Spin dependent elastic antiproton interactions

Donie O'Brien

Nigel Buttimore

Trinity College Dublin, Ireland

Email: donie@maths.tcd.ie

25-27 November 2005

IOP Young Physicists' Conference 2005, Donie O'Brien

Introduction

- Fully relativistic formulae for spin averaged and spin dependent (polarisation transfer) one photon exchange differential cross sections are developed for spin 1/2 fermion-fermion elastic scattering.
- These results are required by the Polarised Antiproton eXperiments (PAX) project at GSI Darmstadt.
- In particular, cross sections for polarisation transfer in polarised antiproton-electron $\bar{p} e^{\uparrow} \longrightarrow \bar{p}^{\uparrow} e$ and antiproton-proton $\bar{p} p^{\uparrow} \longrightarrow \bar{p}^{\uparrow} p$ elastic scattering are needed.

The GSI facility

The future accelerator layout

The future facility

Overview

The basics

The differential cross section is related to the amplitude ${\mathcal M}$ by

$$s \frac{d\sigma}{d\Omega} = \frac{1}{(8\pi)^2} |\mathcal{M}|^2$$

The electron current is

$$j^{\mu} = e \,\bar{u}(k',\lambda') \,\gamma^{\mu} \,u(k,\lambda)$$

and the proton current, after Gordon decomposition is

$$J_{\mu} = e \,\bar{u}(P',\Lambda') \left(G_M \,\gamma_{\mu} - F_2 \,\frac{P_{\mu} + P'_{\mu}}{2M}\right) u(P,\Lambda)$$

1 Spin averaged cases

1.1 Structureless

A standard calculation gives the differential cross-section for one photon exchange, of two non-identical spin 1/2 fermions to be

$$s \frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2t^2} \left[2\left(s - m^2 - M^2\right)^2 + 2st + t^2 \right]$$

where m and M are the masses of the particles.

The s, t and u are the Mandelstam variables, and $\alpha = e^2/4\pi$, the electromagnetic coupling constant or fine structure constant.

1.2 One particle structured

Defining electromagnetic form factors $F_1(q^2)$ and $F_2(q^2)$ such that $F_2(0) = \mu - 1$, the anomalous magnetic moment, and for convenience using $G_M = F_1 + F_2$ gives

$$s\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2t^2} \left\{ G_M^2 \left[2\left(s - m^2 - M^2\right)^2 + 2st + t^2 \right] - 2F_2 \left[F_2 \left(1 + \frac{t}{4M^2}\right) + 2F_1 \right] \left[\left(s - m^2 - M^2\right)^2 + t\left(s - m^2\right) \right] \right\}$$

This result equals that of the previous section in the structureless limit $F_1 \rightarrow 1, F_2 \rightarrow 0$ and hence $G_M \rightarrow 1$.

In the $m \rightarrow 0$ limit this is the Rosenbluth formula.

1.3 Both particles structured

Defining the electromagnetic form factors $f_1(q^2)$ and $f_2(q^2)$ for the second particle and using $g_M = f_1 + f_2$ we obtain

$$\begin{split} s \frac{d\sigma}{d\Omega} &= \frac{\alpha^2}{2t^2} \left\{ g_M^2 G_M^2 \left[2\left(s - m^2 - M^2\right)^2 + 2st + t^2 \right] \right. \\ &- 2 g_M^2 F_2 \left[F_2 \left(1 + \frac{t}{4M^2} \right) + 2 F_1 \right] \left[\left(s - m^2 - M^2\right)^2 + t \left(s - m^2\right) \right] \right. \\ &- 2 G_M^2 f_2 \left[f_2 \left(1 + \frac{t}{4m^2} \right) + 2 f_1 \right] \left[\left(s - m^2 - M^2\right)^2 + t \left(s - M^2\right) \right] \\ &+ \frac{f_2 F_2}{2} \left[f_2 \left(1 + \frac{t}{4m^2} \right) + 2 f_1 \right] \left[F_2 \left(1 + \frac{t}{4M^2} \right) + 2 F_1 \right] \left(s - u)^2 \right\} . \end{split}$$

Again this result equals that of the previous section in the one particle structured limit $f_1 \rightarrow 1$, $f_2 \rightarrow 0$ and hence $g_M \rightarrow 1$.

1.4 Antiproton proton case

For antiproton-proton collisions, the electromagnetic form factors and masses of the proton and antiproton are the same, i.e. $f_1 = F_1$ and $f_2 = F_2$ so $g_M = G_M$; and m = M. Here we neglect the *s*-channel one photon contribution in favour of the *t*-channel term which dominates in the low momentum transfer (small *t*) region of interest, and also dominates at high energies. This gives

$$s\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2t^2} \left\{ G_M^4 \left[2\left(s - 2M^2\right)^2 + 2st + t^2 \right] -4G_M^2 F_2 \left[F_2 \left(1 + \frac{t}{4M^2}\right) + 2F_1 \right] \left[\left(s - 2M^2\right)^2 + t\left(s - M^2\right) \right] + \frac{F_2^2}{2} \left[F_2 \left(1 + \frac{t}{4M^2}\right) + 2F_1 \right]^2 (s - u)^2 \right\}$$

This agrees with an expression formed from known fermion fermion helicity amplitudes (N. H. Buttimore *et al.*, Phys. Rev. D **18** (1978) 694), and with a cross section formula for proton proton scattering (M. M. Block Phys. Rev. D **54** (1996) 4337). In this case $s + t + u = 4M^2$ and thus $s - u = 2s + t - 4M^2$.

This result is important in the momentum transfer region $|t| < |t_c|$ for antiproton proton collisions with total cross section σ_{tot} , defined by

$$t_c = -\frac{8 \pi \alpha}{\beta_{\text{lab}} \sigma_{\text{tot}}} \approx -0.001 \, (\text{GeV}/c)^2$$

where the electromagnetic interaction dominates the hadronic interaction. Here the laboratory velocity is $\beta_{\text{lab}} = \sqrt{s(s-4M^2)}/(s-2M^2)$.

2 Spin dependent cases

The basics

- Suppose the initial electron (or proton) to have a spin four vector S_{μ} and the final scattered antiproton to have a spin four vector S'_{μ} .
- We are most interested in the polarisation transfer K_{j00i} , i.e. $\bar{p} p \uparrow \longrightarrow \bar{p} \uparrow p$.

$$\bar{p}(P) + p(k,S) \longrightarrow \bar{p}(P',S') + p(k')$$

- Consider just the spin dependent terms, and use the notation $A \cdot B = A_{\mu}B^{\mu}$.
- Define the momentum transfer to the photon q = k' k = P P' by conservation of 4-momentum, and use $q^2 = t$.

2.1 Structureless

The cross section for polarisation transfer K_{j00i} , from initial electron to final antiproton (assumed structureless here) is

$$s\frac{d\sigma}{d\Omega}K_{j00i} = -\left(\frac{2\alpha^2}{t}\right)mM\left[S\cdot S' - \frac{S\cdot q\,S'\cdot q}{t}\right]$$

2.2 One particle structured

Using the proton electromagnetic form factors as described earlier, and also $S \cdot k = 0$ and $S' \cdot P' = 0$ from the general theory of spin polarisation.

$$s \frac{d\sigma}{d\Omega} K_{j00i} = -\left(\frac{2\alpha^2}{t}\right) mMG_M \left\{ F_1 \left[S \cdot S' - \frac{S \cdot q S' \cdot q}{t} \right] + \frac{F_2}{4M^2} \left[t S \cdot S' + 2 S \cdot P' S' \cdot q \right] \right\}$$

This result equals that of the previous section in the limit $F_1 \rightarrow 1$, $F_2 \rightarrow 0$ and hence $G_M \rightarrow 1$.

This represents a relativistic generalisation of equation (3) of Horowitz & Meyer, PRL **72** (1994) 3981.

2.3 Both particles structured

Using the electromagnetic form factors $f_1(q^2)$ and $f_2(q^2)$ of the second particle as earlier we obtain

$$\begin{pmatrix} -t \\ 2\alpha^2 \end{pmatrix} s \frac{d\sigma}{d\Omega} K_{j00i} = = mMg_M^2 G_M \left\{ F_1 \left[S \cdot S' - \frac{S \cdot q \, S' \cdot q}{t} \right] + \frac{F_2}{4M^2} [t \, S \cdot S' + 2 \, S \cdot P' \, S' \cdot q] \right\} + \frac{f_2}{m} MG_M^2 g_M \left\{ S \cdot S' \left[t \, (t - 4m^2) \right] + 4 \, m^2 S \cdot q \, S' \cdot q + 2 \, t \, S \cdot q \, S' \cdot k \right\} + \frac{f_2}{m} \frac{F_2}{M} G_M g_M k_\tau k'_\alpha P^\lambda P'^\rho S_\beta S'^\sigma \left[(s - u) \epsilon^{\mu\alpha\beta\tau} \epsilon_{\mu\sigma\rho\lambda} \right. \left. - \epsilon^{\mu\alpha\beta\tau} \epsilon_{\nu\sigma\rho\lambda} \left(k^\nu + k'^\nu \right) \left(P_\mu + P'_\mu \right) \right] .$$

Again this equals the previous formulae in the appropriate limits.

2.4 Antiproton proton case

Again the proton and antiproton electromagnetic form factors and masses are the same, and the *s*-channel term is neglected in favour of the *t*-channel contribution in the low momentum transfer region of interest. Thus

$$\begin{pmatrix} -t \\ 2\alpha^2 \end{pmatrix} s \frac{d\sigma}{d\Omega} K_{j00i} =$$

$$= M^2 G_M^3 \left\{ F_1 \left[S \cdot S' - \frac{S \cdot q \, S' \cdot q}{t} \right] + \frac{F_2}{4M^2} [t \, S \cdot S' + 2 \, S \cdot P' \, S' \cdot q] \right\}$$

$$+ F_2 \, G_M^3 \left\{ S \cdot S' \left[t \, \left(t - 4M^2 \right) \right] + 4 \, M^2 S \cdot q \, S' \cdot q + 2 \, t \, S \cdot q \, S' \cdot k \right\}$$

$$\cdot \frac{F_2^2}{M^2} G_M^2 k_\tau k'_\alpha P^\lambda P'^\rho S_\beta S'^\sigma \left\{ \epsilon^{\mu\alpha\beta\tau} \left[\epsilon_{\mu\sigma\rho\lambda} (s - u) - \epsilon_{\nu\sigma\rho\lambda} \left(k^\nu + k'^\nu \right) \left(P_\mu + P'_\mu \right) \right] \right\}$$

and again this result is important in the momentum transfer region $|t| < |t_c|$ defined earlier, where the electromagnetic interaction dominates the hadronic interaction.

Conclusions

- Fully relativistic differential cross section formulae have been derived for polarisation transfer in spin 1/2 fermion-fermion elastic scattering, due to one photon exchange.
- They can be applied to proton-electron and antiproton-electron scattering, and to near forward (small t) antiproton-proton scattering.

Queries to email: donie@maths.tcd.ie

Acknowledgments

I thank "The embark initiative" (IRCSET), for a postgraduate research scholarship.

