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Abstract.
Many sets of polarization evolution equations have been suggested to describe the method of

polarization buildup by spin filtering in storage rings. In this paper a generic system of polarization
evolution equations describing spin filtering is derived and solved, then we compare and contrast this
system to other descriptions of spin filtering appearing in the literature. This is of interest to projects
planning to produce a polarized antiproton beam by spin filtering, and to any project utilizing spin
filtering in storage rings. The physical processes responsible for spin filtering are analysed and their
contributions to the dynamics of polarization buildup are highlighted. It is hoped that this will shed
light on some of the confusion in the literature.
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INTRODUCTION

Spin filtering was originally proposed by P. L. Csonka in 1968 [1] and was demonstrated
experimentally for polarized protons in 1993 by the FILTEX experiment at the Test
Storage Ring in Heidelberg [2]. The spin filtering method is at the heart of the recent
PAX (Polarized Antiproton eXperiments) proposal to generate a polarized beam of
antiprotons in the HESR ring of FAIR at GSI Darmstadt [3, 4], the principal aim of
which is to investigate the transversity distribution of quarks inside nucleons [5, 6].

Many sets of polarization evolution equations have been suggested to describe the
method of polarization buildup by spin filtering. A generic system is derived in this
paper, then this system is compared and contrasted to other descriptions of spin filtering
appearing in the literature. The need for this work was highlighted by H. O. Meyer in
his summary talk at the Polarized Antiproton Beams - How? Workshop [7] and some of
his ideas and suggestions are addressed in this paper.

The spin filtering method of polarization buildup [1, 2, 4] consists of a circulating
beam repeatedly interacting with a polarized internal target in a storage ring. Many par-
ticles are scattered at small angles but remain in the beam. This introduces a character-
istic laboratory acceptance angle θacc, scattering above which causes particles to be lost
from the beam. There is also a minimum laboratory scattering angle θ min, correspond-
ing to the Bohr radius of the atoms in the target, below which scattering is prevented by
Coulomb screening. The two physical processes that contribute to polarization buildup
by spin filtering are: (a) spin selective scattering out of the beam, and (b) selective spin-
flip. Thus particles in one spin state may be scattered out of the beam, or have their
spin-flipped while remaining in the beam, at a higher rate than particles in the other spin
state. Thus over time one spin state is depleted more than the other leading to a beam
polarization.
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POLARIZATION EVOLUTION EQUATIONS

The two physical processes that contribute to polarization buildup by spin filtering are
shown in Figure 1. The number of particles in the ‘spin up’ state can change by three
means: (1) ‘spin up’ particles being scattered out of the beam, the cross-section for
which is labeled as σ out

+ , (2) ‘spin up’ particles being flipped to ‘spin down’ particles
while remaining in the beam, the cross-section for which is labeled as σ+−, and (3) ‘spin
down’ particles being flipped to ‘spin up’ particles while remaining in the beam, the
cross-section for which is labeled as σ−+. Mechanisms (1) and (2) constitute a decrease
in the number of ‘spin up’ particles and (3) constitutes an increase in the number of
‘spin up’ particles. Correspondingly the number of particles in the ‘spin down’ state can
also change by three means: (1) ‘spin down’ particles being scattered out of the beam,
the cross-section for which is labeled as σ out

− , (2) ‘spin down’ particles being flipped to
‘spin up’ particles while remaining in the beam (σ−+) and (3) ‘spin up’ particles being
flipped to ‘spin down’ particles while remaining in the beam (σ+−).

All of this can be expressed by the following system of polarization evolution equa-
tions [7] :

d
d τ

[

N+

N−

]

= −nν

[

σ out
+ + σ+− −σ−+

−σ+− σ out
− + σ−+

] [

N+

N−

]

, (1)

where τ is the time variable, n is the areal density of the target, ν is the revolution
frequency of the beam and N+(τ) and N−(τ) are the number of beam particles in the
‘spin up’ and ‘spin down’ states at time τ respectively. This set of polarization evolution
equations, presented by H. O. Meyer [7], are similar to those treated by A. I. Milstein
and V. M. Strakhovenko [8] (note that their Ω+− is σ−+ here etc.), W. W. MacKay and
C. Montag [9] and V. F. Dmitriev, A. I. Milstein and V. M. Strakhovenko [10].

For a beam that is initially unpolarized one imposes the following initial conditions

N+(0) = N−(0) =
N0

2
, (2)

where N0 = N+(0) + N−(0) is the total number of particles in the beam initially. We
define the beam intensity N(τ) = N+(τ) + N−(τ) as the total number of particles in the
beam at time τ , and the beam total spin as J(τ) = N+(τ) − N−(τ) so that polarization
of the beam at time τ is simply given by

P(τ) =
N+(τ) − N−(τ)

N+(τ) + N−(τ)
=

J(τ)

N(τ)
. (3)

The beam intensity is a physically important variable. One requires a beam intensity as
large as possible to ensure high luminosity in an experiment, which implies greater data
taking leading to more accurate results. A problem with spin filtering where particles are
scattered out of the beam is that while the beam polarization increases the beam intensity
decreases.

Note some treatments of spin filtering investigate a scenario where no particles are
scattered out of the beam, i.e. the maximum scattering angle for the process is less than
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FIGURE 1. These diagrams describe the two physical processes, selective scattering out of the beam and
selective spin-flip, that contribute to polarization buildup by spin filtering in a storage ring. Black squares
represent particles in the ‘spin up’ state and white squares represent particles in the ‘spin down’ state,
while the large grey box represents a polarized target. In both cases the beam is initially unpolarized
with equal numbers of particles in the ‘spin up’ and ‘spin down’ states. We label the cross-sections
for particles in the ‘spin up’ and ‘spin down’ states to be scattered out of the beam as σ out

+ and σ out
−

respectively, the cross-section for a particle in the ‘spin up’ state to be flipped to the ‘spin down’ state
while remaining in the beam as σ+− and the cross-section for a particle in the ‘spin down’ state to be
flipped to the ‘spin up’ state while remaining in the beam as σ −+. In order for each of these processes to
contribute to beam polarization buildup one must have σ out

+ 6= σ out
− and σ+− 6= σ−+ respectively.

(A) The first diagram which represents selective scattering out of the beam can be explained as follows:
When interacting with the polarized target at certain energies particles in the ‘spin up’ state are scattered
out of the beam at a higher rate than particles in the ‘spin down’ state, hence the larger black arrow than
white arrow. Thus one is left with a beam that has more particles in the ‘spin down’ state, i.e. the beam
is now polarized, represented by the excess of white squares in the final beam. Note that since particles
have been scattered out of the ring there are less particles in the beam after interaction than were in the
beam initially; this is represented by the smaller final beam. If the target was unpolarized, particles in
both spin states would be lost at equal rates, thus no polarization buildup would occur via this process.
(B) The second diagram which represents selective spin-flip can be explained as follows: On interaction
with the polarized target at certain energies the ‘spin up’ to ‘spin down’ spin-flip cross-section is larger
than the ‘spin down’ to ‘spin up’ spin-flip cross-section. This is represented by different size arrows with
colors fading from black to white and from white to black respectively. Thus after interaction with the
target the beam will have more particles in the ‘spin down’ state than in the ‘spin up’ state, i.e. the beam is
now polarized, represented by the excess of white squares in the final beam. Note that the beam intensity
is the same after interaction with the polarized target in this process since particles are not lost, they are
just flipped from one spin state to the other. If the target was unpolarized, particles in both spin states
would have their spins flipped at equal rates, thus no polarization buildup would occur via this process.

the ring acceptance angle, which is the case for antiprotons scattering off electrons in an
atomic target [8, 11, 12, 13, 14] and for antiprotons scattering off a co-moving beam of
electrons or positrons [15]. In these scenarios only selective spin-flip can contribute to
polarization buildup, and one avoids the problem of decreasing beam intensity. The low
density of the targets currently available causes the rate of polarization buildup using
these methods to be slow, but the enhanced cross-sections at low energies suggested in
refs. [15, 16] may compensate this difficulty. We analyze such systems later in the paper.
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Before solving this system of polarization evolution equations we shall prove four short
results providing a consistency check that the equations accurately describe the physical
phenomena we wish to investigate. This also provides a chance to highlight the dynami-
cal properties of the physical system, which any description of spin filtering must satisfy.

1) If σ out
+ = σ out

− and σ+− = σ−+ there will be no buildup of beam polarization,
but there will still be loss of beam intensity N(τ).
This can be shown as follows: When σ out

+ = σ out
− and σ+− = σ−+ the polarization

evolution equations presented in eqs. (1) reduce to

d
d τ

[

N+

N−

]

= −nν

[

σ out
+ + σ+− −σ+−

−σ+− σ out
+ + σ+−

] [

N+

N−

]

, (4)

i.e.

d N+

d τ
= −nν

[(

σ out
+ +σ+−

)

N+ − σ+− N−

]

,

d N−

d τ
= −nν

[

−σ+− N+ +
(

σ out
+ + σ+−

)

N−

]

, (5)

which can be added and subtracted to give

d N(τ)

d τ
= −nν σ out

+ N(τ) ,

d J(τ)

d τ
= −nν

(

σ out
+ + 2σ+−

)

J(τ) , (6)

two uncoupled first order separable Ordinary Differential Equations (ODE) which can
be integrated to give the solutions

N(τ) = N(0) e−nν σ out
+ τ = N0 e−nν σ out

+ τ ,

J(τ) = J(0) e−nν (σ out
+ +2σ+− )τ . (7)

One sees that N(τ) will decrease exponentially and J(τ) which is zero initially will
always remain zero, i.e. if J(0) = 0 then J(τ) = 0 for all τ . Thus there will be no
polarization buildup. Also in the case when the beam is initially polarized (J(0) 6= 0)
its polarization will decrease exponentially to zero, remembering the cross-sections are
positive quantities. We later show that σ out

+ = σ out
− and σ+− = σ−+ when the internal

target is not polarized. Thus there will be no polarization buildup by spin filtering if the
internal target is unpolarized.
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2) If σ out
+ = σ out

− = 0 there will be no loss of beam intensity N(τ) = Constant = N0 ,
but there may still be beam polarization buildup.
This can be shown as follows: When σ out

+ = σ out
− = 0 (this happens when the maximum

scattering angle for the process is less than the ring acceptance angle) the polarization
evolution equations presented in eqs. (1) reduce to

d
d τ

[

N+

N−

]

= −nν

[

σ+− −σ−+

−σ+− σ−+

] [

N+

N−

]

, (8)

i.e.

d N+

d τ
= −nν

(

σ+− N+ − σ−+ N−

)

,

d N−

d τ
= −nν

(

−σ+− N+ + σ−+ N−

)

, (9)

and adding these gives

d N
d τ

= −nν
(

σ+− N+ − σ−+ N− − σ+− N+ + σ−+ N−

)

= 0 .

So we have d /d τ
[

N+(τ) + N−(τ)
]

= 0 which implies N+(τ) + N−(τ) =
constant = N0 . Thus there will be no loss of particles, as expected. Subtracting
eqs. (9) from each other gives

d J
d τ

= −2nν
(

σ+−N+ − σ−+ N−

)

.

which leads to a non-zero J(τ) (i.e. non-zero polarization) provided that σ+− 6= σ−+ .
This point is highlighted in the Th. Walcher et al. paper [15], where for a co-moving

positron beam the maximum antiproton scattering angle is less than the ring acceptance
angle, thus no particles are scattered out of the beam. In fact eqs. (9) above are identical
to eqs. (45 and 46) of ref. [15], upon which Th. Walcher et al. base their dynamics.

The system without scattering out of the beam described in eq. (8) is very similar
to the system which describes the Sokolov-Ternov effect of radiative polarization
[17, 18, 19, 20]. The systems describing these two physical processes should be similar
as they are both governed solely by spin-flip transitions. In spin filtering the spin-flip
transitions are induced by scattering off the polarized internal target while in the
Sokolov-Ternov effect the spin-flip transitions are induced by spontaneous synchrotron
radiation emission of photons while the charged particles of the beam are being bent
in the magnetic field of the ring. In fact these systems are identical except for the
interpretations of the matrix entries, and that because there is no target in the Sokolov-
Ternov effect, the system of equations describing it does not depend on a target areal
density n. While electrons and positrons circulating in a storage ring acquire a useful
polarization in a relatively short time due to the Sokolov-Ternov effect [19, 20], an
unrealistically large time would be required in the case of protons or antiprotons at

A study of polarization buildup by spin filtering November 29, 2007 5



currently achievable energies, due to their high mass [17]. While during spin filtering
in a storage ring polarization buildup due to the Sokolov-Ternov effect does happen,
for low energy antiprotons the rate is many orders of magnitude lower than the rate of
polarization buildup due to spin filtering [17]. Thus the Sokolov-Ternov effect may be
neglected in the treatment of antiproton polarization buildup by spin filtering, at the low
energies of interest.

3) When there is no scattering out of the beam, i.e. σ out
+ = σ out

− = 0, the condi-
tion

d N+

d τ
= −

d N−

d τ
, (10)

must be satisfied.
We have shown that when there is no scattering out of the beam the polarization evolu-
tion equations reduce to eqs. (9) which can immediately be seen to satisfy eq. (10).

This point is highlighted in the Th. Walcher et al. paper [15], where for a co-moving
polarized positron beam there is no scattering out of the beam.

4) When there is no spin-flip the change in one spin state should not depend on
the number of particles in the other spin state, i.e. the equations should decouple.
This can be shown as follows: When there is no spin-flip σ+− = σ−+ = 0 and thus the
polarization evolution equations presented in eqs. (1) reduce to

d N+

d τ
= −nν σ out

+ N+ ,

d N−

d τ
= −nν σ out

− N− , (11)

which is an uncoupled system of equations as required.
This point is highlighted in W. W. MacKay and C. Montag’s paper [9]. One sees

that if in addition σ out
+ = σ out

− in eqs. (11) then no polarization buildup occurs. It is
claimed by the Budker-Jülich groups that the spin-flip transition rates are negligible for
antiprotons scattering off polarized electrons in a hydrogen target [8, 13]. The maximum
scattering angle of antiprotons scattering off atomic electrons is 0.54 mrad [8], below
the acceptance angle of a typical storage ring, thus there is no scattering out of the
beam. Since there is no scattering out of the beam, and spin-flip transitions are negligible
the Budker-Jülich groups conclude that polarized electrons in an atomic target are not
effective in transferring polarization to an antiproton beam by spin filtering [8, 13]. To
force some antiprotons to be scattered out of the beam, and to avoid the problem of loss
of beam intensity due to antiprotons annihilating with the protons in an atomic target, it
has been suggested to use an opposing polarized electron beam of sufficient energy to
scatter some antiprotons beyond the ring acceptance angle [14]. The rate of polarization
buildup using this method is slow due to the low densities of polarized electron beams
currently available [14], but the enhanced cross-sections at low energies suggested in
refs. [15, 16] may compensate this difficulty.
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σ out
+ , σ out

− , σ+− , σ−+ AND THE SPIN OBSERVABLES

The spin observables of a spin 1/2 - spin 1/2 scattering process are defined in refs. [21,
22]. In spin filtering where the polarization of the recoiled target particle is not important
one is interested in the polarization transfer, depolarization and double spin asymmetry
spin observables. These have been calculated for electromagnetic antiproton-proton and
antiproton-electron elastic scattering in ref. [23]. The spin transfer observable has been
calculated for low energy antiproton-positron scattering in ref. [16]. A large increase
of this spin transfer cross-section at very low energies is the basis for the proposal to
polarize antiprotons by interaction with a co-moving polarized positron beam presented
in ref. [15].

The cross-sections σ out
+ , σ out

− , σ+− and σ−+ can be related to the spin observables by
the following relations [13]:

σ out
+ ≡ Iout + PT Aout , (12)

σ out
− ≡ Iout − PT Aout , (13)

σ+− ≡ L in +
PT

2

(

A in − Kin

)

, (14)

σ−+ ≡ L in −
PT

2

(

A in − Kin

)

, (15)

where PT is the polarization of the target, and L in =
(

Iin −D in

)

/2 is a loss of polariza-
tion quantity. I = dσ /dΩ is the spin averaged differential cross-section and A, K and D
are the double spin asymmetry, polarization transfer and depolarization spin observables
respectively as calculated in ref. [23]. As we show later, the relations above are crucial
for comparing the different theoretical descriptions of spin filtering which appear in the
literature. The subscripts “in”, “out” and “all” refer to angular integration of the spin
observables over the following ranges: The “in” subscript refers to particles that are
scattered at small angles ≤ θacc remaining in the beam, and the “out” subscript refers to
particles that are scattered out of the beam. Thus the integrals over scattering angle θ are
labeled “in” where the range of integration is θmin ≤ θ ≤ θacc, “out” where the range
of integration is θacc < θ ≤ π and “all” = “in” + “out” where the range of integration
is θmin ≤ θ ≤ π as seen in table 1 of ref. [24].

Note the following linear combinations of the cross-sections

Iout =
σ out

+ + σ out
−

2
, (16)

PT Aout =
σ out

+ − σ out
−

2
, (17)

L in =
σ+− + σ−+

2
, (18)
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PT

(

A in − Kin

)

= σ+− − σ−+ . (19)

Again to ensure consistency and to highlight the physical properties we are trying to
describe mathematically we prove three short results on the above relations between the
cross-sections and the spin observables.

1) If the target is unpolarized (PT = 0) then one has that σ out
+ = σ out

− and σ+− = σ−+
so no polarization buildup will occur.
This can be shown as follows: Setting PT = 0 into the eqs. (12, 13, 14 and 15) one
immediately obtains σ out

+ = Iout = σ out
− and σ+− = L in = σ−+. Once this is satisfied it

has been proved earlier, using eq. (7), that no polarization buildup will occur in this case.

2) The spin-flip cross-sections should depend only on spin observables relating to
particles scattering within the ring, i.e. only to “in” subscripted spin observables which
are integrated from θmin to θacc .
This is immediately satisfied by the relations in eqs. (14 and 15).

3) The cross-section differences σ out
+ − σ out

− and σ+− − σ−+ should both be pro-
portional to the target polarization PT .
This is immediately satisfied by the relations in eqs. (17 and 19).

While the system of polarization evolution equations involving the variables N+(τ) and
N−(τ) presented in eq. (1) is very transparent, one is more interested in the variables
N(τ) and J(τ) which immediately lead to P(τ) = J(τ)/N(τ). We can transform the
system of two first order coupled ODE in variables N+(τ) and N−(τ) presented in
eq. (1) to the following system of two first order ODE in variables N(τ) and J(τ)
[13, 14, 24] :

d
dτ

[

N

J

]

= −nν

[

Iout PT Aout

PT

(

Aall − Kin

)

Iall − D in

] [

N

J

]

, (20)

where we have also transformed from the cross-sections to the spin observables which
have already been calculated [23]. The above system of polarization evolution equations
has been presented by N. N. Nikolaev and F. F. Pavlov [13] and is further discussed
in refs. [24, 25]. The systems presented in eqs. (1) and eqs. (20) are identical provided
eqs. (12–15) hold. From now on we concentrate on the latter as its solution is more
illustrative of the underlying physical phenomena, and the dependence on the target
polarization is explicit. In particular one immediately sees that when the target is unpo-
larized no beam polarization buildup occurs, as when PT = 0 the system reduces to two
uncoupled separable first order ODE as in eq. (6) with solutions as presented in eq. (7)
showing P(τ) = 0 for all τ if PT = 0.
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SOLUTION OF THE POLARIZATION EVOLUTION EQUATIONS

In this section we solve the polarization evolution equations presented in eq. (20). The
eigenvalues of the matrix of coefficients are found to be

λ1 = −nν
(

Iout + L in + Ld

)

and λ2 = −nν
(

Iout + L in − Ld

)

, (21)

where the discriminant Ld of the quadratic equation for the eigenvalues is

Ld =
√

P2
T Aout

(

Aall − Kin

)

+ L2
in . (22)

Note that Iout, L in and Ld are all positive. As a consequence the eigenvalues are negative
and λ1 < λ2 < 0.

Now enforcing the initial conditions N(0) = N0 the total number of particles in
the beam initially, and J(0) = 0 ⇒ N+(0) = N−(0) = N0 /2 i.e. initially the beam
is unpolarized, one obtains the solutions:

N(τ) =

[

eλ1 τ (

Ld −L in

)

+ eλ2 τ (

Ld +L in

)

]

N0

2Ld
, (23)

J(τ) =

(

eλ1 τ − eλ2 τ
)

(

Aall −Kin

)

N0 PT

2Ld
. (24)

The time (τ) dependence of the polarization of the beam is given by

P(τ) =
J(τ)

N(τ)
=

−PT

(

Aall − Kin

)

L in + Ld coth
(

Ld nν τ
) . (25)

The expression for P(τ) is proportional to PT which confirms that if the target polariza-
tion is zero there will be no polarization buildup in the beam. The approximate rate of
change of polarization for sufficiently short times, and the limit of the polarization for
large times are respectively:

dP
dτ

≈ −nν PT

(

Aall − Kin

)

and lim
τ→∞

P(τ) = −PT
Aall − Kin

L in + Ld
. (26)

For pure electromagnetic scattering the double spin asymmetries equal the polarization
transfer spin observables [23], thus one can simplify the above equations using A in =
Kin, Aout = Kout and Aall = Kall ; hence Aall − Kin = Kout .

The solution to the above system and to many alterations to this system accounting for
spin filtering in various scenarios have been presented recently [24, 25]. These scenarios
are: 1) spin filtering of a fully stored beam, 2) spin filtering while the beam is being
accumulated, i.e. unpolarized particles are continuously being fed into the beam at a
constant rate, 3) unpolarized particles are continuously being fed into the beam at a
linearly increasing rate, i.e. the particle input rate is ramped up, 4) the particle input
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rate is equal to the rate at which particles are being lost due to scattering beyond
ring acceptance angle, the beam intensity remaining constant, 5) increasing the initial
polarization of a stored beam by spin filtering, and 6) the input of particles into the beam
is stopped after a certain amount of time, but spin filtering continues.
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