A Random Matrix Theory based analysis of stocks of markets from different countries

Ricardo Coelho

School of Physics Trinity College Dublin

Palermo - Presentation, 22nd September 2007

A D > A P > A B > A B >

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

Definitions

Logarithmic Return Correlations Random Matrix Theory Distances

ヘロン 人間 とくほとう ほとう

3

Introduction

Definitions

Logarithmic Return Correlations Random Matrix Theory Distances

Results

Markets are clustered geographically For some markets stocks are clustered in sectors Stocks from different markets cluster in Industrial/Geographical location?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

Definitions

Logarithmic Return Correlations Random Matrix Theory Distances

Results

Markets are clustered geographically For some markets stocks are clustered in sectors Stocks from different markets cluster in Industrial/Geographical location?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary

Introduction

We studied different sets of data.

- Different World Indices
 - Equity markets of 53 different countries
 - Wednesday closing price (weekly returns)
 - ▶ From 8th January 1997 until 1st February 2006
- More than 6000 stocks from markets around the world
 - Daily closing price
 - ▶ From 30th December 1994 until 1st January 2007

Log-return of stocks shows extreme events (e.g. HSBC)

$$R_i(t) = \ln P_i(t) - \ln P_i(t-1)$$
 (1)

▲ロ > ▲母 > ▲臣 > ▲臣 > ▲臣 > ④ < ⊙

Distribution of the Log-return is non-Gaussian

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Correlations between stocks i and j

$$\rho_{ij} = \frac{\langle \mathbf{R}_i \mathbf{R}_j \rangle - \langle \mathbf{R}_i \rangle \langle \mathbf{R}_j \rangle}{\sqrt{\left(\langle \mathbf{R}_i^2 \rangle - \langle \mathbf{R}_i \rangle^2\right) \times \left(\langle \mathbf{R}_j^2 \rangle - \langle \mathbf{R}_j \rangle^2\right)}}$$
(2)

• ρ_{ij} form a symmetric $N \times N$ matrix; $-1 \le \rho_{ij} \le 1$; $\rho_{ii} = 1$.

Matrix of correlations shows non-randomness

Random Matrix Theory for $N \to \infty$ and $T \to \infty$, where Q = T/N is fixed and bigger than 1.

$$P_{RM}(\lambda) = \frac{Q}{2\pi\sigma^2} \frac{\sqrt{(\lambda_{max} - \lambda)(\lambda - \lambda_{min})}}{\lambda}$$
(3)

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

$$d_{ij} = \sqrt{2(1 - \rho_{ij})} \tag{4}$$

- ▶ $0 \le d_{ij} \le 2$, small values imply strong correlations.
- From distances we construct the Minimal Spanning Tree (MST).
- Choose the minimum distance between 2 stocks one link between these 2.

$$d_{ij} = \sqrt{2(1 - \rho_{ij})} \tag{4}$$

- ▶ $0 \le d_{ij} \le 2$, small values imply strong correlations.
- From distances we construct the Minimal Spanning Tree (MST).
- Choose the minimum distance between 2 stocks one link between these 2.
- Find the next minimum distance. If the 2 stocks are not linked or both linked, choose the next minimum distance. If just 1 of the stocks has already links, link them.

$$d_{ij} = \sqrt{2(1 - \rho_{ij})} \tag{4}$$

- ▶ $0 \le d_{ij} \le 2$, small values imply strong correlations.
- From distances we construct the Minimal Spanning Tree (MST).
- Choose the minimum distance between 2 stocks one link between these 2.
- Find the next minimum distance. If the 2 stocks are not linked or both linked, choose the next minimum distance. If just 1 of the stocks has already links, link them.

$$d_{ij} = \sqrt{2(1 - \rho_{ij})} \tag{4}$$

- ▶ $0 \le d_{ij} \le 2$, small values imply strong correlations.
- From distances we construct the Minimal Spanning Tree (MST).
- Choose the minimum distance between 2 stocks one link between these 2.
- Find the next minimum distance. If the 2 stocks are not linked or both linked, choose the next minimum distance. If just 1 of the stocks has already links, link them.

$$d_{ij} = \sqrt{2(1 - \rho_{ij})} \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

- ▶ $0 \le d_{ij} \le 2$, small values imply strong correlations.
- From distances we construct the Minimal Spanning Tree (MST).
- Choose the minimum distance between 2 stocks one link between these 2.
- Find the next minimum distance. If the 2 stocks are not linked or both linked, choose the next minimum distance. If just 1 of the stocks has already links, link them.

Markets are organised by geographical location

Full time series, T = 475 weeks, for the 53 World Indices.

Coelho et al., Physica A 376 (2007) 455-466

Stocks cluster in industrial sectors (NYSE stocks)

Full time series, T = 3127 days, for 617 NYSE stocks.

Oil & Gas - black / Basic Materials - blue / Industrials - gray / Consumer Goods - yellow / Health Care - green Consumer Services - red / Telecommunications - pink / Utilities - purple / Financials - white / Technology - orange

(日) (同) (日) (日)

Clustering depends on the portfolio (LON stocks)

Full time series, T = 3127 days, for 322 LON stocks.

Oil & Gas - black / Basic Materials - blue / Industrials - gray / Consumer Goods - yellow / Health Care - green Consumer Services - red / Telecommunications - pink / Utilities - purple / Financials - white / Technology - orange

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ● つんの

Clustering depends on the portfolio (PAR stocks)

Full time series, T = 3127 days, for 125 PAR stocks.

Oil & Gas - black / Basic Materials - blue / Industrials - gray / Consumer Goods - yellow / Health Care - green Consumer Services - red / Utilities - purple / Financials - white / Technology - orange

Eigenvector elements of the highest eigenvalue

Industrials - a / Financials - b / Health Care - c / Technology - d / Oil & Gas - e / Utilities - f Basic Materials - g / Telecommunications - h / Consumer Goods - i / Consumer Services - j

・ロト ・ 一下・ ・ ヨト・

PAR

Eigenvector elements of the 2nd highest eigenvalue

Industrials - a / Financials - b / Health Care - c / Technology - d / Oil & Gas - e / Utilities - f Basic Materials - g / Telecommunications - h / Consumer Goods - i / Consumer Services - j

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

PAR

Eigenvector elements of the 3rd highest eigenvalue

Industrials - a / Financials - b / Health Care - c / Technology - d / Oil & Gas - e / Utilities - f Basic Materials - g / Telecommunications - h / Consumer Goods - i / Consumer Services - j

LON

PAR

What about stocks from different countries???

Full time series, T = 3127 days, for 2500 stocks from different markets.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Stocks from European and American markets segregate

1052 stocks from NYSE ((), LON (o) and PAR (\Box). Oil & Gas - black /

Basic Materials - blue / Industrials - gray / Consumer Goods - yellow / Health Care - green Consumer Services - red / Utilities - purple / Financials - white / Technology - orange

Stocks from European and American markets segregate

Industrials - a / Financials - b / Health Care - c / Technology - d / Oil & Gas - e / Utilities - f Basic Materials - g / Consumer Goods - i / Consumer Services - j

Highest

3rd highest

Stocks from European markets mixed together

235 stocks from PAR (\Box), AMS (\triangle) and BRU (\Diamond).

Basic Materials - blue / Industrials - gray / Consumer Goods - yellow / Health Care - green Consumer Services - red / Utilities - purple / Financials - white / Technology - orange

イロト イ押ト イヨト イヨト

Stocks from European markets mixed together

Industrials - a / Financials - b / Health Care - c / Technology - d / Utilities - f / Basic Materials - g Consumer Goods - i / Consumer Services - j

3rd highest

What about simulations of three diferent markets?

Using information from the real time series of returns, construct random time series for all stocks:

$$r_i(t) = \alpha_i + \beta_i R^{M_j}(t) + \epsilon_i(t)$$
(5)

where

$$R^{M_j}(t) = \sum_{i \in M_j} R_i(t) \tag{6}$$

The correlations between market returns is given by:

PAR		AMS		BRU			
Real	Rand	Real	Rand	Real	Rand		
1.0	0.97	0.83		0.77		Real	PAR
	1.0		0.78		0.70	Rand	
		1.0	0.96	0.77		Real	AMS
			1.0		0.69	Rand	
				1.0	0.94	Real	BRU
					1.0	Rand	

NYSE is weakly correlated with PAR and LON

And for the other three markets the correlations are given by:

PAR		LON		NYSE			
Real	Rand	Real	Rand	Real	Rand		
1.0	0.97	0.68		0.28		Real	PAR
-	1.0		0.66		0.27	Rand	
		1.0	0.99	0.31		Real	LON
			1.0		0.30	Rand	1
				1.0	0.99	Real	NYSE
					1.0	Rand	

Simulation shows segregation in terms of market

1052 stocks from NYSE ((), LON (o) and PAR ([]). Oil & Gas-black /

Basic Materials - blue / Industrials - gray / Consumer Goods - yellow / Health Care - green Consumer Services - red / Utilities - purple / Financials - white / Technology - orange

To Real MST

Simulation shows segregation in terms of market

Industrials - a / Financials - b / Health Care - c / Technology - d / Oil & Gas - e / Utilities - f Basic Materials - g / Consumer Goods - i / Consumer Services - j

3rd highest

Simulation shows similar behaviour for any random market

235 stocks from PAR (\Box), AMS (\triangle) and BRU (\Diamond).

Basic Materials - blue / Industrials - gray / Consumer Goods - yellow / Health Care - green Consumer Services - red / Utilities - purple / Financials - white / Technology - orange

A D > A P > A B > A B >

To Real MST

Simulation shows similar behaviour for any random market

Industrials - a / Financials - b / Health Care - c / Technology - d / Utilities - f / Basic Materials - g Consumer Goods - i / Consumer Services - j

3rd highest

Conclusions

(P) (A) (B) Random (P) (A) (B)

Conclusions

- Two different methodologies of analysing large amount of data not always give same results
- MST show different clusters (Industrial sectors / Geography)
- The choice of the stocks/market can influence the clustering in sectors
- The stocks cluster in market before clustering in sectors
- The correlation between indices influence this clustering
- Less correlation between different countries shows better segregation between stocks of each country
- Random time series from different sources (markets) show the same results
- Random time series show segregation between different markets

Econophysics group of the Trinity College Dublin:

- Prof. Peter Richmond
- Dr. Stefan Hutzler
- Ricardo Coelho
- Joseph Barry

Collaborations:

- Prof. Brian Lucey (Business School of Trinity College Dublin)
- Prof. Claire Gilmore (McGowan School of Business of King's College, Pennsylvania)

Part of this work was published in Physica A:

Coelho et al., Physica A 373 (2007) 615-626

Coelho et al., Physica A 376 (2007) 455-466

Acknowledgments

- SFI Science Foundation Ireland
- FCT Fundação para a Ciência e a Tecnologia

