Assignment 8 MA 1124

5.2, 5.5, 5.4, Assignment.

a. Also try to use the L.U.B. axiom to prove [a, b] is compact.

Hint: [a, b] can be covered by one O_y for some c > a.
51. Prove: If \(a_n \to a \) and \(b_n \to b \) where \(b_n \neq 0 \) and \(b \neq 0 \), then the sequence \(\{a_n/b_n\} \) converges to \(a/b \).

52. Prove: If the sequence \((a_n) \) converges to \(b \), then every subsequence \((a_{n_k}) \) of \((a_n) \) also converges to \(b \).

53. Prove: If the sequence \((a_n) \) converges to \(b \), then either the range \(\{a_n\} \) of the sequence \((a_n) \) is finite, or \(b \) is an accumulation point of the range \(\{a_n\} \).

54. Prove: If the sequence \((a_n) \) of distinct elements is bounded and the range \(\{a_n\} \) of \((a_n) \) has exactly one limit point \(b \), then the sequence \((a_n) \) converges to \(b \).

(Remark: The sequence \(\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} \) shows that the condition of boundedness cannot be removed from this theorem.)

CONTINUITY

55. Prove: A function \(f: \mathbb{R} \to \mathbb{R} \) is continuous at \(a \in \mathbb{R} \) if and only if for every sequence \((a_n) \) converging to \(a \), the sequence \((f(a_n)) \) converges to \(f(a) \).

56. Prove: Let the function \(f: \mathbb{R} \to \mathbb{R} \) be continuous at \(p \in \mathbb{R} \). Then there exists an open interval \(S \) containing \(p \) such that \(f \) is bounded on the open interval \(S \).

57. Give an example of a function \(f: \mathbb{R} \to \mathbb{R} \) which is continuous at every point in the open interval \(S = (0, 1) \) but which is not bounded on the open interval \(S \).

58. Prove: Let \(f: \mathbb{R} \to \mathbb{R} \) be continuous at every point in a closed interval \(A = [a, b] \). Then \(f \) is bounded on \(A \). (Remark: By the preceding problem, this theorem is not true if \(A \) is not closed.)

59. Prove: Let \(f: \mathbb{R} \to \mathbb{R} \) and \(g: \mathbb{R} \to \mathbb{R} \) be continuous. Then the sum \((f+g): \mathbb{R} \to \mathbb{R} \) is continuous, where \(f+g \) is defined by \((f+g)(x) = f(x) + g(x) \).

60. Prove: Let \(f: \mathbb{R} \to \mathbb{R} \) be continuous, and let \(k \) be any real number. Then the function \((kf): \mathbb{R} \to \mathbb{R} \) is continuous, where \(kf \) is defined by \((kf)(x) = kf(x) \).

61. Prove: Let \(f: \mathbb{R} \to \mathbb{R} \) and \(g: \mathbb{R} \to \mathbb{R} \) be continuous. Then \(\{x \in \mathbb{R} : f(x) = g(x)\} \) is a closed set.

62. Prove: The projection \(\pi_x: \mathbb{R}^2 \to \mathbb{R} \) is continuous where \(\pi_x \) is defined by \(\pi_x((a, b)) = a \).

63. Consider the functions \(f: \mathbb{R} \to \mathbb{R} \) and \(g: \mathbb{R} \to \mathbb{R} \) defined by

\[
f(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
\]

\[
g(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
\]

Prove \(g \) is continuous at 0 but \(f \) is not continuous at 0.

64. Recall that every rational number \(q \in \mathbb{Q} \) can be written uniquely in the form \(q = a/b \) where \(a \in \mathbb{Z} \), \(b \in \mathbb{N} \), and \(a \) and \(b \) are relatively prime. Consider the function \(f: \mathbb{R} \to \mathbb{R} \) defined by

\[
f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ 1/b & \text{if } x \text{ is rational and } x = a/b \text{ as above} \end{cases}
\]

Prove that \(f \) is continuous at every irrational point, but \(f \) is discontinuous at every rational point.

Answers to Supplementary Problems

57. Consider the function \(f(x) = \begin{cases} -x & \text{if } x \leq 0 \\ 1/x & \text{if } x > 0 \end{cases} \)

The function \(f \) is continuous at every point in \(\mathbb{R} \) except at 0 as indicated in the adjacent graph of \(f \). Hence \(f \) is continuous at every point in the open interval \((0, 1)\). But \(f \) is not bounded on \((0, 1)\).

58. Hint: Use the result stated in Problem 56 and the Heine-Borel Theorem.