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Introduction

• Fully relativistic formulae for spin averaged and spin dependent
(polarisation transfer) one photon exchange differential cross sections
are developed for spin 1/2 fermion-fermion elastic scattering.

• These results are required by the Polarised Antiproton eXperiments
(PAX) project at GSI Darmstadt.

• In particular, cross sections for polarisation transfer in polarised
antiproton-electron p̄ e↑ −→ p̄↑e and antiproton-proton p̄ p↑ −→ p̄↑p
elastic scattering are needed.
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The GSI facility
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The future accelerator layout
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The future facility
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Overview

Figure 1: Feynman diagrams for the three spin averaged cases.
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The basics

The differential cross section is related to the amplitude M by

s
dσ

dΩ
=

1
(8π)2

|M|2

The electron current is

jµ = e ū(k′, λ′) γµ u(k, λ)

and the proton current, after Gordon decomposition is

Jµ = e ū(P ′,Λ′)
(
GM γµ − F2

Pµ + P ′µ
2M

)
u(P,Λ)
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1 Spin averaged cases

1.1 Structureless

A standard calculation gives the differential cross-section for one photon
exchange, of two non-identical spin 1/2 fermions to be

s
dσ

dΩ
=

α2

2 t2
[

2
(
s−m2 −M2

)2
+ 2 s t+ t2

]
where m and M are the masses of the particles.

The s, t and u are the Mandelstam variables, and α = e2/4π, the
electromagnetic coupling constant or fine structure constant.
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1.2 One particle structured

Defining electromagnetic form factors F1(q2) and F2(q2) such that
F2(0) = µ− 1, the anomalous magnetic moment, and for convenience
using GM = F1 + F2 gives

s
dσ

dΩ
=

α2

2 t2

{
G 2
M

[
2
(
s−m2 −M2

)2
+ 2 s t+ t2

]
− 2F2

[
F2

(
1 +

t

4M2

)
+ 2F1

] [(
s−m2 −M2

)2
+ t
(
s−m2

)]}
This result equals that of the previous section in the structureless limit
F1 → 1, F2 → 0 and hence GM → 1.

In the m→ 0 limit this is the Rosenbluth formula.

IOP Young Physicists’ Conference 2005, Donie O’Brien 8



1.3 Both particles structured

Defining the electromagnetic form factors f1(q2) and f2(q2) for the
second particle and using gM = f1 + f2 we obtain

s
dσ

dΩ
=

α2

2 t2

{
g 2
MG

2
M

[
2
(
s−m2 −M2

)2
+ 2 s t+ t2

]
− 2 g 2

MF2

[
F2

(
1 +

t

4M2

)
+ 2F1

] [(
s−m2 −M2

)2
+ t
(
s−m2

)]
− 2G 2

Mf2

[
f2

(
1 +

t

4m2

)
+ 2 f1

] [(
s−m2 −M2

)2
+ t
(
s−M2

)]
+
f2F2

2

[
f2

(
1 +

t

4m2

)
+ 2 f1

] [
F2

(
1 +

t

4M2

)
+ 2F1

]
(s− u)2

}
.

Again this result equals that of the previous section in the one particle
structured limit f1 → 1, f2 → 0 and hence gM → 1.
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1.4 Antiproton proton case

For antiproton-proton collisions, the electromagnetic form factors and
masses of the proton and antiproton are the same, i.e. f1 = F1 and
f2 = F2 so gM = GM ; and m = M . Here we neglect the s-channel one
photon contribution in favour of the t-channel term which dominates in the
low momentum transfer (small t) region of interest, and also dominates
at high energies. This gives

s
dσ

dΩ
=

α2

2 t2

{
G 4
M

[
2
(
s− 2M2

)2
+ 2 s t+ t2

]
− 4G 2

MF2

[
F2

(
1 +

t

4M2

)
+ 2F1

] [(
s− 2M2

)2
+ t
(
s−M2

)]
+
F 2

2

2

[
F2

(
1 +

t

4M2

)
+ 2F1

]2

(s− u)2

}
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This agrees with an expression formed from known fermion fermion
helicity amplitudes (N. H. Buttimore et al., Phys. Rev. D 18 (1978) 694),
and with a cross section formula for proton proton scattering (M. M. Block
Phys. Rev. D 54 (1996) 4337). In this case s+ t+ u = 4M2 and thus
s− u = 2 s+ t− 4M2.

This result is important in the momentum transfer region |t| < |tc| for
antiproton proton collisions with total cross section σtot, defined by

tc = − 8π α
βlab σtot

≈ − 0.001 (GeV/c)2

where the electromagnetic interaction dominates the hadronic interaction.
Here the laboratory velocity is βlab =

√
s(s− 4M2)/(s− 2M2).
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2 Spin dependent cases

Figure: Feynman diagrams for the three spin dependent cases.
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The basics

• Suppose the initial electron (or proton) to have a spin four vector Sµ
and the final scattered antiproton to have a spin four vector S′µ.

• We are most interested in the polarisation transfer Kj00i, i.e.
p̄ p↑ −→ p̄↑p .

p̄(P ) + p(k, S) −→ p̄(P ′, S′) + p(k′)

• Consider just the spin dependent terms, and use the notation
A ·B = AµB

µ.

• Define the momentum transfer to the photon q = k′ − k = P − P ′ by
conservation of 4-momentum, and use q2 = t.
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2.1 Structureless

The cross section for polarisation transfer Kj00i, from initial electron
to final antiproton (assumed structureless here) is

s
dσ

dΩ
Kj00i = −

(
2α2

t

)
mM

[
S · S′ − S · q S

′ · q
t

]
.
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2.2 One particle structured

Using the proton electromagnetic form factors as described earlier, and
also S · k = 0 and S′ · P ′ = 0 from the general theory of spin polarisation.

s
dσ

dΩ
Kj00i = −

(
2α2

t

)
mMGM

{
F1

[
S · S′ − S · q S

′ · q
t

]
+

F2

4M2
[t S · S′ + 2S · P ′ S′ · q]

}
This result equals that of the previous section in the limit F1 → 1, F2 → 0
and hence GM → 1.

This represents a relativistic generalisation of equation (3) of Horowitz &
Meyer, PRL 72 (1994) 3981.
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2.3 Both particles structured

Using the electromagnetic form factors f1(q2) and f2(q2) of the second
particle as earlier we obtain(
−t

2α2

)
s
dσ

dΩ
Kj00i =

= mMg 2
MGM

{
F1

[
S · S′ − S · q S

′ · q
t

]
+

F2

4M2
[t S · S′ + 2S · P ′ S′ · q]

}
+
f2

m
MG 2

MgM
{
S · S′

[
t
(
t− 4m2

)]
+ 4m2S · q S′ · q + 2 t S · q S′ · k

}
+
f2

m

F2

M
GMgMkτk

′
αP

λP ′ρSβS
′σ [(s− u)εµαβτεµσρλ

−εµαβτενσρλ (kν + k′ν)
(
Pµ + P ′µ

)]
.

Again this equals the previous formulae in the appropriate limits.
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2.4 Antiproton proton case

Again the proton and antiproton electromagnetic form factors and
masses are the same, and the s-channel term is neglected in favour of the
t-channel contribution in the low momentum transfer region of interest.
Thus(

−t
2α2

)
s
dσ

dΩ
Kj00i =

= M2G 3
M

{
F1

[
S · S′ − S · q S

′ · q
t

]
+

F2

4M2
[t S · S′ + 2S · P ′ S′ · q]

}
+F2G

3
M

{
S · S′

[
t
(
t− 4M2

)]
+ 4M2S · q S′ · q + 2 t S · q S′ · k

}
+
F 2

2

M2
G 2
Mkτk

′
αP

λP ′ρSβS
′σ {εµαβτ [εµσρλ(s− u)− ενσρλ (kν + k′ν)

(
Pµ + P ′µ

)]}
and again this result is important in the momentum transfer region
|t| < |tc| defined earlier, where the electromagnetic interaction dominates
the hadronic interaction.
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Conclusions

• Fully relativistic differential cross section formulae have been derived
for polarisation transfer in spin 1/2 fermion-fermion elastic scattering,
due to one photon exchange.

• They can be applied to proton-electron and antiproton-electron
scattering, and to near forward (small t) antiproton-proton scattering.
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