . (3.11)
{x2,Mi} = 0, {p2,Mi} = 0 , (3.12)
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And we also recall relations from the vector algebra

(A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C) , (3.13)
A× (B×C) = B (A ·C)−C (A ·B) . (3.14)

In fact, both these equations are due to the Plucker identity

εαβγεαβ′γ′ = δββ′δγγ′ − δβγ′δβ′γ . (3.15)

If we contract (3.15) with AβBβCβ
′
Dγ′ , we get (3.13). If we contract (3.15) with

AγBβ′
Cγ

′ and leave the index β free, we get (3.14).
There is another simple relation we will use:

A · (B×C) = B · (C×A) = C · (A×B) . (3.16)

In the language of Levi-Civita symbol, it is just the property εαβγ = εβγα = εγαβ .
Our next step is to expand 1

2P
2. We will use notation a ' b to say that two expressions

have the same Poisson bracket with M: {a,M} = {b,M}. In practice, we will throw
away x2 and p2 terms from the expansion of 1

2P
2 because of (3.12).

1

2
P 2 =

1

2

(
p− e

2c
B× r

)2
=

1

2
p2 − e

2c
p · (B× r) +

1

2

( e
2c

)2
(B× r)2

=
1

2
p2 − e

2c
B · (r× p) +

1

2

( e
2c

)2 (
B2 r2 − (B · r)2

)
' − e

2c
B ·M− 1

2

( e
2c

)2
(B · r)2 . (3.17)

{B ·M,Mj} = BiεijkMk = −εjikBiMk , → {B ·M ,M} = −B×M . (3.18)

{B · r,Mj} = Biεijkrk = −εjikBirk , → {1
2
(B · r)2 ,M} = −B× r(B · r) . (3.19)

Now we note that

B×M = B× (r× p) = r (B · p)− p (B · r) = r (B ·P)− p (B · r) . (3.20)

We are now ready to compute

{1
2
P 2,M} =

e

2c
B×M+

( e
2c

)2
B× r(B · r) =

=
e

2c
r (B ·P)− e

2c
p (B · r) +

( e
2c

)2
B× r(B · r)

=
e

2c
(r (B ·P)−P (B · r)) = e

2c
B× (r×P) . (3.21)

And finally

{M,H} = − e

2c

1

m
√
1 + P 2

m2c2

B× (r×P) . (3.22)
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DISCUSSION: The derivation was quite lengthy. We can do it differently and faster by
computing directly Ṁ since we already know ṙ and ṗ from Problem 5:

Ṁ = ṙ× p+ r× ṗ =
1

m

1√
1 + P 2

m2c2

(
P× p− e

2c
r× (B×P))

)
=

=
e

2c

1

m

1√
1 + P 2

m2c2

(P× (B× r)− r× (B×P)) , (3.23)

and after a simple algebra we again get (3.22).
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