Q1: \(f, g \) both \(1-1 \).

\(f + g \) need not be \(1-1 \).

example \(f = x \), \(g = -x \).

\(f + g \) need not be \(1-1 \).

\(f(x) = x \) on \([1, 2]\) \(g(x) = \frac{1}{x} \) on \((1, 2)\).

\(f + g \) will be \(1-1 \).

\(f + g (x_1) = f + g (x_2) \)

\(\Rightarrow f(g(x_1)) = f(g(x_2)) \) by def.

\(\Rightarrow g(x_1) = g(x_2) \) by \(f \) is \(1-1 \).

\(\Rightarrow x_1 = x_2 \) by \(g \) is \(1-1 \).

\(f, g \) both \(1-1 \).

\(f + g \) need not be \(1-1 \) \(f + g \) need not be same example as above.

\(f: X \rightarrow Y \; g: Z \rightarrow X \).

\(f \circ g \; Z \rightarrow Y \) Let \(y \in Y \).

\(f \) is onto \(\Rightarrow \exists x \in X \) s.t. \(f(x) = y \).

\(g \) is onto \(\Rightarrow \exists z \in Z \) s.t. \(g(z) = x \).

then \(f \circ g (z) = f(g(z)) = y \)
Q2. \(f \circ g \) is 1-1 \(\Rightarrow \) \(g \) is 1-1.

But \(g \) is 1-1 \(\Rightarrow \) \(f \circ g \) is 1-1.

Example.

\(f \circ g \) is 1-1 \(\Rightarrow \) \(g \) is 1-1.

Example.

Q3. \(f \circ g \) is onto \(\Rightarrow \) \(f \) is onto.

But \(f \) is onto \(\Rightarrow \) \(f \circ g \) is onto.

Example.

and \(f \circ g \) is onto \(\Rightarrow \) \(g \) is onto.

Example. Same as last.

Q4. \(f, g \) even \(\Rightarrow \) \(f + g \) is even.

\(f, g \) odd \(\Rightarrow \) \(f + g \) is odd.

\(f \) even \(\Rightarrow \) \(f \) even \(\Rightarrow \) \(f \) is even.

\(f, g \) odd \(\Rightarrow \) \(f, g \) even \(\Rightarrow \) \(f + g \) can be anything.

\(f \) even \(\Rightarrow \) \(g \) odd \(\Rightarrow \) \(\log \) is 1-1.

\(f \) even \(\Rightarrow \) \(g \) odd \(\Rightarrow \) \(\log \) is 1-1.
\[\text{Solve, S. odd} \quad \log(-x) = \int f(s(-x)) \, ds(-x) \]

\[= \int f(s(x)) \, ds(x) \]

\[= -\int f(s(x)) \, ds(x) = 0. \]

\[Q \]

5. \[y = \frac{2x+1}{x-1} \quad x \neq 1. \]

\[y(x-1) = 2x+1. \]

5. \(y(x-2) = 1+y \)

\[x = \frac{1+y}{y-2} \quad y \neq 2. \]

Check \[x = \frac{1+y}{y-2} = \frac{1 + \frac{2x+1}{x-1}}{\frac{2x+1}{x-1} - 2} = \frac{x-1 + 2x+1}{2x+1 - 2x+2} = \frac{3x}{3} = x. \]

Check other way:

\[y = \frac{2x+1}{x-1} = \]