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Abstract

There has been much recent research into polarizing an antiproton beam, in-
stigated by the recent proposal from the PAX (Polarized Antiproton eXperiment)
project at GSI Darmstadt [1]. It plans to polarize an antiproton beam by repeated
interaction with a polarized internal target in a storage ring. The method of po-
larization by spin filtering requires many of the beam particles to remain within
the ring after scattering off the polarized internal target via electromagnetic and
hadronic interactions. Sets of differential equations which describe the buildup of
polarization by spin filtering in many different scenarios have recently been pre-
sented and solved [2 – 8]. In this paper we add to this literature by investigating a
scenario where unpolarized particles are input into the beam at a linearly increasing
rate, i.e. the input rate is ramped up.

The spin filtering method of polarization buildup [9, 10, 11] consists of a circulating
beam repeatedly interacting with a polarized internal target in a storage ring. Many
particles are scattered at small angles but remain in the beam. This introduces a charac-
teristic acceptance angle θacc, scattering above which causes particles to be lost from the
beam. There is also a minimum scattering angle θmin, corresponding to the Bohr radius
of the atoms in the target, below which scattering is prevented by Coulomb screening.
The two physical processes that contribute to polarization buildup in spin filtering are:
(a) spin selective scattering out of the ring, and (b) selective spin-flip, i.e. particles in one
spin state may be scattered out of the beam (a), or have their spin flipped (b), at a higher
rate than particles in the other spin state. Thus over time one spin state is depleted more
than the other leading to a beam polarization. A problem with this method is that while
there is an increase of beam polarization there is a significant decrease in beam intensity,
since particles are continuously scattered out of the beam. We are investigating continu-
ously inputing unpolarized particles into the beam, during spin filtering, to compensate
this effect.

When circulating at frequency ν, for a time τ , in a ring with a polarized internal target
of areal density n and polarization Pe oriented normal to the ring plane, (or longitudinally
with rotators)
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describes the rate of change of the number of beam particles N(τ) = N↑(τ) + N↓(τ) and
their total spin J(τ) = N↑(τ) − N↓(τ) [3, 4]. The matrix entries are the spin observables
integrated with respect to scattering angle θ over the following ranges. The “in” subscript
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refers to particles that are scattered at small angles ≤ θacc remaining in the beam, and the
“out” subscript refers to particles that are scattered out of the beam. Thus the integrals
over scattering angle θ are labeled “in” where the range of integration is θmin ≤ θ ≤ θacc,
“out” where the range of integration is θacc < θ ≤ π and “all” = “in” + “out” where
the range of integration is θmin ≤ θ ≤ π as seen in table 1 of ref. [8]. I = dσ / dΩ is the
spin averaged differential cross-section and A, K and D are the double spin asymmetry,
polarization transfer and depolarization spin observables respectively as calculated in
ref. [12]. The eigenvalues of the above matrix of coefficients are found to be

λ1 = −n ν ( I out + L in + L d ) and λ2 = −n ν ( I out + L in − L d ) , (2)

where the discriminant L d of the quadratic equation for the eigenvalues is

L d =
√

P 2
e A out (A all − K in) + L 2

in , (3)

and L in = ( I in − D in) / 2 is a loss of polarization quantity. Note that I out, L in and L d

are all positive. As a consequence the eigenvalues are negative and λ1 < λ2 < 0.
The system above and various alternative scenarios have been developed and solved

recently in ref. [8]. These scenarios are: 1) spin filtering of a fully stored beam, 2) spin
filtering while the beam is being accumulated, i.e. unpolarized particles are continuously
being fed into the beam at a constant rate, 3) the particle input rate is equal to the rate
at which particles are being lost due to scattering beyond ring acceptance angle, the beam
intensity remaining constant, 4) increasing the initial polarization of a stored beam by
spin filtering, 5) the input of particles into the beam is stopped after a certain amount of
time, but spin filtering continues. In this paper we add to the literature by investigating
a scenario where unpolarized particles are input into the beam at a linearly increasing
rate, i.e. the input rate is ramped up. This is accounted for by the following system of
spin evolution equations

d N(τ)

d τ
= −n ν [ I out N(τ) + Pe A out J(τ) ] + β τ , (4)

d J(τ)

d τ
= −n ν [Pe (A all − K in ) N(τ) + ( I all − D in ) J(τ) ] , (5)

where β τ is the rate at which particles are fed in, the input ramped up at a rate pro-
portional to the time elapsed. The initial conditions are N(0) = N0 which we may later
set to zero, and J(0) = 0. By differentiating eq.(5) with respect to τ and substituting in
eq.(4) one obtains a second order linear inhomogeneous differential equation for J(τ):

d 2 J(τ)

d τ 2
− ( λ1 + λ2 )

d J(τ)

d τ
+ λ1 λ2 J(τ) = −n ν Pe (A all − K in ) β τ , (6)

the solution of which is

J(τ) = Fλ2 λ1
eλ1 τ + Fλ1 λ2

eλ2 τ + β (A1 τ + A2 ) . (7)

Where for convenience we have defined the constants

A1 ≡
−n ν Pe (A all − K in )

λ1 λ2
and A2 ≡
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λ 2
1 λ 2

2

, (8)
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Fλ2 λ1
≡

n ν (A all − K in ) N0 Pe + β (A1 − λ2 A2 )

λ2 − λ1
, (9)

obtained by imposing the initial conditions J(0) = 0 and N(0) = N0 thus d J(0)/d τ =
−n ν Pe (A all − K in ) N0. The function Fλ1 λ2

is Fλ2 λ1
with λ1 and λ2 interchanged.

Differentiating eq.(7) with respect to τ and substituting into eq.(5) gives an expression
for N(τ):

N(τ) =
−1
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{
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eλ1 τ ( L in − L d ) + Fλ1 λ2

eλ2 τ ( L in + L d )

+ β
[
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] }

. (10)

As a consistency check it can be seen that the inhomogeneous solutions for J(τ) and N(τ)
satisfy the initial conditions, and that when β = 0 they reduce to the solutions of the
homogeneous system eq.(1) presented in refs. [5, 8].

Dividing J(τ) by N(τ) we obtain an expression for the polarization as a function of
time (τ),
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When β = 0 the above equation simplifies to

P(τ) =
−Pe (A all − K in )

L in + L d coth (L d n ν τ)
, (12)

which is the solution of the homogeneous case eq.(1) presented in refs. [5, 8].
Of interest is the case when N(0) = N0 = 0, i.e. there are no particles in the beam

initially. To obtain this result we set N0 = 0 in the above equation to obtain
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where for β 6= 0 the β dependence vanishes. We should note the obvious physical fact
that if N0 = 0 and β = 0, i.e. there are no particles in the beam initially and no particles
are fed into the beam, then there will never be any particles in the beam; so measuring
the beam polarization is meaningless. Using a Taylor Series expansion we obtain the
approximate initial rate of polarization buildup

dP

dτ
≈ −n ν Pe (A all − K in) , (14)

identical to that of the homogeneous case eq.(1) presented in refs. [5, 8]. The maximum
polarization achievable is the limit as time approaches infinity:

Pmax = lim
τ→∞

P(τ) =
−Pe ( A all − K in )

I all − D in
=

−Pe (A all − K in )

I out + 2 L in
. (15)
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The above expression is only valid for β 6= 0, the β = 0 expression is presented in
refs. [5, 8].

The Figure Of Merit (FOM) provides a measure of the quality of the polarized beam,
taking into account the trade-off between increasing beam polarization and decreasing
beam intensity. For this inhomogeneous case the FOM is:

FOM(τ) = P 2(τ) N(τ) =
J 2(τ)

N(τ)
= (16)

−Pe ( A all − K in )
[

Fλ2 λ1
eλ1 τ + Fλ1 λ2

eλ2 τ + β ( A1 τ + A2 )
] 2

Fλ2 λ1
eλ1 τ ( L in + L d ) − Fλ1 λ2

eλ2 τ ( L in + L d ) + β
[

A1

nν
+ ( I all − D in ) (A1 τ + A2 )

] .

If the particle accumulation rate β τ is high enough to make the beam intensity constant
or increase with time the FOM will be a monotonically increasing function of time, i.e. it
will not have a finite maximum.
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