
Representations of su(2)

The purpose of these notes is to construct the representations of su(2) using the method of weight-
vectors, based on the discussion of the representations of sl(2, R) in the notes for course Ma424
Group Representations by Dr Timothy Murphy. This is interesting because it corresponds to the
quantum mechanical description of angular momentum, which we very briefly discuss at the end.

Chris Blair, May 2009

1 Lie and linear groups

We begin with some background material. Recall that a Lie group is a differential manifold with a group
structure, such that the group operations of multiplication and inversion are differentiable, and that the Lie
algebra of a Lie group is the tangent space to the group at the identity. The most commonly used Lie
groups are matrix groups, and we will focus on these, disregarding the manifold structure.

We denote the set of all n × n matrices over the field k by Mat(n, k), where k = R,C,H. The space of
invertible matrices over k is denoted by GL(n, k). Such matrices form a group under matrix multiplication.
A linear group is a closed subgroup of GL(n,R).

For X ∈ Mat(n, k) we define the exponential map exp : M(n, k)→ GL(n, k) by

expX =
∞∑
n=0

Xn

n!

Convergence follows using the matrix norm, by comparison with the scalar case. Note that if X has eigen-
values λi then expX has eigenvalues eλi . From this we have the useful property that the determinant of
expX is the exponential of the trace of X, as the determinant of a matrix is the product of the eigenvalues
while the trace is the sum, so det expX = eλ1 . . . eλn = eλ1+···+λn .

The commutator of two matrices is defined by

[X,Y ] = XY − Y X

If [X,Y ] = 0 then expX expY = expY expX = exp(X + Y ). From this it follows that expX is always
invertible with inverse exp(−X).

The Lie algebra of a linear group linear group G is the space LG defined by

LG = {X ∈ Mat(n,R) : exp(tX) ∈ G∀t ∈ R}

It is a vector space, and the commutator gives a bilinear skew-symmetric form on LG satisfying Jacobi’s
identity: [X, [Y,Z]] + cyclic permuations = 0. In this context, the commutator is called the Lie product
on LG. This definition of the Lie algebra of a linear group agrees with the general definition of a Lie algebra
as a vector space over k equipped with a bilinear skew-symmetric form satisfying Jacobi’s identity.

A homomorphism of Lie algebras f : L → M is a linear map which preserves the Lie product,
f([X,Y ]) = [f(X), f(Y )]. Given a homomorphism F : G → H of linear groups then there exists a unique
homomorphism f = LF : LG→ LH of the corresponding Lie algebras, such that

exp f(X) = F (expX)

for all X ∈ LG. As a representation of a group G is simply a homorphism from the group to the space of
invertible linear maps over some vector space V , this has implications for the representations of Lie algebras.
First let us give an exact definition: a representation of a Lie algebra over k in a vector space V over k
is defined by a bilinear map L × V → V , denoted by (X, v) 7→ Xv, satisfying [X,Y ]v = X(Y v)− Y (Xv).

Note that we always view LG as a real vector space yet are primarily interested in representations over
C. We thus introduce the complexification of a Lie algebra CL as the complex Lie algebra derived
from L by allowing multiplication by complex scalars. Then we have that every real representation α of the
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linear group G in V gives rise to a representation Lα of the corresponding Lie algebra LG in U , while every
complex representation α of G in V gives rise to a representation Lα of the complexified Lie algebra CLG
in V , with each representation characterised by

exp(LαX) = α(expX)

for all X ∈ LG.
A particular consequence of this definition is that the representations (over C) of Lie algebras with

isomorphic complexifications are in one-to-one correspondence.
The usual properties and operations for representations then hold for representations of Lie algebras. We

also have that α is (semi)simple if and only if Lα is (semi)simple.
If G is simply connected then every representation α of LG can be lifted to a unique representation α′

of G such that α = Lα′.

2 SU(2)

The group SU(2) is the group of all two-by-two unitary matrices with determinant equal to one:

SU(2) = {X ∈ Mat(2,C) : X†X = XX† = I,detX = 1}

Say X ∈ su(2), that is exp tX ∈ SU(2)∀t ∈ R, so

(exp tX)† exp tX = exp t(X† +X) = I

⇒ X = −X†

and also
det exp tX = exp tr tX = exp ttrX = 1 ∀ t ∈ R

⇒ trX = 0

hence the Lie algebra su(2) of SU(2) consists of all traceless two-by-two skew-hermitian matrices:

su(2) = {X ∈ Mat(2,C) : X = −X†, trX = 0}

A basis for this space is

U =
1
2

(
0 1
−1 0

)
V =

1
2

(
0 i
i 0

)
W =

1
2

(
i 0
0 −i

)
(note that this is the usual basis for su(2) rescaled by a factor of one-half). The Lie algebra structure is
given by the commutators of the basis elements:

[U, V ] =
1
4

(
0 1
−1 0

)(
0 i
i 0

)
− 1

4

(
0 i
i 0

)(
0 1
−1 0

)
=

1
4

(
2i 0
0 −2i

)
= W

[V,W ] =
1
4

(
0 i
i 0

)(
i 0
0 −i

)
−
(
i 0
0 −i

)(
0 i
i 0

)
=

1
4

(
0 2
−2 0

)
= U

[W,U ] =
1
4

(
i 0
0 −i

)(
0 1
−1 0

)
−
(

0 1
−1 0

)(
i 0
0 −i

)
=

1
4

(
0 2i
2i 0

)
= V

hence
su(2) = 〈U, V,W : [U, V ] = W, [W,U ] = V, [V,W ] = U〉

We will use an algebraic method to determine the representations of this Lie algebra. First, let

H = −2iW E = U − iV F = −U − iV
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then
[H,E] = −2i

(
[W,U ]− i[W,V ]

)
= −2i(V + iU) = 2E

[H,E] = −2i
(
− [W,U ]− i[W,V ]

)
= −2i(−V + iU) = −2F

[E,F ] = −i[U, V ]− i[V,U ] = −2iW = H

Now let α be a simple representation of su(2) in a finite dimensional vector space V, and let us consider the
eigenvalues and eigenvectors of H: Hv = λv. We shall call λ a weight of H and v a weight-vector, with
S(λ) = {v ∈ V : Hv = λv} being the corresponding weight-space. Now,

HEv = (HE − EH + EH)v = (E + EH)v = (λ+ 2)v ⇒ Ev ∈ S(λ+ 2)

and
HFv = (HF − FH + FH)v = (−F + FH)v = (λ− 2)v ⇒ Fv ∈ S(λ− 2)

so we see that E is a raising operator while F is a lowering operator: applying E moves us “up” a
weight-space, while applying F moves us “down” a weight-space. Applying first one then the other leaves
us in the same space that we started in, EFv, FEv ∈ S(λ). Now as our vector space V is finite-dimensional
there can only be a finite number of weight-vectors, so if we start with some weight-vector v and apply E
repeatedly we will eventually get zero, i.e. Erv 6= 0 but Er+1v = 0 and similarly for F .

Let us take a weight-vector vµ with weight µ such that Ee = 0, so that µ is the maximal weight. Acting
on e with F we obtain weight-vectors vµ−2 = Fvµ, vµ−4 = F 2vµ, . . . with weights µ − 2, µ − 4, . . . and for
some integer r we will have F rvµ 6= 0, F r+1vµ = 0. So in general we have

Hvw = wvw Fvw = vw−2

We now claim that
EFvw = a(w)vw FEvw = b(w)vw

i.e. acting on vw with first F then E or vice-versa gives us a scalar multiple of vw. Note that we have

Hvw = [E,F ]vw = a(w)− b(w)⇒ a(w)− b(w) = w

We show the claim by induction on w. Starting at the maximal weight, we have

FEvµ = 0

hence the result holds with b(µ) = 0 and a(µ) = µ. Now suppose it is true for vµ, vµ−2, . . . , vw+2. Then

FEvw = FEFvw+2 = Fa(w + 2)vw+2 = a(w + 2)vw

so the result holds with b(w) = a(w + 2), or

a(w) = a(w + 2) + w

This gives us a recursive formula for a(w). Note that we have a(µ) = µ, a(µ − 2) = a(µ) + µ − 2, and for
w = µ− 2k,

a(µ− 2k) = µ+ µ− 2 + · · ·+ µ− 2k

⇒ a(µ− 2k) = µ(k + 1)− 2
k∑
i=0

i = µ(k + 1) + 2
1
2
k(k + 1)

so
a(µ− 2k) = (k + 1) (µ− k)
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or using k = 1
2 (µ− w)

a(w) =
1
4

(µ− w + 2)(µ+ w) =
1
4

(
µ(µ+ 2)− w(w − 2)

)
and as b(w) = a(w + 2),

b(w) =
1
4

(
µ(µ+ 2)− w(w + 2)

)
Now applying F to vµ−2r gives zero, hence a(µ− 2r) = 0 meaning

(r + 1)
(
µ− r

)
= 0⇒ µ = r

so we conclude that the weights run from r down to −r and take only integral values. We also have now
found that the space

〈vr, vr−2, . . . , v−r〉

is stable under su(2) and so is the whole of V and carries a representation of degree r + 1. It follows that
there is one simple representation of su(2) of each dimension.

The actions of F and E are found as follows:

Evw = EFvw+2 = a(w + 2)vw+2 =
1
4

(
r(r + 2)− w(w + 2)

)
vw+2

Fvw = FEvw−2 = a(w − 2)vw−2 =
1
4

(
r(r + 2)− w(w − 2)

)
vw−2

from which we recover

Uvw =
1
2

(E − F )vw =
1
8

[(
r(r + 2)− w(w + 2)

)
vw+2 −

(
r(r + 2)− w(w − 2)

)
vw−2

]
V vw =

i

2
(E + F )vw =

i

8

[(
r(r + 2)− w(w + 2)

)
vw+2 +

(
r(r + 2)− w(w − 2)

)
vw−2

]
and

Wvw =
i

2
wvw

Finally we can express the above formulae in terms of the weights m = w
2 of W and in terms of j = r

2 :

Evm =
1
4

(
2j(2j + 2)− 2m(2m+ 2)

)
vm+1 =

(
j(j + 1)−m(m+ 1)

)
vm+1

Fvm =
1
4

(
2j(2j + 2)− 2m(2m− 2)

)
vm−1 =

(
j(j + 1)−m(m− 1)

)
vm−1

Wvm = imvm

where we now index the vectors using m (note vm ≡ v2m = vw), so that the representation is in the space

V = 〈vj , vj−1, . . . , v−j〉

and is of degree 2j + 1.
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2.1 Alternative methods

Note that SU(2) is isomorphic to the three-sphere S3 which is simply connected, and hence the represen-
tations of SU(2) and su(2) are in fact in one-to-one correspondence. The representations of SU(2) are the
representations in the space Vj of homogeneous polynomials in z, w ∈ C of degree 2j induced by the natural
action of SU(2) on (z w)t ∈ C2. This result can be established by restricting to the subgroup of diagonal
matrices in SU(2) which is isomorphic to U(1), and showing that Vj splits as a sum of simple U(1) modules
but not as a sum of simple SU(2) modules.

As a second alternative, we have that the Lie algebras of SU(2) and SL(2,R) have the same complexifi-
cation and so the same representations. The group SL(2,R) is the group of two-by-two real matrices with
unit determinant and its Lie algebra consists of traceless two-by-two matrices. As a basis we have

H =
(

1 0
0 −1

)
E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
and these satisfy [H,E] = 2E, [H,F ] = −2F , [E,F ] = H and so can be used to construct the representations
of sl(2,R) and hence su(2) exactly as we did using su(2). (To see that su(2) and sl(2,R) have the same
complexification we note that the complexification of each is the set of all traceless complex two-by-two
matrices.)

3 In quantum mechanics

In quantum mechanics we are concerned with the generators of infinitesimal rotations, Jx, Jy, Jz, which
satisfy

[Jl, Jm] = iεlmnJn

(with ~ = 1). An important difference between these generators and the basis for su(2) used above is that
the Ji are hermitian rather than skew-hermitian, hence

Jx ≡ −iV Jy ≡ −iU Jz ≡ −iW

so that we have the raising and lowering operators

J+ = Jx + iJy = E J− = Jx − iJy = F

while also
Jz =

H

2
The total angular momentum operator J2 = J2

x + J2
y + J2

z has eigenvalues j(j + 1) while Jz has eigenvalues
m. A procedure somewhat similar to the one above using the raising and lowering operators tells us that m
runs from j to −j and can be integral or half-integral, and so the space of a given angular momentum j is
2j + 1-dimensional. Our basis elements are written using Dirac notation as |jm〉 ≡ vm, and are normalised
so that

J+|jm〉 =
√
j(j + 1)−m(m+ 1)|j,m+ 1〉

J−|jm〉 =
√
j(j + 1)−m(m− 1)|j,m− 1〉
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