Assignment 6

1. Prove \(A^c = U \setminus G \) where \(G \subseteq A \)

2. Prove \(A = \bigcap H \) where \(H \) is closed \(H \subseteq A \)

3. Prove \((A^c)^c = (A^c)^c \)

4. Prove \((A^o)^c = (A^o)^c \)

5. Prove \(b \cup b \cap A \subseteq \bar{A} \) if \(A \) is closed

6. Prove \(\emptyset \) and \(R \) are the only subsets of \(\mathbb{R} \) that are both open and closed.

7. Prove \(a_n \rightarrow x \) and \(|a_n - b_n| < 1/n \) \(\Rightarrow b_n \rightarrow x \).