Assignment 10.

1. Given \(\int \frac{1}{\sqrt{ax^2 + bx + c}} \, dx \), complete the square and then decide how you would integrate each of the possibilities that could arise.

Page 576 32, 34

Page 594/595 18, 22, 28
31. Radon-222 is a radioactive gas with a half-life of 3.83 days. This gas is a health hazard because it tends to get trapped in the basements of houses, and many health officials suggest that homeowners seal their basements to prevent entry of the gas. Assume that \(5.0 \times 10^7 \) radon atoms are trapped in a basement at the time it is sealed and that \(y(t) \) is the number of atoms present \(t \) days later.
 (a) Find an initial-value problem whose solution is \(y(t) \).
 (b) Find a formula for \(y(t) \).
 (c) How many atoms will be present after 30 days?
 (d) How long will it take for 90% of the original quantity of gas to decay?

32. Polonium-210 is a radioactive element with a half-life of 140 days. Assume that 20 milligrams of the element are placed in a lead container and that \(y(t) \) is the number of milligrams present \(t \) days later.
 (a) Find an initial-value problem whose solution is \(y(t) \).
 (b) Find a formula for \(y(t) \).
 (c) How many milligrams will be present after 10 weeks?
 (d) How long will it take for 70% of the original sample to decay?

33. Suppose that 200 fruit flies are placed in a breeding container that can support at most 10,000 flies. Assuming that the population grows exponentially at a rate of 2% per day, how long will it take for the container to reach capacity?

34. Suppose that the town of Grayrock had a population of 10,000 in 1998 and a population of 12,000 in 2003. Assuming an exponential growth model, in what year will the population reach 20,000?

35. A scientist wants to determine the half-life of a certain radioactive substance. She determines that in exactly 5 days a 10.0-milligram sample of the substance decays to 3.5 milligrams. Based on these data, what is the half-life?

36. Suppose that 40% of a certain radioactive substance decays in 5 years.
 (a) What is the half-life of the substance in years?
 (b) Suppose that a certain quantity of this substance is stored in a cave. What percentage of it will remain after \(t \) years?

37. (a) Make a conjecture about the effect on the graphs of \(y = y_0 e^{kt} \) and \(y = y_0 e^{-kt} \) of varying \(k \) and keeping \(y_0 \) fixed. Confirm your conjecture with a graphing utility.
 (b) Make a conjecture about the effect on the graphs of \(y = y_0 e^{kt} \) and \(y = y_0 e^{-kt} \) of varying \(y_0 \) and keeping \(k \) fixed. Confirm your conjecture with a graphing utility.

38. (a) What effect does increasing \(y_0 \) and keeping \(k \) fixed have on the doubling time or half-life of an exponential model? Justify your answer.
 (b) What effect does increasing \(k \) and keeping \(y_0 \) fixed have on the doubling time and half-life of an exponential model? Justify your answer.

39. (a) There is a trick, called the Rule of 70, that can be used to get a quick estimate of the doubling time or half-life of an exponential model. According to this rule, the doubling time or half-life is roughly 70 divided by the percentage growth or decay rate. For example, we showed in Example 5 that with a continued growth rate of 1.33% per year the world population would double every 52 years. This result agrees with the Rule of 70, since \(70/1.33 \approx 52.6 \). Explain why this rule works.
 (b) Use the Rule of 70 to estimate the doubling time of a population that grows exponentially at a rate of 2% per year.
 (c) Use the Rule of 70 to estimate the half-life of a population that decreases exponentially at a rate of 3.5% per hour.
 (d) Use the Rule of 70 to estimate the growth rate that would be required for a population growing exponentially to double every 10 years.

40. Find a formula for the tripling time of an exponential growth model.

41. In 1950, a research team digging near Folsom, New Mexico, found charred bison bones along with some leaf-shaped projectile points (called the "Folsom points") that had been made by a Paleo-Indian hunting culture. It was clear from the evidence that the bone had been cooked and eaten by the makers of the points, so that carbon-14 dating of the bone made it possible for the researchers to determine when the hunters roamed North America. Tests showed that the bone contained between 27% and 30% of their original carbon-14. Use this information to show that the hunters lived roughly between 9000 B.C. and 8000 B.C.

42. (a) Use a graphing utility to make a graph of \(p(t) \) versus \(t \), where \(p(t) \) is the percentage of carbon-14 that remains in an artifact after \(t \) years.
 (b) Use the graph to estimate the percentage of carbon-14 that would have to have been present in the 1985 test of the Shroud of Turin for it to have been the burial shroud of Jesus of Nazareth (see Example 7).

43. (a) It is currently accepted that the half-life of carbon-14 might vary ±40 years from its nominal value of 5730 years. Does this variation make it possible that the Shroud of Turin dates to the time of Jesus of Nazareth (see Example 7)?
 (b) Review the subsection of Section 2.9 entitled Half-Life Propagation, and then estimate the percentage error bar
21. \(y' - xy = x, \quad y(0) = 5 \)
22. \(xy' + 2y = 4x^2, \quad y(1) = 3 \)
23. \(y' \sinh x + y \cosh x = \cosh^2 x, \quad y(0) = 2 \)
24. (a) Solve the initial-value problem

\[y' - y = x \sin 3x, \quad y(0) = 2 \]

by the method of integrating factors, using a CAS to perform any difficult integrations.

(b) Use the CAS to solve the initial-value problem directly, and confirm that the answer is consistent with that obtained in part (a).

(c) Graph the solution.

25. Classify the following first-order differential equations as separable, linear, both, or neither:

(a) \[\frac{dy}{dx} - 3y = \sin x \]

(b) \[\frac{dy}{dx} + xy = x \]

(c) \[y \frac{dy}{dx} - x = 1 \]

(d) \[\frac{dy}{dx} + xy^2 = \sin(xy) \]

26. Determine whether the methods of integrating factors and separation of variables produce the same solutions of the differential equation

\[\frac{dy}{dx} - 4xy = x \]

CHAPTER 8 MAKING CONNECTIONS

1. Consider the first-order differential equation

\[\frac{dy}{dx} + py = q \]

where \(p \) and \(q \) are constants. If \(y = y(x) \) is a solution to this equation, define \(u = u(x) = q - py(x) \).

(a) Without solving the differential equation, show that \(u \) grows exponentially as a function of \(x \) if \(p < 0 \), and decays exponentially as a function of \(x \) if \(0 < p \).

(b) Use the result of part (a) and Equations (13-14) of Section 8.2 to solve the initial-value problem

\[\frac{dy}{dx} + 2y = 4, \quad y(0) = 1 \]

2. Consider a differential equation of the form

\[\frac{dy}{dx} = f(ax + by + c) \]

where \(f \) is a function of a single variable. If \(y = y(x) \) is a solution to this equation, define \(u = u(x) = ax + by(x) + c \).

(a) Find a separable differential equation that is satisfied by the function \(u \).

(b) Use your answer to part (a) to solve

\[\frac{dy}{dx} = \frac{1}{x + y} \]

3. A first-order differential equation is homogeneous if it can be written in the form

\[\frac{dy}{dx} = f \left(\frac{y}{x} \right) \]

for \(x \neq 0 \)

where \(f \) is a function of a single variable. If \(y = y(x) \) is a solution to the homogeneous differential equation, define \(u \).

(a) Find the solution to the accompanying differential equation satisfied by \(u \).

(b) Use the accompanying figures to calculate the slopes of the tangent lines.

If \(r = 2 \), and to the right of the line \(\theta = 2 \) and outside the
30. (a) Prove that solutions need not be unique for nonlinear initial-value problems by finding two solutions to
\[\frac{dy}{dx} = x, \quad y(0) = 0 \]
(b) Prove that solutions need not exist for nonlinear initial-value problems by showing that there is no solution for
\[\frac{dy}{dx} = -x, \quad y(0) = 0 \]

31. Writing Explain why the quantity \(\mu \) in the Method of Integrating Factors is called an “integrating factor” and explain its role in this method.

32. Writing Suppose that a given first-order differential equation can be solved both by the method of integrating factors and by separation of variables. Discuss the advantages and disadvantages of each method.

\[\frac{dy}{dx} = \sqrt{y}, \quad y(0) = 1, \quad 0 \leq x \leq 4, \quad \Delta x = 0.5 \]
\[\frac{dy}{dx} = \sin y, \quad y(0) = 1, \quad 0 \leq x \leq 2, \quad \Delta x = 0.5 \]

13-14 Use Euler's Method with the given step size \(\Delta x \) to approximate the solution of the initial-value problem over the stated interval. Present your answer as a table and as a graph.

13. \(\frac{dy}{dx} = \sqrt{y}, \quad y(0) = 1, \quad 0 \leq x \leq 4, \quad \Delta x = 0.5 \)
14. \(\frac{dy}{dx} = \sin y, \quad y(0) = 1, \quad 0 \leq x \leq 2, \quad \Delta x = 0.5 \)

15. Consider the initial-value problem
\[y' = \cos 2\pi t, \quad y(0) = 1 \]
Use Euler's Method with five steps to approximate \(y(1) \).

16. Use Euler's Method with a step size of \(\Delta t = 0.1 \) to approximate the solution of the initial-value problem
\[y' = 1 + 2t, \quad y(1) = 5 \]
over the interval \([1, 2]\).

17. Cloth found in an Egyptian pyramid contains 77.5% of its original carbon-14. Estimate the age of the cloth.

18. Suppose that an initial population of 3000 bacteria grows exponentially at a rate of 1% per hour and that \(y = y(t) \) is the number of bacteria present after \(t \) hours.
(a) Find an initial-value problem whose solution is \(y(t) \).
(b) Find a formula for \(y(t) \).
(c) What is the doubling time for the population?
(d) How long does it take for the population of bacteria to reach 30,000?

19-20 Solve the differential equation by the method of integrating factors.

19. \(\frac{dy}{dx} + 4y = e^{-2x} \)
20. \(\frac{dy}{dx} + \frac{y}{1 + e^x} = 0 \)

21-23 Solve the initial-value problem by the method of integrating factors.