
4. Spin dependent cases

Suppose the initial target electron (or proton) to have a spin four vector Sµ

and the final scattered antiproton to have a spin four vector S′

µ.
We are most interested in the polarization transfer Kj00i , i.e. p̄ p↑ −→ p̄↑p .

Structureless

We find the one photon exchange cross section for polarization transfer from
initial electron to final antiproton (assumed structureless here) to be
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One particle structured

Using the electromagnetic form factors as described earlier, and also S ·k = 0
and S′ · P ′ = 0 from the theory of spin polarization,
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which equals the previous result in the limit F1 → 1, F2 → 0 and GM → 1.
This represents a relativistic generalization of equation (3) of reference [4].

Both particles structured

We have also derived results for both particles structured, in the spin averaged
and spin dependent cases. Specifically results for polarization transfer in
antiproton-proton interactions have been obtained [1], which are required by
the PAX collaboration.

5. Summary

The spin averaged and polarization transfer elastic differential cross sections
due to one photon exchange presented here may assist in understanding the
spin filtering process that seeks to increasingly polarize antiprotons in a storage
ring, in order to measure a number of significant properties of the proton. In
particular, the transversity distribution of the valence quarks in addition to
the analytic properties of the time-like electromagnetic form factors would be
measured for the first time.

These results can be applied to proton-electron and antiproton-electron
scattering, and to near forward (small t) antiproton-proton scattering where
the Coulomb interaction is important.
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Abstract

Relativistic formulae for spin averaged and spin dependent one photon ex-
change differential cross sections are developed for spin 1/2 fermion-fermion
elastic scattering [1]. These results are required by the Polarized Antiproton
eXperiments (PAX) project at GSI Darmstadt. In particular, cross sections
for polarization transfer in polarized antiproton-electron p̄ e↑ −→ p̄↑e and
antiproton-proton p̄ p↑ −→ p̄↑p elastic collisions are presented.

1. Introduction

Antiprotons were discovered fifty years ago. We investigate the results of
elastic scattering of antiprotons off electrons and protons, due to single photon
exchange, first unpolarized in sections 2 and 3. Fully relativistic polarization
transfer differential cross sections are derived for elastic antiproton-electron
and antiproton-proton Coulomb scattering in section 4. In section 5 our results
are summarized.

Emphasis is put on the spin transfer differential cross section for elastic
antiproton-proton scattering, as it has been suggested in a recent paper that
electrons are not effective in transferring polarization to antiprotons in the
kinematic region of the PAX programme [2].

2. Cross sections

The differential cross section is related to the helicity amplitudes
M(Λ′λ′; Λ λ) by
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where λ,Λ and λ′,Λ′ are the helicities of the initial and final particles respec-
tively, and the s and t are Mandelstam variables.

3. Spin averaged cases

Structureless

A standard calculation gives the differential cross section for one photon ex-
change, of two non-identical spin 1/2 point particles to be
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where m and M are the masses of the particles, and α = e2/4π.

One particle structured

Consider one particle to have structure determined by the electromagnetic
form factors F1(q

2) and F2(q2) normalized to F1(0) = 1 and F2(0) =
µ−1, the anomalous magnetic moment. Using t = q2 and GM = F1 +F2,
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which agrees with the previous result in the structureless limit F1 → 1,
F2 → 0 and hence GM → 1. In the m → 0 limit this is the famous
Rosenbluth formula [3].
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Figure 1: Feynman diagrams for the three spin averaged cases.
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Figure 2: Feynman diagrams for the three spin dependent cases.


