Assignment 5 MA1124 Due Wednesday24th.

2. On page 234, attached, 37,38,42
Solution:
Suppose \(p_1 \) and \(p_2 \) belong to every interval. If \(p_1 \neq p_2 \), then \(|p_1 - p_2| = \delta > 0 \). Since \(\lim \Delta_n = 0 \), there exists an interval \(I_{\epsilon} = [a_{\epsilon}, b_{\epsilon}] \) such that the length of \(I_{\epsilon} \) is less than the distance \(|p_1 - p_2| = \delta \) between \(p_1 \) and \(p_2 \). Accordingly, \(p_1 \) and \(p_2 \) cannot both belong to \(I_{\epsilon} \), a contradiction. Thus \(p_1 = p_2 \), i.e. only one point can belong to every interval.

Supplementary Problems

FIELD AXIOMS

20. Show that the Right Distributive Law \([D_3]\) is a consequence of the Left Distributive Law \([D_1]\) and the Commutative Law \([M_3]\).

21. Show that the set \(\mathbb{Q} \) of rational numbers under addition and multiplication is a field.

22. Show that the following set \(A \) of real numbers under addition and multiplication is a field:
\[
A = \{a + b\sqrt{2} : a, b \text{ rational}\}
\]

23. Show that the set \(A = \{\ldots, -4, -2, 0, 2, 4, \ldots\} \) of even integers under addition and multiplication satisfies all the axioms of a field except \([M_3],[M_4]\) and \([M_5]\), that is, is a ring.

INEQUALITIES AND POSITIVE NUMBERS

24. Rewrite so that \(x \) is alone between the inequality signs:
 (i) \(4 < -2x < 10 \), (ii) \(-1 < 2x - 3 < 5 \), (iii) \(-3 < 5 - 2x < 7 \).

25. Prove: The product of any two negative numbers is positive.

26. Prove Theorem A.3(ii): If \(a < b \), then \(a + c < b + c \).

27. Prove Theorem A.3(iv): If \(a < b \) and \(c \) is positive, then \(ac < bc \).

28. Prove Corollary A.3: The set \(\mathbb{R} \) of real numbers is totally ordered by the relation \(a \leq b \).

29. Prove: If \(a < b \) and \(c \) is positive, then:
 (i) \(\frac{a}{c} < \frac{b}{c} \), (ii) \(\frac{a}{b} < \frac{c}{a} \).

30. Prove: \(\sqrt{ab} = (a + b)/2 \). More generally, prove \(\sqrt[3]{a_1 a_2 \cdots a_n} = (a_1 + a_2 + \cdots + a_n)/n \).

31. Prove: Let \(a \) and \(b \) be real numbers such that \(a < b + \epsilon \) for every \(\epsilon > 0 \). Then \(a \leq b \).

32. Determine all real values of \(x \) such that: (i) \(x^2 + x^2 - 6x > 0 \), (ii) \((x - 1)(x + 3)^2 \leq 0 \).

ABSOLUTE VALUES

33. Evaluate: (i) \(| -2 | + |1 - 4| \), (ii) \(|3 - 8| - |1 - 9| \), (iii) \(| -4 | - |2 - 7| \).

34. Rewrite, using the absolute value sign: (i) \(-8 < x < 9 \), (ii) \(2 \leq x \leq 8 \), (iii) \(-7 < x < -1 \).

35. Prove: (i) \(| -a | = |a| \), (ii) \(a^2 = |a|^2 \), (iii) \(|a| = \sqrt{a^2} \), (iv) \(|x| < a \iff -a < x < a \).
36. Prove Proposition A.4(i): \(|ab| = |a| |b|\).

37. Prove Proposition A.4(iv): \(|a| - |b| \leq |a - b|\).

Least Upper Bound Axiom

38. Prove: Let \(A\) be a set of real numbers bounded from below. Then \(A\) has a greatest lower bound, i.e. \(\inf(A)\) exists.

39. Prove: (i) Let \(x \in \mathbb{R}\) such that \(x^2 < 2\); then \(\exists n \in \mathbb{N}\) such that \((x + 1/n)^2 < 2\).

 (ii) Let \(x \in \mathbb{R}\) such that \(x^2 > 2\); then \(\exists n \in \mathbb{N}\) such that \((x - 1/n)^2 > 2\).

40. Prove: There exists a real number \(a \in \mathbb{R}\) such that \(a^2 = 2\).

41. Prove: Between any two positive real numbers lies a number of the form \(r^2\), where \(r\) is rational.

42. Prove: Between any two real numbers there is an irrational number.

Answers to Supplementary Problems

24. (i) \(-5 < x < -2\) (ii) \(1 < x < 4\) (iii) \(-1 < x < 4\)

32. (i) \(-3 < x < 0\) or \(x > 2\), i.e. \(x \in (-3, 0) \cup (2, \infty)\) (ii) \(x = 1\)

33. (i) 5 (ii) -3 (iii) 1

34. (i) \(|x - 3| < 6\) (ii) \(|x - 5| = 3\) (iii) \(|x + 4| < 3\)