1. p233, 22,30 attached.

2. p64, 44,45,47,48 attached.

3. If \(A_\alpha \) are open, what about finite unions? countable unions? All unions? Same for intersections?

4. If \(A_\alpha \) are closed, same questions.

5. Prove that \(A \) is open iff \(\forall x \in A, x_n \to x_n \) implies the sequence \(x_n \) is ultimately in \(A \), i.e. \(\exists N \) such that \(n \geq N \to x_n \in A \).
Solution:
Suppose p_1 and p_2 belong to every interval. If $p_1 \neq p_2$, then $|p_1 - p_2| = \delta > 0$. Since
\[\lim_{n \to \infty} (b_n - a_n) = 0, \]
there exists an interval $I_{n_0} = [a_{n_0}, b_{n_0}]$ such that the length of I_{n_0} is less than
the distance $|p_1 - p_2| = \delta$ between p_1 and p_2. Accordingly, p_1 and p_2 cannot both belong to I_{n_0}, a
contradiction. Thus $p_1 = p_2$, i.e., only one point can belong to every interval.

Supplementary Problems

FIELD AXIOMS

20. Show that the Right Distributive Law [D4] is a consequence of the Left Distributive Law [D3] and
the Commutative Law [M4].

21. Show that the set \mathbb{Q} of rational numbers under addition and multiplication is a field.

22. Show that the following set A of real numbers under addition and multiplication is a field:
\[A = \{a + b\sqrt{2} : a, b \text{ rational}\} \]

23. Show that the set $A = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$ of even integers under addition and multiplication
satisfies all the axioms of a field except $[M_5]$, $[M_4]$ and $[M_4]$, that is, is a ring.

INEQUALITIES AND POSITIVE NUMBERS

24. Rewrite so that x is alone between the inequality signs:
(i) $4 < -2x < 10$, (ii) $-1 < 2x - 3 < 5$, (iii) $-3 < 5 - 2x < 7$.

25. Prove: The product of any two negative numbers is positive.

26. Prove Theorem A.2(ii): If $a < b$, then $a + c < b + c$.

27. Prove Theorem A.2(iv): If $a < b$ and c is positive, then $ac < bc$.

28. Prove Corollary A.3: The set \mathbb{R} of real numbers is totally ordered by the relation $a \leq b$.

29. Prove: If $a < b$ and c is positive, then:
(i) $\frac{a}{c} < \frac{b}{c}$, (ii) $\frac{c}{b} < \frac{c}{a}$.

30. Prove: $\sqrt[n]{ab} = (a+b)/2$. More generally, prove $\sqrt[n]{a_1a_2\cdots a_n} = (a_1 + a_2 + \cdots + a_n)/n$.

31. Prove: Let a and b be real numbers such that $a < b + \epsilon$ for every $\epsilon > 0$. Then $a = b$.

32. Determine all real values of x such that:
(i) $x^3 + x^2 - 6x > 0$, (ii) $(x-1)(x+3)^2 \leq 0$.

ABSOLUTE VALUES

33. Evaluate:
(i) $|2| + |3 - 4|$, (ii) $|3 - 8| - |1 - 9|$, (iii) $|-4| - |2 - 7|$.

34. Rewrite, using the absolute value sign:
(i) $-3 < x < 9$, (ii) $2 \leq x \leq 8$, (iii) $-7 < x < -1$.

35. Prove:
(i) $|a| = |a|$, (ii) $a^2 = |a|^2$, (iii) $|a| = \sqrt{a^2}$, (iv) $|x| < a$ iff $-a < x < a$.

We claim that \(f(p) = 0 \). If \(f(p) < 0 \), then, by the preceding problem, there is an open interval \((p - \delta, p + \delta)\) in which \(f \) is negative, i.e.,

\[(p - \delta, p + \delta) \subseteq A \]

So \(p \) cannot be an upper bound for \(A \). On the other hand, if \(f(p) > 0 \), then there exists another interval \((p - \delta, p + \delta)\) in which \(f \) is positive; so

\[(p - \delta, p + \delta) \cap A = \emptyset \]

which implies that \(p \) cannot be a least upper bound for \(A \). Thus \(f(p) \) can only be zero, i.e., \(f(p) = 0 \).

Remark. The theorem is also true and proved similarly in the case \(f(b) < 0 < f(a) \).

37. Prove Theorem (Weierstrass) 4.9: Let \(f : \mathbb{R} \to \mathbb{R} \) be continuous on a closed interval \([a, b]\). Then the function assumes every value between \(f(a) \) and \(f(b) \).

Solution:
Suppose \(f(a) < f(b) \) and let \(y_0 \) be a real number such that \(f(a) < y_0 < f(b) \). We want to prove that there is a point \(p \) such that \(f(p) = y_0 \). Consider the function \(g(x) = f(x) - y_0 \) which is also continuous. Note that \(g(a) < 0 < g(b) \).

By the preceding problem, there exists a point \(p \) such that \(g(p) = f(p) - y_0 = 0 \). Hence \(f(p) = y_0 \).

The case when \(f(b) < f(a) \) is proved similarly.

Supplementary Problems

OPEN SETS, CLOSED SETS, ACCUMULATION POINTS
38. Prove: If \(A \) is a finite subset of \(\mathbb{R} \), then the derived set \(A' \) of \(A \) is empty, i.e. \(A' = \emptyset \).

39. Prove: Every finite subset of \(\mathbb{R} \) is closed.

40. Prove: If \(A \subset B \), then \(A' \subset B' \).

41. Prove: A subset \(B \) of \(\mathbb{R}^2 \) is closed if and only if \(d(p, B) = 0 \) implies \(p \in B \), where \(d(p, B) = \inf \{ d(p, q) : q \in B \} \).

42. Prove: \(A \cup A' \) is closed for any set \(A \).

43. Prove: \(A \cup A' \) is the smallest closed set containing \(A \), i.e. if \(F \) is closed and \(A \subset F \subset A \cup A' \) then \(F = A \cup A' \).

44. Prove: The set of interior points of any set \(A \), written \(\text{int}(A) \), is an open set.

45. Prove: The set of interior points of \(A \) is the largest open set contained in \(A \), i.e. if \(G \) is open and \(\text{int}(A) \subset G \subset A \), then \(\text{int}(A) = G \).

46. Prove: The only subsets of \(\mathbb{R} \) which are both open and closed are \(\emptyset \) and \(\mathbb{R} \).

SEQUENCES
47. Prove: If the sequence \((a_n) \) converges to \(b \in \mathbb{R} \), then the sequence \((|a_n - b|) \) converges to 0.

48. Prove: If the sequence \((a_n) \) converges to 0, and the sequence \((b_n) \) is bounded, then the sequence \((a_n b_n) \) also converges to 0.

49. Prove: If \(a_n \to a \) and \(b_n \to b \), then the sequence \((a_n + b_n) \) converges to \(a + b \).

50. Prove: If \(a_n \to a \) and \(b_n \to b \), then the sequence \((a_n b_n) \) converges to \(ab \).